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Abstract 

     In this paper, we study inextensible flows dual curves according to dual 
Darboux frame. Necessary and sufficient conditions for an inelastic dual curve 
flow are expressed as a partial differential equation involving the dual geodesic 
curvature.  
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1 Introduction 
 
Recently, the study of the motion of inelastic curves has an important role. The 
time evolution of a curve represented by its corresponding flow. The flow of a 
curve is said to be inextensible if, firstly its arc length is preserved and secondly 
its intrinsic curvature is preserved. Physically, inextensible curve flows give rise 
to motions in which no strain energy is induced. The swinging motion of cord of 
fixed length, for example, or of a piece of paper carried by the wind, can be 
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described by inextensible curve. Some movement in nature is inspired to examine 
flow of curves as snake and elephant's trunk movement. For example, both 
Chirikjian and Burdick [5] and Mochiyama et al. [9] study the shape control 
hyper-redundant, or snake-like robots. Inextensible curve and surface flows 
emerge many problems in computer vision [14] and computer animation [10]. 
   
Particularly, inextensible time evolution of curves and surfaces is examined 
mathematically. Significant methods of this article developed by Gage and 
Hamilton [11], and Grayson [13] for studying the shrinking of closed plane curves 
to a circle via the heat equation. In [12] Gage also studies area preserving 
evolution of inelastic plane curves. Another related study is that [6], which 
considers less restrictive mappings that locally preserve volume only. In [2, 3] 
Know et al. study evolution of inelastic plane curves, and inextensible flows of 
curves and developable surfaces. 
 
In this paper, we study inextensible flows dual curves according to dual Darboux 
frame. Necessary and sufficient conditions for an inelastic dual curve flow are 
expressed as a partial differential equation involving the dual geodesic curvature. 
 

2 Preliminaries 
 
Let { }( , ) : ,D IR IR a a a a a IR∗ ∗= × = = ∈  be the set of the pairs ( , )a a∗ . For 

( , )a a a∗= , ( , )b b b D∗= ∈  the following operations are defined on D: 
 
  Equality:  ,a b a b a b∗ ∗= ⇔ = =  

  Addition:  ( , )a b a b a b∗ ∗+ ⇔ + +  

  Multiplication:  ( , )ab ab ab a b∗ ∗⇔ +  
 
The element (0,1) Dε = ∈  satisfies the relationships 
 

  0ε ≠ ,   2 0ε = ,  1 1ε ε ε= =                                   (2.1)                                           
 
Let consider the element a D∈  of the form ( ,0)a a= . Then the mapping 

: , ( ,0)f D IR f a a→ =  is a isomorphism. So, we can write ( ,0)a a= . By the 
multiplication rule we have that 
  

( , )a a a a aε∗ ∗= = +  
 
Then a a aε ∗= +  is called dual number and ε  is called dual unit. Thus the set of 
dual numbers is given by 

             { }2: , , 0D a a a a a IRε ε∗ ∗= = + ∈ =                         (2.2) 
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The set D  forms a commutative group under addition. The associative laws hold 
for multiplication. Dual numbers are distributive and form a ring over the real 
number field [4]. 
 
Dual function of dual number presents a mapping of a dual numbers space on 
itself. Properties of dual functions were thoroughly investigated by Dimentberg 
[4]. He derived the general expression for dual analytic (differentiable) function as 
follows 

  ( ) ( ) ( ) ( )f x f x x f x x f xε ε∗ ∗ ′= + = + ,  (2.3) 
 
where ( )f x′  is derivative of ( )f x  and ,x x IR∗ ∈ . This definition allows us to 
write the dual forms of some well-known functions as follows 
 

cos( ) cos( ) cos( ) sin( ),

sin( ) sin( ) sin( ) cos( ),

, ( 0).
2

x x x x x x

x x x x x x

x
x x x x x

x

ε ε
ε ε

ε ε

∗ ∗

∗ ∗

∗
∗


 = + = −
 = + = +

 = + = + >


                        (2.4) 

 
Let  3D D D D= × ×  be the set of all triples of dual numbers, i.e., 
 

{ }3
1 2 3( , , ) : , 1,2,3iD a a a a a D i= = ∈ =ɶ   (2.5) 

 
Then the set 3D  is called dual space. The elements of 3D  are called dual vectors. 
Similar to the dual numbers, a dual vector aɶ  may be expressed in the form 

( , )a a a a aε ∗ ∗= + =� � � �
ɶ , where a

�
 and a∗�  are the vectors of 3IR . Then for any 

vectors a a aε ∗= +� �
ɶ  and b b bε ∗= +

� �
ɶ  of 3D , the scalar product and the vector 

product are defined by 

( ), , , ,a b a b a b a bε ∗ ∗= + +
� � �� � �ɶɶ ,       (2.6) 

and 

( )*a b a b a b a bε ∗× = × + × + ×
� � �� � �ɶɶ ,              (2.7) 

 

Respectively, where ,a b
��

 and a b×
��

 are the inner product and the vector product 

of the vectors a
�

 and a∗�  in 3IR , respectively. 
 
The norm of a dual vector aɶ  is given by 
  

          
,

, ( 0)
a a

a a a
a

ε
∗

= + ≠
� �

� �
ɶ � .                     (2.8) 

 



On Characterization of Inextensible Flows of...                                                  101 

A dual vector aɶ  with norm 1 0ε+  is called dual unit vector. The set of dual unit 
vectors is given by 
 

           { }2 3
1 2 3( , , ) : , 1 0S a a a a D a a ε= = ∈ = +ɶ ɶ ɶ ɶ ,   (2.9) 

 
and called dual unit sphere[8,15].  
 
In the Euclidean 3-space 3IR , an oriented line L  is determined by a point p L∈  

and a unit vector a
�

. Then, one can define a p a∗ = ×� � �
 which is called moment 

vector. The value of a∗�  does not depend on the point p , because any other point 

q  in L  can be given by q p aλ= +� � �
 and then a p a q a∗ = × = ×� � � � �

. Reciprocally, 

when such a pair ( , )a a∗� �
 is given, one recovers the line L  as 

{ }3( ) : , ,L a a a a a E IRλ λ∗ ∗= × + ∈ ∈� � � � �
, written in parametric equations. The 

vectors a
�

 and a∗�  are not independent of one another and they satisfy the 
following relationships 

  , 1, , 0a a a a∗= =� � � �
     (2.10) 

 
The components ,i ia a∗  (1 3)i≤ ≤  of the vectors a

�
 and a∗�  are called the 

normalized Plucker coordinates of the line L . We see that the dual unit vector 
a a aε ∗= +� �
ɶ  corresponds to the line L . This correspondence is known as E. Study 

Mapping: There exists a one-to-one correspondence between the vectors of dual 

unit sphere 2Sɶ  and the directed lines of the space 3IR . By the aid of this 

correspondence, the properties of the spatial motion of a line can be derived. 
Hence, the geometry of ruled surface is represented by the geometry of dual 

curves lying on the dual unit sphere 2Sɶ . 
 
The angle *θ θ εθ= +  between two dual unit vectors ,a bɶɶ  is called dual angle 
and defined by  

*, cos cos sina b θ θ εθ θ= = −ɶɶ .                               (2.11) 

 
By considering the E. Study Mapping, the geometric interpretation of dual angle 
is that, θ  is the real angle between the lines 1 2,L L  corresponding to the dual unit 

vectors ,a bɶɶ , respectively, and *θ  is the shortest distance between those lines [9].  
 
Let now ( )xɶ  be a dual curve represented by the dual vector ( ) ( ) ( )e u e u e uε ∗= +� �

ɶ . 

The unit vector  e
�

 draws a curve on the real unit sphere 2S  and is called the (real) 
indicatrix of ( )xɶ . We suppose throughout that it is not a single point.  We take the 
parameter u  as the arc-length parameter s of the real indicatrix and denote the 
differentiation with respect to s by primes. Then we have , 1e e′ ′ =� �

. The vector 
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e t′ =
��

 is the unit vector parallel to the tangent of the indicatrix. The equation 
( ) ( ) ( )e s p s e s∗ = ×� � �

 has infinity of solutions for the function ( )p s
�

. If we take 

( )op s
�

 as a solution, the set of all solutions is given by ( ) ( ) ( ) ( )op s p s s e sλ= +� � �
, 

where λ  is a real scalar function of s. Therefore we have , ,op e p e λ′ ′ ′ ′= +� � � �
. 

By taking ,o op eλ λ ′ ′= = − � �  we see that ( ) ( ) ( ) ( )o op s s e s c sλ+ =� � �
 is the unique 

solution for ( )p s
�

 with , 0c e′ ′ =� �
. Then, the given dual curve ( )xɶ  corresponding 

to the ruled surface  
  ( ) ( )e c s ve sϕ = +� �

    (2.12) 

may be represented by  
  ( )e s e c eε= + ×� � �

ɶ     (2.13) 
where 

  , 1e e =� �
,  , 1e e′ ′ =� �

,  , 0c e′ ′ =� �
.   (2.14) 

Then we have  
  det( , , ) 1e t c e tε ε′ ′= + = + ∆

� �� �
ɶ    (2.15) 

 
where  det( , , )c e t′∆ =

�� �
. The dual arc-length s  of the dual curve ( )xɶ  is given by 

 

  
0 0 0

( ) (1 )
s s s

s e u du du s duε ε′= = + ∆ = + ∆∫ ∫ ∫ɶ   (2.16) 

 
From (16) we have 1s ε′ = + ∆ . Therefore, the dual unit tangent to the curve ( )e sɶ  
is given by 

  ( )
1

de e e
t t c t

ds s
ε

ε
′ ′

= = = = + ×
′ + ∆

� �ɶ ɶ ɶ �
ɶ    (2.17) 

 
Introducing the dual unit vector g e t g c gε= × = + ×� � �

ɶɶ ɶ  we have the dual frame 

{ }, ,e t gɶɶ ɶ  which is known as dual geodesic trihedron or dual Darboux frame of 

eϕ (or ( )eɶ ). Also, it is well known that the real orthonormal frame { }, ,e t g
�� �

 is 

called the geodesic trihedron of the indicatrix ( )e s
�

with the derivations 
  

  , ,e t t g e g tγ γ′ ′ ′= = − = −
� � �� � � �

    (2.18) 
 
where γ  is called the conical curvature [1]. Similar to (2.18), the derivatives of 

the vectors of the dual frame { }, ,e t gɶɶ ɶ  are given by 

  

  , ,
de dt dg

t g e t
ds ds ds

γ γ= = − = −
ɶɶ ɶ

ɶ ɶɶ ɶ    (2.19) 

where 
  ( )γ γ ε δ γ= + − ∆ ,   ,c eδ ′= � �    (2.20) 
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and the dual darboux vector of the frame is d e gγ= +ɶ ɶ ɶ . From the definition of ∆  
and (2.20) we also have 
  

  c e gδ′ = + ∆� � �
      (2.21) 

 
The dual curvature of dual curve (ruled surface) ( )e sɶ  is 
 

  
2

1

(1 )
R

γ
=

+
                   (2.22) 

 

The unit vector odɶ  with the same sense as the Darboux vector  d e gγ= +ɶ ɶ ɶ  is 

given by 

  
2 2

1

(1 ) (1 )
od e g

γ
γ γ

= +
+ +

ɶ ɶ ɶ    (2.23) 

 

Then, the dual angle between odɶ  and eɶ  satisfies the followings 

 

  
2 2

1
cos , sin

(1 ) (1 )

γρ ρ
γ γ

= =
+ +

  (2.24) 

 
where ρ  is the dual spherical radius of curvature. Hence sin , cotR ρ γ ρ= = [7].  
 

3 Inextensible Flows of Dual Curves according to Dual 
Darboux Frame  
 
Throughout this study, we assume that 3:[0,1] [0, ]x ω× →ɶ D  is a one parameter 

family of smooth dual curves in dual space 3D . Let u  be the curve 
parametrization variable,0 1u≤ ≤ . 
 
The arclenght of xɶ  is given by  

0 0

u ux
s du v du

u

∂= =
∂∫ ∫
ɶ

                                       (3.1) 

where  

 
1 2

,
x x x

u u u

∂ ∂ ∂=
∂ ∂ ∂
ɶ ɶ ɶ

.                                          (3.2) 

and we assume that s∗  is a parameter in terms of s. The operator 
s

∂
∂

 is given in 

terms of u  by 
1

s v u

∂ ∂=
∂ ∂
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where 
x

v
u

∂=
∂
ɶ

. 

The arclenght parameter is ds v du= . 
 
Any flow of xɶ  can be represented as 
  

1 2 3

x
f e f t f g

t

∂ = + +
∂
ɶ

ɶɶ ɶ .                                               (3.3) 

 
The arclength is given up to a constant by  

0

( , )
u

s u t v du= ∫ . 

 
In the dual space the requirement that the curve not be exposed to any elongation 
or compression can be expressed by the condition 
  

 
0

( , ) 0
u v

s u t du
t t

∂ ∂= =
∂ ∂∫

                                           (3.4) 

for [0,1]u ∈ . 
  

Definition 3.1: A dual curve evolution ( , )x u tɶ  and  
x

t

∂
∂
ɶ

 flow of this curve in 3
D  

are said to be inextensible if  

0
x

t u

∂ ∂ =
∂ ∂

ɶ
. 

 

Lemma 3.2: Let 
x

u

∂
∂
ɶ

 be a smooth flow of the dual curve xɶ . The flow is 

inextensible if and only if 
  

 

2
1 3

2
3 3 3 1 1 .

fv
f v f v

t u

f
f v f v f v f v f v

u

γ

γ γ γ
∗

∗ ∗ ∗ ∗ ∗

∂∂ = + −
∂ ∂
∂ = + + − −
∂

                                (3.5) 

                                                                 

Proof: Suppose that 
x

u

∂
∂
ɶ

 be a smooth flow of the curve xɶ . Considering definition 

of xɶ , we have 

 2 ,
x x

v
u u

∂ ∂=
∂ ∂
ɶ ɶ

                                                    (3.6) 
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u

∂
∂

 and 
t

∂
∂

 commute since and are independent coordinates. Then, by 

differentiating of formula (3.6) we get 
  

2 ,
v x x

v
t t u u

∂ ∂ ∂ ∂=
∂ ∂ ∂ ∂

ɶ ɶ
. 

 

On the other hand, changing 
u

∂
∂

 and 
t

∂
∂

 we 

  

,
v x x

v
t u u t

∂ ∂ ∂ ∂ =  ∂ ∂ ∂ ∂ 

ɶ ɶ
 

 
From equation (3.3), we obtain 
  

1 2 3, ( )
v x

v f e f t f g
t u u

∂ ∂ ∂= + +
∂ ∂ ∂

ɶ
ɶɶ ɶ . 

 
By the formula of dual darboux, we have 
   

31 2
2 1 3 2,

ff fv
t f v e f v f v t f v g

t u u u
γ γ

     ∂∂ ∂∂ = − + + − + +    ∂ ∂ ∂ ∂     
ɶ ɶɶ ɶ . 

 
If above equation is separated real and dual part then we have 
 

2
1 3

fv
f v f v

t u
γ ∂∂ = + − ∂ ∂ 

 

and 

2
3 3 3 1 1 .

fv
f v f v f v f v f v

t u
γ γ γ

∗∗
∗ ∗ ∗ ∗ ∗∂∂ = − − − + +

∂ ∂
 

 
respectively. Desired expression is obtained with definition 3.1. 
    

Theorem 3.3: Let 1 2 3

x
f e f t f g

u

∂ = + +
∂
ɶ

ɶɶ ɶ  be a smooth flow of the curve xɶ . The flow 

is inextensible if and only if  

 

2
3 1

2
3 3 1

f
f f

s

f
f f f

s

γ

γ γ
∗

∗ ∗ ∗

∂ = +
∂
∂ = + +
∂

           (3.7) 

Proof: Let 
x

u

∂
∂
ɶ

 be extensible. From Eq. (3.4), we have 
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 2
1 3

0 0

( , ) ( ) 0
u u fv

s u t du f v f v du
t t u

γ∂∂ ∂= = + − =
∂ ∂ ∂∫ ∫                         (3.8) 

 
[0,1]u∀ ∈ .  Substituting (3.5) in (3.8) and this expression separating dual and real 

part complete the proof of the theorem. We suppose that 1v =  and the local 
coordinate u  corresponds to the curve arc length s . Now we give following 
lemma that necessary. 
 
Lemma 3.4: 

 31
2 2

ffe
f e f g

t s s
γ

   ∂∂∂ = − + +  ∂ ∂ ∂   

ɶ
ɶ ɶ ,                                 (3.9) 

 

 
t

e g
t

ψ∂ = − +
∂
ɶ

ɶ ɶ ,                                                              (3.10) 

 

 3
2

fg
f e t

t s
γ ψ

 ∂∂ = − + − ∂ ∂ 

ɶ
ɶɶ ,                                            (3.11)    

where , .
t

g
t

ψ ∂=
∂
ɶ
ɶ  

 
Proof: Considering definition of xɶ , we have 
  

1 2 3( ).
e x

f e f t f g
t t s s

∂ ∂ ∂ ∂= = + +
∂ ∂ ∂ ∂
ɶ ɶ

ɶɶ ɶ  

 
Using the Darboux equations, we get 
 

 31 2
2 1 3 2 .

ff fe
f e f f t f g

t s s s
γ γ

     ∂∂ ∂∂ = − + + − + +    ∂ ∂ ∂ ∂     

ɶ
ɶɶ ɶ                   (3.12) 

 
Substituting (3.7) in (3.12), we have 
  

31
2 2 .

ffe
f e f g

t s s
γ

   ∂∂∂ = − + +  ∂ ∂ ∂   

ɶ
ɶ ɶ  

 
Now differentiate the dual Darboux frame by t: 
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3
2

0 , , , 1 , ,

0 , , , , ,

0 , , , , .

e t t
e t t e e

t t t t

fe g g
e g g e f e

t t t s t

t g g
t g g t t

t t t t

γ

ψ

∂ ∂ ∂ ∂= = + = +
∂ ∂ ∂ ∂

∂∂ ∂ ∂ ∂= = + = + +
∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂= = + = +

∂ ∂ ∂ ∂

ɶ ɶɶ
ɶ ɶɶ ɶ ɶ

ɶ ɶ ɶ
ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ
ɶ ɶ ɶɶ ɶ

 

 

Considering , , 0
t g

t g
t t

∂ ∂= =
∂ ∂
ɶ ɶ
ɶ ɶ  and from above statement, we obtain 

 

3
2

,

,

t
e g

t

fg
f e t

t s

ψ

γ ψ

∂ = − +
∂

 ∂∂ = − + − ∂ ∂ 

ɶ
ɶ ɶ

ɶ
ɶɶ

 

where ,
t

g
t

ψ ∂=
∂
ɶ
ɶ . 

 
The following theorem states the conditions on the dual geodesic curvature for the 
dual curve flow ( , )x s tɶ  to be inextensible. 
     

Theorem 3.5: Suppose 1 2 3

x
f e f t f g

u

∂ = + +
∂
ɶ

ɶɶ ɶ  is inextensible. Then, the following 

system of partial differential equations holds: 
 

 3
2

f
f

t s s

γ ψγ ∂∂ ∂= + +
∂ ∂ ∂

.    (3.13) 

 
Proof: Using (3.11), we have 
  

3
2

2
3 32

22

( )

( ).

fg
f e t

s t s s

f ff
e f t

s s s

t e g
s

γ ψ

γ γ

ψ ψ γ

  ∂∂ ∂ ∂= − + −  ∂ ∂ ∂ ∂  

   ∂ ∂∂ −= + − +   ∂ ∂ ∂   

∂− − +
∂

ɶ
ɶɶ

ɶɶ

ɶ ɶ ɶ

 

 
Therefore from dual Darboux frame 
  

( ) ( ).
g

t t e g
s t s s

γγ γ ψ∂ ∂ ∂ ∂= − = − − − +
∂ ∂ ∂ ∂
ɶ

ɶ ɶ ɶ ɶ  
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Thus from two equations we have (3.13). 
 

4 Conclusion 
 
Inextensible time evolutions of curves and surfaces have an important role in 
computer vision, robotics and physical science. In this paper inextensible flows of 
dual curves according to dual darboux frame have given by considering important 
role of dual geometry. Since dual geometry have a significant role robotics, 
mechanism and dynamics, this study can be shed light on these areas.   
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