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Abstract

In this paper, we study inextensible flows dualvesr according to dual
Darboux frame. Necessary and sufficient conditiforsan inelastic dual curve
flow are expressed as a partial differential eqaatinvolving the dual geodesic
curvature.
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1 | ntroduction

Recently, the study of the motion of inelastic @shas an important role. The
time evolution of a curve represented by its cqoasling flow. The flow of a
curve is said to be inextensible if, firstly itscdength is preserved and secondly
its intrinsic curvature is preserved. Physicalhgxtensible curve flows give rise
to motions in which no strain energy is inducede Blwinging motion of cord of
fixed length, for example, or of a piece of paparried by the wind, can be
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described by inextensible curve. Some movemenaiara is inspired to examine
flow of curves as snake and elephant's trunk mowmemeor example, both
Chirikjian and Burdick [5] and Mochiyama et al. [8fudy the shape control
hyper-redundant, or snake-like robots. Inextensitleve and surface flows
emerge many problems in computer vision [14] andmater animation [10].

Particularly, inextensible time evolution of curvasd surfaces is examined
mathematically. Significant methods of this artideveloped by Gage and
Hamilton [11], and Grayson [13] for studying theisking of closed plane curves
to a circle via the heat equation. In [12] Gageo atsudies area preserving
evolution of inelastic plane curves. Another rafatgtudy is that [6], which

considers less restrictive mappings that locallgsprve volume only. In [2, 3]

Know et al. study evolution of inelastic plane @syand inextensible flows of
curves and developable surfaces.

In this paper, we study inextensible flows dualvesraccording to dual Darboux

frame. Necessary and sufficient conditions for elastic dual curve flow are
expressed as a partial differential equation invgjthe dual geodesic curvature.

2 Preliminaries

Let D:IRXIR:{E:(a a): g a0 IF]Z be the set of the pairga,a”). For
a=(a d), b =(b,b")0 D the following operations are defined bn

Equality: a=b-a=h &=b
Addition: a+b - (ath &+ b)
Multiplication: ab - (abh ab'+ &b

The elements =(0,1)[0D satisfies the relationships

£#20, £ =0, el=k=¢ (2.1)

Let consider the elemenaID of the form a=(a0). Then the mapping
f:D - IR, f(a0)=a is a isomorphism. So, we can write= (a,0). By the
multiplication rule we have that

a=(aa)=ated
Thena = a+&d is called dual number angd is called dual unit. Thus the set of

dual numbers is given by
D:{E:a+£a5: aal IRgz:O} (2.2)



100 Zehra Ekinci

The setD forms a commutative group under addition. The @aswe laws hold
for multiplication. Dual numbers are distributivadaform a ring over the real
number field [4].

Dual function of dual number presents a mappin@g afual humbers space on
itself. Properties of dual functions were thoroyghlvestigated by Dimentberg
[4]. He derived the general expression for dualydita(differentiable) function as

follows

f(X)= f(x+exX)= f(R+eX (3, (2.3)

where f'(x) is derivative of f (x) and x x’0 IR. This definition allows us to
write the dual forms of some well-known functiorssfallows

cos(X )= cosk+&x F cosk Y& X sink

sin(x) = sin(x+&x’)= sin(x - & X’ cosk ), (2.4)
JX =x+rex = x+e X , (x> 0).
2Jx

Let D*=DxDxD be the set of all triples of dual numbers, i.e.,
D*={a=(3,%.3): 30 D =123 (2.5)

Then the seD? is called dual space. The elementddf are called dual vectors.
Similar to the dual numbers, a dual vectdrmay be expressed in the form

a=a+ecd'=(3d), where & and @" are the vectors ofR®*. Then for any

vectors 4=a+ea and b=b+eb” of D, the scalar product and the vector
product are defined by

<a,6>=<aB>+g(<a”bj>+<*£,”t)), (2.6)

éXB:éXB+£(?a><B+”zExﬁt), (2.7)

and

Respectively, whereéa, 6> andaxb are the inner product and the vector product

of the vectorsa and a” in IR?, respectively.

The norm of a dual vectd is given by

<a’aém> , (az0). (2.8)
|a]

&l =& +&
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A dual vectora with norm1+ &0 is called dual unit vector. The set of dual unit
vectors is given by

$? :{é:(q, a,a)0 DO: <~a~3;1:1+£(}, (2.9)
and called dual unit sphere[8,15].

In the Euclidean 3-spackR®, an oriented linel is determined by a poinp O L
and a unit vectord. Then, one can defind” = pxa which is called moment
vector. The value ofi” does not depend on the poipt, because any other point
g in L can be given byj= p+Aa and thend” = pxa= gx a. Reciprocally,
when such a pair (8,3 is given, one recovers the lineL as
L={(a>< aAY+la:add B, A0 IR}, written in parametric equations. The
vectors & and a” are not independent of one another and they gatisf
following relationships

(a,a)=1 (ad)=0 (2.10)

The componentsa, 3 (1<i<3) of the vectorsda and a” are called the
normalized Plucker coordinates of the lihe We see that the dual unit vector

a=a+e&d corresponds to the link. This correspondence is known as E. Study
Mapping: There exists a one-to-one correspondernteden the vectors of dual

unit sphere $? and the directed lines of the spatie®’. By the aid of this

correspondence, the properties of the spatial matiba line can be derived.
Hence, the geometry of ruled surface is represehtedhe geometry of dual

curves lying on the dual unit sphe82.

The angled = 8+ &6 between two dual unit vecto b is calleddual angle
and defined by

<a, 5> =cosd = co¥ -6 sib. (2.11)

By considering the E. Study Mapping, the geomeirerpretation of dual angle
is that, 8 is the real angle between the lings L, corresponding to the dual unit

vectorsa, b, respectively, and’ is the shortest distance between those lines [9].

Let now (X) be a dual curve represented by the dual vegfay= & | +£€( l.
The unit vector & draws a curve on the real unit sph&eand is called the (real)
indicatrix of (X) . We suppose throughout that it is not a singlefpoWe take the
parameteru as the arc-length parametsrof the real indicatrix and denote the
differentiation with respect t& by primes. Then we hav(eé’,”é} =1. The vector
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€ =1 is the unit vector parallel to the tangent of thdicatrix. The equation
89 =T $x7¢ » has infinity of solutions for the functiorp(s). If we take
p,(s) as a solution, the set of all solutions is givgnii(s) = R(9+A( $7¢€ X,

where A is a real scalar function of. Therefore we havép', &) =(Tj, € +A1.
By taking A=A, :—<r);, é) we see thatp,(s) +A,(9 & $="¢ ¥ is the unique
solution for p(s) with (6’,@} =0. Then, the given dual curv&) corresponding
to the ruled surface

$.=C(9+VH 3 (2.12)
may be represented by
é(9=etexe (2.13)
where
(é,é}zl, (é’,é}zl, (é’,é}zo. (2.14)
Then we have
|&]| =t +edet@ e t)= 1+ an (2.15)

where A =det( ,&,t). The dual arc-lengts of the dual curvegX) is given by
s=[|8(Y] de=[@+er) de sefa d (2.16)
0 0 0

From (16) we haves =1+ &A. Therefore, the dual unit tangent to the cué(e
is given by
de_T__® _totasexD) (2.17)
ds 3 1+&A

Introducing the dual unit vectog =&xt= g+&£tx g we have the dual frame
{&,t, g which is known as dual geodesic trihedron or ddatboux frame of

@.(or (8)). Also, it is well known that the real orthonornfaame {&,t, g is
called the geodesic trinedron of the indica#&fg) with the derivations

g€=1t, t=yg-¢& g=—yt (2.18)

where y is called the conical curvature [1]. Similar ta1®), the derivatives of
the vectors of the dual frar{&, , g are given by

de . dt___ _ dg_ _.
—=f, —=pg-& —=-y1 2.19
= et 4 ) y (2.19)

where
y=y+e(d-), o=(¢,e) (2.20)



On Characterization of Inextensible Flows of... 103

and the dual darboux vector of the framelis y&+ g. From the definition ofA
and (2.20) we also have

¢ =o0e+Ag (2.21)
The dual curvature of dual curve (ruled surfagg) is
1

N@+Y?)

The unit vectord, with the same sense as the Darboux vectbs y&+ g is
given by

R= (2.22)

~ y ~ 1 -
d, = — e+ — 0 (2.23)
NA+Y?H) N @+Y?)
Then, the dual angle betweép and é satisfies the followings
COSp = (2.24)

% . 1
—_— Sn‘p -
N@+y?) N@+y?)
where p is the dual spherical radius of curvature. HeRcesinp, ¥ = cotp [7].

3 Inextensible Flows of Dual Curves according to Dual
Darboux Frame

Throughout this study, we assume thaf0,1]x[0,w] — D*® is a one parameter

family of smooth dual curves in dual spade’. Let U be the curve
parametrization variable<u < 1.

The arclenght o is given by

u a)? u
S=||—|du=|Vvdu 3.1
=] e
where
- o aey V2
ey (3.2
ou Ju odu

. . 0o . . .
and we assume that’ is a parameter in terms &f The operatma;_ is given in
S

terms ofu by

<l |-

&l
2
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where
ou|’
The arclenght parameter @ = v du.
Any flow of X can be represented as
X = fe+ T+ T, .

The arclength is given up to a constant by
5(0, 1) = j v du.
0

In the dual space the requirement that the curtd@@xposed to any elongation
or compression can be expressed by the condition

it_ du=0 (3.4)

§U_t)=j

Q|
| <l

for ud[o,1].

Definition 3.1: A dual curve evolutiork(u, t) and g—tf flow of this curve inD®

are said to be inextensible if
6
ot

6x
6u

=0.

Lemma 3.2 Let g—f be a smooth flow of the dual curve. The flow is
U

inextensible if and only if

% = gfz +fv-yfyv
3.5
o (3.5)

62 =yf,v+ vy = fiv= £ V.

Proof: Suppose thag—f be a smooth flow of the curve. Considering definition
u

v2 =<a—fa—f> (3.6)
oJu odu

of X, we have
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0 0 . . .
— and Fa commute since and are independent coordinatesn, Thg

ou
differentiating of formula (3.6) we get

o OV _ 0 <ax ax>

ot ot \ou 'ou/’

On the other hand, changir% and% we
u

g _[9% (0%
ot \ou aulat
From equation (3.3), we obtain

av <ax i(flé+ £+ _f3~)>.

at ou ' ou

By the formula of dual darboux, we have

(o oGy

If above equation is separated real and dual pbart we have

ot ou
and
0 [}
aalt :%_st%_ymfsv_yfs\)j"' fiv+ £ v

respectively. Desired expression is obtained watmnition 3.1.

Theorem 3.3: Let g_x = fé+ LT+ f,0 be a smooth flow of the curve The flow
U
is inextensible if and only if
of,
=yf,+ 1
3s =Vl

oy (3.7)
62 =yt + )7, + ]

Proof: Let g—f be extensible. From Eq. (3.4), we have
u
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0 Y ¢ of, - _—
—5S(u, t) = —du= —2+ fv- ) du=0 3.8

2 S ){at {(GU fv-7 1y (3.8)
Ou [0[0,1]. Substituting (3.5) in (3.8) and this expressieparating dual and real

part complete the proof of the theorem. We suppbse V=1 and the local
coordinateu corresponds to the curve arc lenggh Now we give following

lemma that necessary.

Lemma 3.4:

08 (of, ~)..(=_ of).
—=|=-f, |8+ Ly+=10, 3.9

ot

—=—6+ ~, 3.10
5 79 (3.10)
0§ - of, ). .

== fy+—=2|6-01, 3.11

whereg :<g—; g>.

Proof: Considering definition ofk, we have

Using the Darboux equations, we get

0 (o a7, )i 7o.00).
— —f |8+ f+—=2-Vf |T+| fy+—2|0 3.12
ot (ag Zj (16—5’/3) (Zya—sjg (3:12)

Substituting (3.7) in (3.12), we have

o8 _(of, — ). (= of).
== L-1 |e+| Typ+=2 |0
ot (ag Zj (Zy (rsjg

Now differentiate the dual Darboux frame by t:
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o=i_<é,f>=<a—f,f>+ 29 =14 (294
ot ot ot t
a,. .. _Joe \ /.o09\ —_ of, /.09
0=—(6,0)=(—,0)+t(Ee—=)= +—2+ =)
at< ) <at > <eat> V5 <eﬂ>
0 /- - of - 00 . 00
0=—(t,0)=(—=.,0)+{t, =) =@ +(t,—=
ot i00) <at g> < at> v < at>
Considering<—_,f> = <g—t9 , g> =0 and from above statement, we obtain
X ey
ot
S| _ oot ). .
=-| f,y+= |e-¢t,
ot (zy 6§j 4

where(/‘/:<g—:_,g>.

The following theorem states the conditions ondhal geodesic curvature for the
dual curve flowX(s, t) to be inextensible.

Theorem 3.5: Supposeg—f: fe+ i+ f,g is inextensible. Then, the following
a

system of partial differential equations holds:

oy —_ of, oF
—_:f +—3+—. 313
a2 s s (3.13)

___ 2_ —_ Y3
_(9(=fy) 0 f23 e T+ f, i
S a5 PR
oy . .. .
-—Z—{-gE+yg).
= gEe+yog

Therefore from dual Darboux frame

99§ 9, . Y. _, .
——==—(-ph) =L -y(-e+@0).
0s ot G_S( ") Js y-e+g9
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Thus from two equations we have (3.13).

4

Conclusion

Inextensible time evolutions of curves and surfacase an important role in
computer vision, robotics and physical sciencehis paper inextensible flows of
dual curves according to dual darboux frame havergby considering important
role of dual geometry. Since dual geometry havegaifs&cant role robotics,
mechanism and dynamics, this study can be shetddigthese areas.
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