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Abstract 

     In this paper, the problem of laminar boundary layer flow for non-Newtonian 
power-law fluid over a continuous moving surface in the presence of transverse 
magnetic field is studied by appropriate similarity transformation. The governing 
partial differential equations are transformed into non linear ordinary differential 
equations using deductive group theoretic method.  

     Keywords: Similarity analysis, Deductive group theoretic method, MHD 
boundary layer, Power-law fluid, transverse magnetic field.      

 
1 Introduction 
Due to the wide applications in several technical and industrial processes, the 
boundary-layer flows over continuous moving surfaces have attracted researchers 
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in many branches of engineering in recent years. For examples, in the extrusion of 
polymer sheet from a die, the lamination and melt-spinning process in the 
extrusion of polymers or the cooling of a large metallic plate in a bath, glass 
blowing continuous casting and spinning of fibers.  
 
Sakiadis [1-3] studied the boundary layer behavior on a continuous solid surface 
moving on both flat and the cylindrical surface. Wu [4] presented the effects of 
suction or injection in a steady two-dimensional MHD boundary layer flow of on 
a flat plate. Takhar et al [5] obtained MHD asymmetric flow over a semi-infinite 
moving surface and numerical solution. Erickson et al [6] studied the cooling of a 
moving continuous flat sheet. Vajravelu and Rollins [7] presented the analysis of 
heat and mass transfer characteristics in an electrically conducting fluid over a 
linearly stretching sheet with variable wall temperature. Acrivos et al [8] and 
Pakdemirli [9] derived the boundary layer equations of power-fluids. Char and 
Chen [10] studied the temperature field of such fluid over a stretching plate with 
varied heat flux. Chiam [11] derived MHD boundary layer flow over continuously 
flat plate. Kumari and Nath [12] presented the problem of MHD boundary layer 
flow of a non-Newtonian fluid over a continuously moving surface with a parallel 
free stream while the non-similar solution is obtained by Jeng et al [13]. 
 
Recently, the numbers of researchers are motivated towards the problem of MHD 
boundary layer flow due to their application in areas like chemical engineering, 
food engineering, petroleum production, and power engineering, nuclear fusion, 
medicine. Guedda and Hammouch [14] present steady-state laminar boundary 
layer flow governed by the Ostwald-de Wael power-law model of an 
incompressible non-Newtonian fluid past a semi-infinite power-law stretched flat 
plate. Hoernel [15] investigated the similarity solutions for the steady laminar 
incompressible boundary layer governing MHD flow near forward stagnation-
point of two-dimensional and axisymmetric bodies. Amkadni and Azzouzi [16] 
studied the steady flow of an incompressible electrically conducting fluid over a 
semi-infinite moving vertical cylinder. Patel and Timol [17] investigated steady, 
two dimensional laminar incompressible boundary layer flows past a moving 
continuous flat surface. 
 

2 Governing Equations 
 
Consider the steady, two-dimensional laminar boundary layer flow of power law 
fluid an electrically conducting, viscous, incompressible fluid past a continuously 
moving surface passing through with constant velocity wU  in the same or 

opposite direction to the free stream velocityU∞ . The x− axis extends parallel to 

the plate and y − axis perpendicular to the x− axis. A magnetic field of uniform 

strength 0B  is applied in the positive y − direction, which produce the magnetic 

field in the x− direction. The boundary layer equations governing the flow in a 
power-law fluid are 
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where u , v are the velocity components along x and y coordinates, xyτ  is the shear 

stress and ρ  is the fluid density. 
 
Together with the boundary conditions: 
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We apply power-law relation between the shear stress and the shear rate by 
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denotes the kinematics viscosity, K  is the consistency coefficient, 
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= and n is the power-law index, for 1n <  pseudo plastic fluids, for  1n =  the 

fluid is Newtonian, 1n > for dilatant fluids. Then equation (2) becomes 
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Introducing the stream function ( , )x yψ  such that ,    u v
y x

ψ ψ∂ ∂= = −
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 which 

satisfies the continuity equation (1) identically. On the other hand we have 
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And the boundary conditions are  
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3 Group Theoretic Treatment 
 
Similarity analysis by the deductive group-theoretic method is derived from 
theory of continuous group transformations. Birkhoff [18] was introduced the 
basic concept of this method and later on number of authors has contributed much 
to the development of the theory. Recently, this theory is found to give more 
adequate treatment of boundary layer equations (Refer Seshadri and Na [19]). 
Consider the following transformation: 

( , ) ( ),   
y

x y ax f b
x

α
βψ η η= =                                                   (7) 

 
Where , ,  and a b α β are real numbers, η  is similarity variable, ( )f η is the 
transformed dimensionless stream function. 
 
Applying this similarity variable η we derive 
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Using equation (7) along with the equation (8) into equation (5) we get the 
transformed non linear ordinary differential of the form. 
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if 2 1 2(2 ) (2n 1) 1  and  a 1n nn bα β γ − −− + − = =  holds, where prime denotes 
differentiation with respect toη .Taking the boundary conditions (6) into 

consideration we have  and 0ab U α β∞= − = .  

 
Finally the equation (9) transformed to 
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With the transformed boundary conditions: 
 

(0) 0,   '(0) ,   '( ) 1f f f= =∈ ∞ =  
 

1n = gives Newtonian fluid, then the equation (10) becomes 
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Where wU

U∞

∈= is the velocity parameter and 
2
0B

M x
U

σ
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= is the magnetic 

parameter. Here we note that when 0∈= the plate is stationary, when 0∈< fluid 
and plate moves in opposite direction, when 0∈> fluid and plate moves in same 
direction, for 0 1<∈<  the speed of the plate is less than the fluid and for 1∈= the 
plate and fluid moves with same velocity. 
 

4 Conclusion 
 
Similarity solution of laminar boundary layer flow for non-Newtonian power-law 
fluid over a continuous moving surface in the presence of transverse magnetic 
field is investigated. The similarity transformations obtained are unique in their 
form and the reduced system is in most general form. The governing flow 
situation transformed may be use for further numerical analysis.  
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