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Abstract

Since the utilization of Zadeh's Extension Principle is quite di�cult in prac-
tice, we prefer the idea of using the sum of the series of level sets. In this paper
we present some classical sets of sequences of fuzzy numbers with respect to the
notion of fuzzy b-metric. Also, we introduce the completeness of such spaces
and derive the relationships between these sets and their classical forms. In
addition, we use our results corresponding with series not only directly improve
and generalize some results in metric spaces and b-metric spaces, and also ex-
pand and complement some previous results in fuzzy metric spaces with the
level sets.

Keywords: Set of the sequences of fuzzy numbers, fuzzy level sets, b-
metric, complete metric space.

1 Introduction

Some problems, particularly the problem of the convergence of measurable
functions with respect to a measure, lead to a generalization of notion of
a metric. As a continuation of metric notion Banach proved a very impor-
tant result regarding a contraction mapping, known as the Banach contraction
principle in metric spaces which is a very popular tool for solving problems
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in nonlinear analysis. In [7], Czerwik introduced b-metric spaces as a gener-
alization of metric spaces. Also he proved the contraction mapping principle
in b-metric spaces which generalizes the famous Banach contraction principle.
Later, several papers have devoted to the �xed point theory or the variational
principle for single-valued and multi-valued operators in b-metric spaces have
been obtained (see [2, 4, 5, 15, 16, 17, 23, 24, 30, 31, 36, 39, 43]). In recent
investigations, the �xed point in nonconvex analysis, especially in an ordered
normed space, occupies a prominent place in many aspects.

Especially, many researchers have focused on di�erent contractive condi-
tions in complete metric spaces endowed with a partial order and studied
�xed point theory in the so-called bistructural spaces. For more details on
�xed point results, its applications, comparison of di�erent contractive con-
ditions and related results in ordered metric spaces, the reader may refer to
[1, 3, 6, 9, 10, 11, 12, 13, 21, 27, 29, 40, 42, 49] and the references mentioned
therein.

By ω(F ), we denote the set of all sequences of fuzzy numbers. We de�ne
the classical sets `∞(b, λ), c(b, λ), c0(b, λ) and `q(b, λ) with respect to the b-
metric consisting of the b-bounded, b-convergent, b-null and absolutely q-th
order of b-summable sequences of fuzzy numbers, as follows:

`∞(b, λ) :=

{
u = (uk) ∈ ω(F ) : sup

k∈N
Db(uk, 0) <∞

}
,

c(b, λ) :=
{
u = (uk) ∈ ω(F ) : ∃l ∈ E1 3 blim

k→∞
Db(uk, l) = 0

}
,

c0(b, λ) :=
{
u = (uk) ∈ ω(F ) : blim

k→∞
Db(uk, 0) = 0

}
,

`q(b, λ) :=

{
u = (uk) ∈ ω(F ) :

∑
k

Db(uk, 0)
q <∞

}
, (1 ≤ q <∞)

where the distance function Db on the space E1 of fuzzy numbers by means of
the b-metric ρ de�ned by

Db(u, v) := sup
λ∈[0,1]

ρ([u]λ, [v]λ) := sup
λ∈[0,1]

max{(d(u−λ , v
−
λ )

p, (d(u+λ , v
+
λ )

p}

with s = 2p−1 where u, v ∈ E1 and p ∈ R with p > 1. Since Db is a b-metric,
denotes fuzzy b-metric, by means of ρ based on λ and Hausdor� metric d.

For simplicity in notation, here and in what follows, the summation without
limits runs from 0 to ∞. It can be shown that the sets `∞(b, λ), c(b, λ) and
c0(b, λ) are b-complete with the b-metric Db,λ

∞ de�ned by

Db,λ
∞ (u, v) := sup

k∈N
Db(uk, vk)

with s = 2p−1 and u = (uk), v = (vk) are the elements of the sets c(b, λ),
c0(b, λ) or `∞(b, λ).
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On the other hand, we can introduce and prove that the set `q(b, λ) is
b-complete with Db,λ

q de�ned by

Db,λ
q (u, v) :=

{∑
k

[
Db(uk, vk)

]q}1/q

, (1 ≤ q <∞)

with s = 2q−1 where u = (uk), v = (vk) are the points of `p(b, λ).

Mursaleen and Ba³ar�r [28] have recently introduced some new sets of se-
quences of fuzzy numbers generated by a non-negative regular matrix A some
of which are reduced to the Maddox spaces `∞(p, F ), c(p, F ), c0(p, F ) and
`(p, F ) of sequences of fuzzy numbers for the special cases of that matrix A.
Alt�n, Et and Çolak [51] have recently de�ned the concepts of lacunary statis-
tical convergence and lacunary strongly convergence of generalized di�erence
sequences of fuzzy numbers. They have also given some relations related to
these concepts and showed that lacunary 4m-statistical convergence and la-
cunary strongly 4m

(p)-convergence are equivalent for 4m-bounded sequences of
fuzzy numbers. Quite recently; Talo and Ba³ar [33] have extended the main
results of Ba³ar and Altay [8] to the fuzzy numbers. Also, Talo and Ba³ar [35]
have recently studied the normed quasilinearity of the classical sets `∞(F ),
c(F ), c0(F ) and `p(F ) of sequences of fuzzy numbers and derived some related
results. Furthermore, Talo and Ba³ar [34] have introduced the sets `∞(F, f),
c(F, f), c0(F, f) and `p(F, f) of sequences of fuzzy numbers de�ned by a mod-
ulus function and given some topological properties of the sets together with
some inclusion relations. Finally, Kadak and Ba³ar [44, 45, 46, 47] have pre-
sented some new notions about the power series and Fourier series of fuzzy
numbers on fuzzy level sets. The main purpose of the present paper is to
study the corresponding sets `∞(b, λ), c(b, λ), c0(b, λ) and `q(b, λ) of sequences
of fuzzy numbers via b-metric to the classical spaces `∞, c, c0 and `p of se-
quences with real or complex terms.

The rest of this paper is organized, as follows:

In section 2, some required de�nitions and consequences related with the
b-metric, sequences and series of fuzzy numbers are given. The most relevant
and recent literature is also reported in Section 2. Section 3 is terminated
with the condensation of the results on the sum of the series of the fuzzy sets
given by M. Stojakovi¢ and Z. Stojakovi¢ in [26]. Additionally, an example
on b-convergence of series of fuzzy numbers is also presented in this section.
Furthermore, some notions i.e uniformly convergent, continuity and bounded-
ness are established via fuzzy b-metric and the completeness of such sequence
spaces of fuzzy numbers via b-metric are presented.
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2 Preliminaries, Background and Notation

2.1 Fuzzy Level Sets

A fuzzy number is a fuzzy set on the real axis, i.e. a mapping u : R → [0, 1]
which satis�es the following four conditions:

(i) u is normal, i.e. there exists an x0 ∈ R such that u(x0) = 1.

(ii) u is fuzzy convex, i.e. u[λx+ (1− λ)y] ≥ min{u(x), u(y)} for all x, y ∈ R
and for all λ ∈ [0, 1].

(iii) u is upper semi-continuous.

(iv) The set [u]0 = {x ∈ R : u(x) > 0} is compact, (cf. Zadeh [19]), where
{x ∈ R : u(x) > 0} denotes the closure of the set {x ∈ R : u(x) > 0} in
the usual topology of R.

λ-level set [u]λ of u ∈ E1 is de�ned by

[u]λ :=

{
{t ∈ R : u(t) ≥ λ} , (0 < λ ≤ 1),

{t ∈ R : u(t) > λ} , (λ = 0).

The set [u]λ is closed, bounded and non-empty interval for each λ ∈ [0, 1]
which is de�ned by [u]λ := [u−(λ), u+(λ)]. R can be embedded in E1, since
each r ∈ R can be regarded as a fuzzy number r de�ned by

r(x) :=

{
1 , (x = r),
0 , (x 6= r).

Let u, v, w ∈ E1 and k ∈ R. Then the operations addition, scalar multipli-
cation and product de�ned on E1 by

u+ v = w ⇔ [w]λ = [u]λ + [v]λ for all λ ∈ [0, 1]

⇔ w−(λ) = u−(λ) + v−(λ), w+(λ) = u+(λ) + v+(λ).

Further

[ku]λ = k[u]λ for all λ ∈ [0, 1]

and

uv = w ⇔ [w]λ = [u]λ[v]λ for all λ ∈ [0, 1],

where it is immediate that

w−(λ) = min{u−(λ)v−(λ), u−(λ)v+(λ), u+(λ)v−(λ), u+(λ)v+(λ)}
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and

w+(λ) = max{u−(λ)v−(λ), u−(λ)v+(λ), u+(λ)v−(λ), u+(λ)v+(λ)}

for all λ ∈ [0, 1]. Let W be the set of all closed bounded intervals A of real
numbers with endpoints A and A, i.e. A := [A,A]. De�ne the relation d on
W by

d(A,B) := max{|A−B|, |A−B|}.

Then it can easily be observed that d is a metric on W (cf. Diamond and
Kloeden [37]) and (W,d) is a complete metric space, (cf. Nanda [41]).

A � B if and only if A ≤ B and A ≤ B.

The partial ordering relation � on E1 is de�ned as follows:

u � v ⇔ [u]λ � [v]λ ⇔ u−(λ) ≤ v−(λ) and u+(λ) ≤ v+(λ) for all λ ∈ [0, 1].

De�nition 2.1 (Triangular Fuzzy Number) [18, De�nition, p. 137] We can
de�ne the triangular fuzzy number u as u = (u1, u2, u3) whose membership
function µ is interpreted as follows;

µ(x) =


x−u1
u2−u1 , u1 ≤ x ≤ u2,
u3−x
u3−u2 , u2 ≤ x ≤ u3,

0 , x < u1, x > u3.

Then, the result [u]λ := [u−(λ), u+(λ)] = [(u2 − u1)λ + u1,−(u3 − u2)λ + u3]
holds for each λ ∈ [0, 1].

2.2 b-Metric

Consistent with [7] and [43], the following de�nitions and results will be needed
in the sequel.

De�nition 2.2 [14] Let X be a (nonempty) set and s ≥ 1 be a given real
number. A function d : X × X → [0,∞) is a b-metric if, for all x, y, z ∈ X,
the following conditions are satis�ed:

(b1) d(x, y) = 0 i� x = y,

(b2) d(x, y) = d(y, x),

(b3) d(x, z) ≤ s[d(x, y) + d(y, z)].

The pair (X, d) is called a b-metric space.
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It should be noted that the class of b-metric spaces is e�ectively larger
than that of metric spaces, since a b-metric is a metric if (and only if) s = 1.
We present an easy example to show that in general a b-metric need not be a
metric.

Example 2.3 [2] Let (X, d) be a metric space, and db(x, y) = (d(x, y)p), where
p ≥ 1 is a real number. Then db is a b-metric with s = 2p−1.

However, (X, d) is not necessarily a metric space. For example, if X = R
is the set of real numbers and db(x, y) = |x− y| is the usual Euclidean metric,
then db(x, y) = (x − y)2 is a b-metric on R with s = 2, but it is not a metric
on R.

De�nition 2.4 [22] Let (X, ρ) be a b-metric space. Then a sequence {xn} in
X is called:

(a) b-convergent if and only if there exists x ∈ X such that ρ(xn, x) → 0, as
n→∞. In this case, we write blimn→∞ xn = x.

(b) b-Cauchy if and only if ρ(xn, xm)→ 0, as n,m→∞.

De�nition 2.5 [22] In a b-metric space (X, ρ) the following assertions hold:

(a) A b-convergent sequence has a unique limit.

(b) Each b-convergent sequence is b-Cauchy.

(c) In general, a b-metric is not continuous.

Also very recently N. Hussain et al. have presented an example of a b-metric
which is not continuous (see Example 3 in [30]).

De�nition 2.6 [22]

(a) The b-metric space (X, ρ) is b-complete i� every b-Cauchy sequence in X
is b-convergent.

(b) Let (X, ρ) be a b-metric space. If Y is a nonempty subset of X, then the
closure Y of Y is the set of limits of all b-convergent sequences of points
in Y , i.e.,

Y :=
{
x ∈ X : there exists a sequence {xn} in Y so that blim

n→∞
xn = x

}
.

Taking into account of the above de�nition, we have the following con-
cepts.
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(c) Let (X, ρ) be a b-metric space. Then a subset Y ⊂ X is called closed if
and only if for each sequence {xn} ∈ Y which b-converges to an element
x, we have x ∈ Y .

(d) Let (X, ρ) and (X ′, ρ′) be two b-metric spaces. Then a function f : X →
X ′ is b-continuous at a point x ∈ X if and only if it is b-sequentially
continuous at x, that is, whenever {xn} is b-convergent to x;{f(xn)} is
b-convergent to f(x).

Lemma 2.7 [2] Let (X, d) be a b-metric space with s ≥ 1, and suppose that
{xn}, {yn} are b-convergent to x, y, respectively. Then we have,

1

s2
d(x, y) ≤ blim inf

n→∞
d(xn, yn) ≤ blim sup

n→∞
d(xn, yn) ≤ s2 d(x, y).

In particular, if x = y, then we have blimn→∞ d(xn, yn) = 0. Moreover, for
each z ∈ X, we have,

1

s
d(x, z) ≤ blim inf

n→∞
d(xn, z) ≤ blim sup

n→∞
d(xn, z) ≤ s2 d(x, z).

Further, we have the following basic de�nitions with respect to an arbitrary
b-metric on real which is essential in the text.

De�nition 2.8 (Uniform b-convergence) Let {fn(x)} be a sequence of real-
valued functions de�ned on a set A ⊆ R and ρ be arbitrary b-metric on R. If
{fn(x)} b-converges pointwise on a set A, then we can de�ne f : A→ R by

blim
n→∞

fn(x) = f(x) or fn(x)
ρ−→ f(x) for each x ∈ A.

In other words, {fn(x)} b-converges to f on A if and only if for each x ∈ A
and for an arbitrary ε > 0, there exists an integer N = N(ε, x) such that
ρ(fn(x), f(x)) < ε whenever n > N . The integer N in the de�nition of point-
wise convergence may, in general, depend on both ε > 0 and x ∈ A. If,
however, one integer can be found that works for all points in A, then the b-
convergence is said to be uniform. That is, a sequence of functions {fn(x)}
uniformly b-converges to f on a set A if for each ε > 0, there exists an integer
N(ε) such that

ρ(fn(x), f(x)) < ε or fn(x)
uρ−→ f(x) whenever n > N(ε) and for all x ∈ A.

De�nition 2.9 Let ρ be arbitrary b-metric on R with s ≥ 1 then the following
basic de�nitions can be given as follows:
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(i) (b-Limit) Suppose f : R→ R is de�ned on the real line and c, L ∈ R. It is
said the b-limit of f , as x approaches c with respect to b-metric ρ, is L
and written blimx→c f(x) = L. On the other hand

blim
x→c

f(x) = L⇔ ∀ε > 0,∃δ > 0 3 ρ(f(x), L) ≤ ε for all ρ(x, c) < δ.

(ii) (b-Continuity) A function f : R→ R is said to be b-continuous at c if it is
both de�ned at c and its value at c equals the b-limit of f as x approaches
c with respect to b-metric ρ, denoted by blimx→c f(x) = f(c).

(iii) (b-Boundedness) A sequence (xn) ∈ ω is called b-bounded if and only if
the set which consists the terms of the sequence (xn) is a bounded set.
That is to say that a sequence (xn) ∈ ω is said to be b-bounded if and
only if there exist a number m > 0 such that ρ(xn, 0) ≤ m for all n ∈ N.

By taking the value s = 1 for an arbitrary b-metric ρ the notions in De�-
nition 2.9 are reduced to those of classical limit, continuity and boundedness.

3 Main Results

Lemma 3.1 Let d be usual metric. Then the distance function Db de�ned by

Db(u, v) := sup
λ∈[0,1]

ρ([u]λ, [v]λ) := sup
λ∈[0,1]

max{(d(u−λ , v
−
λ )

p, (d(u+λ , v
+
λ )

p} (1)

is a fuzzy b-metric for u = [u]λ, v = [v]λ ∈ E1. Furthermore the function ρ is
also b-metric denoted by fuzzy usual b-metric with s = 2p−1 where p > 1 is a
real number.

Proof 3.2 One can easily show by a routine veri�cation that ρ and Db satisfy
b-metric axioms in De�nition 2.2. So, we prove only the axiom for Db.

Let u = [u]λ, v = [v]λ and w = [w]λ ∈ E1. By taking into account the
conditions max{a+ b, c+ d} ≤ max{a, c}+max{b, d} for all a, b, c, d > 0 and
(a + b)p ≤ 2p−1(ap + bp) from convexity of the function xp for p ≥ 1. We
immediately deduce that
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(b3) D
b(u,w)

= sup
λ∈[0,1]

max{(d(u−λ , w
−
λ )

p, (d(u+λ , w
+
λ )

p}

≤ sup
λ∈[0,1]

max
{
[d(u−λ , v

−
λ ) + d(v−λ , w

−
λ )]

p, [d(u+λ , v
+
λ ) + d(v+λ , w

+
λ )]

p)
}

≤ 2p−1 sup
λ∈[0,1]

max
{
d(u−λ , v

−
λ )

p + d(v−λ , w
−
λ )

p, d(u+λ , v
+
λ )

p + d(v+λ , w
+
λ )

p
}

≤ 2p−1
(
sup
λ∈[0,1]

max
{
d(u−λ , v

−
λ )

p, d(u+λ , v
+
λ )

p
}

+ sup
λ∈[0,1]

max
{
d(v−λ , w

−
λ )

p, d(v+λ , w
+
λ )

p
})

= 2p−1(Db(u, v) +Db(v, w)).

Therefore, (E1, Db) is b-metric space on E1 with s = 2p−1 where p > 1 is a
real number.

As a result of Bolzano-Weierstrass Theorem for every bounded in�nite se-
quence of fuzzy numbers in [48] we may give the next corollary based on fuzzy
level set completeness.

Corollary 3.3 The set (E1, Db) is b-complete metric space on E1 with s =
2p−1 where p > 1 is a real number.

Example 3.4 Let ρ be b-metric in Lemma 3.1. Consider the membership
functions u(x) and v(x) de�ned by triangular form as

u(x) =


2x− 1 , 1/2 ≤ x ≤ 2/3,
3− 2x , 2/3 < x ≤ 1,

0 , otherwise,
v(x) =


12x− 1 , 1/12 ≤ x ≤ 1/6,
3− 12x , 1/6 ≤ x ≤ 1/4,

0 , otherwise,

for all k ∈ N. It is trivial that u−λ = λ+1
2
, v−λ = λ+1

12
and u+λ = 3−λ

2
, v+λ = 3−λ

12

for all λ ∈ [0, 1]. Therefore we can calculate the distance between two fuzzy
numbers u and v with respect to ρ

Db(u, v) = sup
λ∈[0,1]

max{(d(u−λ , v
−
λ )

p, (d(u+λ , v
+
λ )

p}

= sup
λ∈[0,1]

max{|u−λ − v
−
λ |
p, |u+λ − v

+
λ |
p}

= sup
λ∈[0,1]

max

{∣∣∣∣5(λ+ 1)

12

∣∣∣∣p, ∣∣∣∣5(3− λ)12

∣∣∣∣p} = (5/4)p.

If we choose p = 1, then the distance Db(u, v) = 5/4 which is equal to the
usual fuzzy distance. If we take p = 3 then s = 4 and Db(u, v) = (5/4)3.
Furthermore one can conclude that the fuzzy distance based on b-metric ρ of
two fuzzy numbers depends on the choice of s.
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To avoid undue repetition in the statements, we give the next proposition
without proof which is concerning Lemma 3.1. Now, we may give:

Db(u, 0) = sup
λ∈[0,1]

max{|u−λ |
p, |u+λ |

p} = max{|u−0 |p, |u+0 |p}. (2)

Proposition 3.5 Let u, v, w, z ∈ E1 and k ∈ R. Then,

(i) Db(ku, kv) = |k|pDb(u, v) with p ≥ 1.

(ii) Db(u+ v, w + v) = Db(u,w).

(iii) Db(u+ v, w + z) ≤ s[Db(u,w) +Db(v, z)] with s ≥ 1.

(iv) s|Db(u, 0)−Db(v, 0)| ≤ Db(u, v) ≤ s[Db(u, 0) +Db(v, 0)] for all s ≥ 1.

Following Matloka [27], we give some de�nitions concerning the sequences
of fuzzy numbers with respect to the fuzzy b-metric below, which are needed
in the text.

Lemma 3.6 (cf. [32]) The following statements hold:

(i) Db(uv, 0) ≤ Db(u, 0)Db(v, 0) for all u, v ∈ E1.

(ii) If uk → u, as k → ∞ then Db(uk, 0) → Db(u, 0), as k → ∞; where
(uk) ∈ ω(F ).

Proof 3.7 (i) It is clear that the inequalities |u−λ |p ≤ Db(u, 0) and |u+λ |p ≤
Db(u, 0) hold for all λ ∈ [0, 1]. By considering these facts, one can see that the
distance Db(uv, 0)

= sup
λ∈[0,1]

max{|(uv)−(λ)|p, |(uv)+(λ)|p}

≤ sup
λ∈[0,1]

max{|u−λ |
p|v−λ |

p, |u−λ |
p|v+λ |

p, |u+λ |
p|v−λ |

p, |u+λ |
p|v+λ |

p}

≤ sup
λ∈[0,1]

max{Db(u, 0)|v−λ |
p, Db(u, 0)|v+λ |

p, Db(u, 0)|v−λ |
p, Db(u, 0)|v+λ |

p}

= Db(u, 0) sup
λ∈[0,1]

max{|v−λ |
p, |v+λ |

p}

= Db(u, 0)Db(v, 0),

which completes the proof of part (i).
(ii) This is trivial by using the fact given by (iv) of Proposition 3.5 and

De�nition 2.4(a).

Representation Theorem 1 Let [u]λ = [u−(λ), u+(λ)] for u ∈ E1 and for
each λ ∈ [0, 1]. Then the following statements hold:
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(i) u−(λ) is a b-bounded and non-decreasing left b-continuous and u+(λ) is a
b-bounded and non-increasing left b-continuous function on (0, 1].

(ii) The functions u−(λ) and u+(λ) are right b-continuous at the point λ = 0.

Proof 3.8 The proof can be obtained in a similar way from [38] which consists
as a generalization of this theroem. We omit the detail.

Remark 3.9 If the number u is the uniform b-limit in De�nition 2.8 of the
sequence {un} of fuzzy numbers on E1, write un

ρ−→ u, as n→∞ then the real

sequences of functions u−n (λ)
uρ−→ u−λ and u+n (λ)

uρ−→ u+λ in [0, 1], respectively.

Theorem 3.10 Let (uk), (vk) ∈ ω(F ) with blimk uk = a , blimk vk = b. Then,

(i) blimk(uk + vk) = a+ b as k →∞,

(ii) blimk(uk − vk) = a− b as k →∞,

(iii) blimk ukvk = ab as k →∞,

(iv) blimk uk/vk = a/b as k →∞ where 0 ∈ [uk]0 for all k ∈ N and 0 ∈ [u]0.

De�nition 3.11 A sequence (uk) ∈ ω(F ) is called fuzzy b-bounded if and only
if the set of fuzzy numbers consisting of the terms of the sequence (uk) is a
b-bounded set. That is to say that a sequence (uk) ∈ ω(F ) is said to be fuzzy
b-bounded if and only if there exist two fuzzy numbers m and M such that
m � uk � M for all k ∈ N. This means that m−λ ≤ u−k (λ) ≤ M−

λ and
m+
λ ≤ u+k (λ) ≤M+

λ for all λ ∈ [0, 1].

The fact that the fuzzy b-boundedness of the sequence (uk) ∈ ω(F ) is
equivalent to the uniform b-boundedness of the functions u−k (λ) and u+k (λ)
on [0, 1]. Therefore, one can see by using the relation (2) that the fuzzy b-
boundedness of the sequence (uk) ∈ ω(F ) is equivalent to the fact that

sup
k∈N

Db(uk, 0) = sup
k∈N

sup
λ∈[0,1]

max{|u−k (λ)|
p, |u+k (λ)|

p} <∞ (p ≥ 1)

Now, prior to stating and proving the lemma concerning the sum of a b-
convergent series of fuzzy numbers we give the following de�nition (cf. Kim
and Ghil [50]):

De�nition 3.12 Let (uk) ∈ ω(F ) and Db be a fuzzy b-metric on E1. Then
the expression

∑
uk is called a series of fuzzy numbers. Denote sk =

∑n
k=0 uk

for all n ∈ N, if the sequence (sk) b-converges to a fuzzy number u then we say
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that the series
∑
uk of fuzzy numbers b-converges to u and write

∑∞
k=0 uk = u

which implies as n→∞ that

n∑
k=0

u−k (λ)
uρ−→ u−(λ) and

n∑
k=0

u+k (λ)
uρ−→ u+(λ),

uniformly in λ ∈ [0, 1]. On the other hand by taking into account ρ is a b-metric
on R, there exists an integer N(ε) such that

ρ

(∑
k

u±k (λ), u
±(λ)

)
< ε whenever n > N(ε) and for all λ ∈ [0, 1].

Conversely, if the fuzzy numbers uk = {(u−(λ), u+(λ)) : λ ∈ [0, 1]},
∑

k u
−
k (λ) =

u−(λ) and
∑

k u
+
k (λ) = u+(λ) uρ-converge in λ, then u = {[u−λ , u

+
λ ] : λ ∈ [0, 1]}

de�nes a fuzzy number such that u =
∑
uk.

Lemma 3.13 (cf. [32]) If the fuzzy number uk = {[u−k (λ), u
+
k (λ)] : λ ∈ [0, 1]},∑

k u
−
k (λ) = u−λ and

∑
k u

+
k (λ) = u+λ uρ-converge in λ, then u = {[u−λ , u

+
λ ] :

λ ∈ [0, 1]} de�nes a fuzzy number such that u =
∑
uk.

Proof 3.14 To prove the lemma, we must show that the pair of functions u−

and u+ satis�es the conditions of Representation Theorem. For this, we prove
that u− is a b-bounded, non-decreasing, left b-continuous function on (0, 1] and
right b-continuous at the point λ = 0. u−k 's are the b-bounded, non-decreasing,
left b-continuous functions on (0, 1] and right b-continuous at the point λ = 0
for each k ∈ N.

(i) Let λ1 < λ2. Then, u−k (λ1) ≤ u−k (λ2) for each k ∈ N. Therefore, we have∑
k u
−
k (λ1) ≤

∑
k u
−
k (λ2) which yields the fact that u−(λ1) ≤ u−(λ2).

Hence, u− is non-decreasing.

(ii) By taking into account the uniform b-convergence in λ of limλ→λ−0
u−k (λ) =

u−k (λ0),
∑

k u
−
k (λ) = u−(λ) for each k ∈ N we obtain for λ0 ∈ (0, 1] that

lim
λ→λ−0

u−(λ) = lim
λ→λ−0

∑
k

u−k (λ) =
∑
k

lim
λ→λ−0

u−k (λ) =
∑
k

u−k (λ0) = u−(λ0)

which shows that u− is a left b-continuous function on (0, 1].

(iii) By using the uniform b-convergence in λ in the expressions lim
λ→0+

u−k (λ) =

u−k (0) for each k ∈ N and
∑

k u
−
k (λ) = u−(λ), we see that

lim
λ→0+

u−(λ) = lim
λ→0+

∑
k

u−k (λ) =
∑
k

lim
λ→0+

u−k (λ) =
∑
k

u−k (0) = u−(0). (3)

This means that u− is a right b-continuous function at the point λ = 0.
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(iv) There exists Mk > 0 such that ρ(u−k (λ), 0) ≤Mk for all λ ∈ [0, 1] and for
all k ∈ N. Since the series

∑
k u
−
k (λ) = u−(λ) uρ-converges in λ there

exists n0 ∈ N for all ε > 0 such that ρ
(∑∞

k=n+1 u
−
k (λ), 0

)
< ε for all

n ≥ n0 and for all λ ∈ [0, 1]. Therefore, we have

ρ(u−λ , 0) = ρ

(
∞∑
k=0

u−k (λ), 0

)
= ρ

(
n∑
k=0

u−k (λ) +
∞∑

k=n+1

u−k (λ), 0

)

≤
n∑
k=0

ρ(u−k (λ), 0) + ρ

(
∞∑

k=n+1

u−k (λ), 0

)

≤
n∑
k=0

Mk + ε ≤ Kε

This leads us to the fact that u− is a b-bounded function.
Since one can establish in the similar way that u+ is a b-bounded, non-

increasing, left b-continuous function on (0, 1], and right b-continuous at the
point λ = 0, we omit the detail.

Therefore, it is deduced that [u]λ = [u−k (λ), u
+
k (λ)] de�nes a fuzzy number.

Finally, we show that
∑
uk = u. Since the series of functions

∑
k u
−
k (λ) and∑

k u
+
k (λ) uρ-converge in λ to u−(λ) and u+(λ), respectively, for all ε > 0 and

s = 2p−1 there exists n0 ∈ N such that

Db

(
n∑
k=0

uk, u

)
= sup

λ∈[0,1]
max

{∣∣∣∣∣
n∑
k=0

u−k (λ)− u
−(λ)

∣∣∣∣∣
p

,

∣∣∣∣∣
n∑
k=0

u+k (λ)− u
+(λ)

∣∣∣∣∣
p}

≤ max

{
sup
λ

∣∣∣∣∣
n∑
k=0

u−k (λ)− u
−
λ

∣∣∣∣∣
p

, sup
λ

∣∣∣∣∣
n∑
k=0

u+k (λ)− u
+
λ

∣∣∣∣∣
p}

< ε

for all n ≥ n0, the sequence (
∑n

k=0 uk) b-converges to the fuzzy number u, i.e.∑
uk = u.

Example 3.15 As an example for b-convergent series corresponding fuzzy b-
metric Db with s = 2p−1, consider the series

∑
uk with

uk(t) =


2kt− 1 , 1

2k
≤ t ≤ 2

2k
,

1, , 2
2k
< t ≤ 4

2k
,

2− 2k−2t , 4
2k
< t ≤ 8

2k
,

0 , otherwise,

for all k ∈ N. It is obvious that u−k (λ) = λ+1
2k

and u+k (λ) = 4(2−λ)
2k

for all
λ ∈ [0, 1]. Therefore by using the uniform b-convergence of b-metric we see
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that
∑

k(uk)
−
λ = 2p(λ+1) and

∑
k(uk)

+
λ = 8p(2−λ). Then, it is conclude that∑

uk = u, where

u(t) :=


t
2p
− 1 , (2 ≤ t ≤ 4),
1 , (4 ≤ t ≤ 8),

2− t
8p

, (8 ≤ t ≤ 16),
0 , (otherwise).

3.1 Completeness of Some Fuzzy Sequence Spaces

Lemma 3.16 De�ne the relation Db,λ on the space γ by

Db,λ
∞ : γ × γ −→ R+

(u, v) 7−→ Db,λ
∞ (u, v) = sup

k∈N
Db(uk, vk) = sup

k∈N
sup
λ∈[0,1]

ρ(uk, vk)

where γ denotes any of the spaces `∞(b, λ), c(b, λ), c0(b, λ) and u = (uk), v =
(vk) ∈ γ. Then, (γ,Db,λ

∞ ) is a b-complete metric space.

Proof 3.17 Since the proof is similar for the spaces c(b, λ) and c0(b, λ), we
prove the theorem only for the space `∞(b, λ).

One can easily show by a routine veri�cation that Db,λ
∞ satis�es (b1) and

(b2). So, we prove only (b3). Let u = (uk), v = (vk) and w = (wk) ∈ `∞(b, λ).
Then,

(b3) By using the axiom (b3) in De�nition 2.2 we get

Db,λ
∞ (uk, wk) = sup

k∈N

{
Db(uk, wk)

}
≤ sup

k∈N

{
s[Db(uk, vk) +Db(vk, wk)]

}
≤ s sup

k∈N

{
Db(uk, vk)

}
+ s sup

k∈N

{
Db(vk, wk)

}
= s

[
sup
k∈N

{
Db(uk, vk)

}
+ sup

k∈N

{
Db(vk, wk)

} ]
= s

[
Db,λ
∞ (uk, vk) +Db,λ

∞ (vk, wk)
]

for all s ≥ 1. Therefore (`∞(b, λ), D
b,λ
∞ ) is b-metric space on `∞(b, λ). It

remains to prove the b-completeness of the space `∞(b, λ).

Let xm = {x(m)
1 , x

(m)
2 , . . .} be a b-Cauchy sequence in `∞(b, λ). Then,

for any ε > 0 there exists a positive integer m0 such that Db,λ
∞ (xm, xr) =

supk∈ND
b(x

(m)
k , x

(r)
k ) < ε for all m, r > m0. A fortiori, for every �xed k ∈ N

and for m, r > m0 then{
Db
(
x
(m)
k , x

(r)
k

)
: k ∈ N

}
< ε. (4)

In this case for any �xed k ∈ N, by using completeness of (E1, Db) in Corollary

3.3 , we say that x
(m)
k is a b-Cauchy sequence and is b-convergent. That is to
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say that (x−λ )
(m)

k and (x+λ )
(m)

k are uρ-convergent for all λ ∈ [0, 1]. Now, we

suppose that blimm→∞ x
(m)
k = xk and x = (x1, x2, . . .). We must show that

blimm→∞D
b,λ
∞ (xm, x) = 0 and x ∈ `∞(b, λ).

The constant m0 ∈ N for all m > m0, taking the b-limit as r →∞ in (4),

we obtain Db(x
(m)
k , xk) < ε for all k ∈ N. Since

(
x
(m)
k

)
∈ `∞(b, λ), there exists

a positive number δ > 0 such that Db(x
(m)
k , 0) ≤ δ. By taking into account

b-metric axiom (b3) we get

Db(xk, 0) ≤ s[Db(xk, x
(m)
k ) +Db(x

(m)
k , 0)] < s(ε+ δ) (5)

for all s ≥ 1. It is clear that (5) holds for every k ∈ N whose right-hand side
does not involve k. This leads us to the consequence that x = (xk) ∈ `∞(b, λ).
Also, we immediately deduce that the inequality

Db,λ
∞ (xm, x) = sup

k∈N
Db
(
x
(m)
k , xk

)
< ε

holds for m > m0. This shows that Db,λ
∞ (xm, x) → 0 as m → ∞. Since (xm)

is an arbitrary b-Cauchy sequence, `∞(b, λ) is b-complete.

Lemma 3.18 De�ne the distance function Db,λ
q by

Db,λ
q : `q(b, λ)× `q(b, λ) −→ R+

(u, v) 7−→ Db,λ
q (u, v) :=

{∑
kD

b(uk, vk)
q}1/q

where x = (xk), y = (yk) ∈ `q(b, λ) and 1 ≤ q <∞. Then, (`q(b, λ), D
b,λ
q ) is a

b-complete metric space.

Proof 3.19 It is obvious that Db,λ
q satis�es (b1) and (b2). Let u = (uk), v =

(vk) and w = (wk) ∈ `q(b, λ). Then, we derive by applying the Minkowski's
inequality Db,λ

q (u,w) can be evaluated as

=

{∑
k

[
Db(uk, wk)

]q }1/q

≤
{∑

k

(
s[Db(uk, vk) +Db(vk, wk)]

)q }1/q

≤ (sq)1/q
{(∑

k

[
Db(uk, vk)

]q )1/q

+

(∑
k

[
Db(vk, wk)

]q )1/q}

= s

{(∑
k

[
Db(uk, vk)

]q )1/q

+

(∑
k

[
Db(vk, wk)

]q )1/q}
= s [Db,λ

q (u, v) +Db,λ
q (v, w)].

This shows that (b3) also holds. Therefore (`q(b, λ), D
b,λ
q ) is b-metric space with

s = 2q−1. Since the remaining part of this proof is analogous Lemma 3.16 we
omit the detail. Hence (`q(b, λ), D

b,λ
q ) is a b-complete metric space.
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Concluding Remarks

In this research some new sequence spaces of fuzzy numbers are introduced by
using the notion of b-metric with respect to the usual metric, and shown that
the given spaces are b-complete. In addition, this work presents a new tool for
the description of �xed point theorems for fuzzy contractive mappings. The
potential applications of the obtained results include the establishment of new
sequence spaces which are interesting topics for the future works. Of course, it
will be meaningful to determine the alpha-, beta- and gamma-duals of b-metric
sequence spaces. We should record that one can study on the domain of some
triangle matrices in b-metric sequence spaces `∞(b, λ), c(b, λ) and `q(b, λ) which
is a new development on the theory of sequence spaces and matrix transfor-
mations. Finally, we should note from now on that our next papers will be
devoted to Kothe-Toeplitzs duals and matrix transformations between some
classical sets of sequences of fuzzy numbers with respect to b-metric.

Acknowledgements: We record our pleasure to the anonymous referee for
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of the earlier version of the manuscript which improved the presentation of the
paper.

The authors declare that they have no competing interests.

References

[1] A. Aghajani, S. Radenovic and J.R. Roshan, Common �xed point results
for four mappings satisfying almost generalized (S-T)-contractive condi-
tion in partially ordered metric spaces, Appl. Math. Comput., 218(2012),
5665-5670.

[2] A. Aghajani, M. Abbas and J.R. Roshan, Common �xed point of gen-
eralized weak contractive mappings in partially ordered b-metric spaces,
Math. Slovaca, (in Press).

[3] A.C.M. Ran and M.C.B. Reurings, A �xed point theorem in partially
ordered sets and some application to matrix equations, Proc. Amer. Math.
Soc., 132(2004), 1435-1443.

[4] H. Aydi, M.F. Bota, E. Karapinar and S. Moradi, A common �xed point
for weak ψ-contractions on b-metric spaces, Fixed Point Theory, 13(2)
(2012), 337-346.

[5] H. Aydi, M.F. Bota, E. Karapinar and S. Mitrovic, A �xed point theorem
for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory
Appl., 88(1) (2012).



On the Classical Sets of Sequences... 105

[6] L. Ciric, B. Samet, H. Aydi and C. Vetro, Common �xed points of gen-
eralized contractions on partial metric spaces and an application, Appl.
Math. Comput., 218(6) (2011), 2398-2406.

[7] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces,
Atti Semin. Mat. Fis. Univ. Modena, 46(2) (1998), 263-276.

[8] F. Ba³ar and B. Altay, On the space of sequences of p-bounded variation
and related matrix mappings, Ukrainian Math. J., 55(1) (2003), 136-147.

[9] H.K. Nashine and B. Samet, Fixed point results for mappings satisfying
weakly contractive condition in partially ordered metric spaces, Nonlinear
Anal., 74(2011), 2201-2209.

[10] J. Esmaily, S.M. Vaezpour and B.E. Rhoades, Coincidence point theorem
for generalized weakly contractions in ordered metric spaces, Appl. Math.
Comput., 219(2012), 1536-1548.

[11] J. Harjani and K. Sadarangani, Generalized contractions in partially or-
dered metric spaces and applications to ordinary di�erential equations,
Nonlinear Anal., 72(3-4) (2010), 1188-1197.

[12] J.J. Nieto, R.L. Pouso and R. Rodriguez-Lopez, Fixed point theorems in
ordered abstract sets, Proc. Amer. Math. Soc., 135(2007), 2505-2517.

[13] J.J. Nieto and R. RodrÄ±guez-Lopez, Existence and uniqueness of �xed
points in partially ordered sets and applications to ordinary di�erential
equations, Acta Math. Sin., Engl. Ser., 23(2007), 2205-2212.

[14] J.R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei and W. Shatanawi,
Common �xed points of almost generalized (ψ, φ)s -contractive mappings
in ordered b-metric spaces, Fixed Point Theory Appl., 159(1) (2013).

[15] J.R. Roshan, V. Parvaneh and I. Altun, Some coincidence point results in
ordered b-metric spaces and applications in a system of integral equations,
Appl. Math. Comput., 226(2014), 725-737.

[16] M.A. Khamsi and N. Hussain, KKM mappings in metric type spaces,
Nonlinear Anal., 73(9) (2010), 3123-3129.

[17] M.A. Khamsi, Remarks on cone metric spaces and �xed point theorems
of contractive mappings, Fixed Point Theory Appl., Article ID 315398
(2010).

[18] K.H. Lee, First Course on Fuzzy Theory and Applications, Springer,
Berlin - Heidelberg - NewYork, (2005).



106 U§ur Kadak

[19] L.A. Zadeh, Fuzzy Sets, Inform. and Control, 8(1965), 338-353.

[20] M. Abbas, T. Nazir and S. Radenovic, Common �xed points of four maps
in partially ordered metric spaces, Appl. Math. Lett., 24(2011), 1520-1526.

[21] M. Abbas, V. Parvaneh and A. Razani, Periodic points of T-Ciric gener-
alized contraction mappings in ordered metric spaces, Georgian Math. J.,
19(4) (2012), 597-610.

[22] M. Boriceanu, M. Bota and A. Petrusel, Multivalued fractals in b-metric
spaces, Cent. Eur. J. Math., 8(2) (2010), 367-377.

[23] M. Boriceanu, Fixed point theory for multivalued generalized contractions
on a set with two b-metrics, Stud. Univ. Babe-Bolyai, Math. LIV, 3(2009),
1-14.

[24] M. Boriceanu, Strict �xed point theorems for multivalued operators in
b-metric spaces, Int. J. Mod. Math., 4(3) (2009), 285-301.

[25] M. Rojes-Medar and H. Roman-Flores, On the equivalence of conver-
gences of fuzzy sets, Fuzzy Sets Syst., 80(1996), 217-224.

[26] M. Stojakovi¢ and Z. Stojakovi¢, Addition and series of fuzzy sets, Fuzzy
Sets Syst., 83(1996), 341-346.

[27] M. Matloka, Sequences of fuzzy numbers, Busefal, 28(1986), 28-37.

[28] M. Mursaleen and M. Ba³ar�r, On some new sequence spaces of fuzzy
numbers, Indian J. Pure Appl. Math., 34(9) (2003), 1351-1357.

[29] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J.
Nonlinear Convex Anal., 7(2) (2006), 289-297.

[30] N. Hussain, D. Doric, Z. Kadelburg and S. Radenovic, Suzuki-type �xed
point results in metric type spaces, Fixed Point Theory Appl., 126(1)
(2012).

[31] N. Hussain and M.H. Shah, KKM mappings in cone b-metric spaces,
Comput. Math. Appl., 62(2011), 1677-1684.

[32] Ö. Talo and F. Ba³ar, Determination of the duals of classical sets of
sequences of fuzzy numbers and related matrix transformations, Comput.
Math. Appl., 58(2009), 717-733.

[33] Ö. Talo and F. Ba³ar, On the space bvp(b, λ) of sequences of p-bounded
variation of fuzzy numbers, Acta Math. Sin. Eng. Ser., 24(6) (2008), 965-
972.



On the Classical Sets of Sequences... 107

[34] Ö. Talo and F. Ba³ar, Certain spaces of sequences of fuzzy numbers de-
�ned by a modulus function, Demonstratio Mathematica, XLIII(1) (2010).

[35] Ö. Talo and F. Ba³ar, Quasilinearity of the classical sets of sequences
of the fuzzy numbers and some applications, Taiwanese J. Math., 14(5)
(2010), 1799-1819.

[36] M. Pacurar, Sequences of almost contractions and �xed points in b-
metric spaces, An. Univ. Vest. Timis., Ser. Theor. Math. Comput. Phys.,
XLVIII(3) (2010), 125-137.

[37] P. Diamond and P. Kloeden, Metric spaces of fuzzy sets, Fuzzy Sets Syst.,
35(1990), 241-249.

[38] R. Goetschel and W. Voxman, Elementary fuzzy calculus, Fuzzy Sets
Syst., 18(1986), 31-43.

[39] J.R. Roshan, N. Shobkolaei, S. Sedghi and M. Abbas, Common �xed point
of four maps in b-metric spaces, Hacet. J. Math.Stat., (in Press).

[40] R.P. Agarwal, M.A. El-Gebeily and D.O. Regan, Generalized contractions
in partially ordered metric spaces, Appl. Anal., 87(1) (2008), 109-116.

[41] S. Nanda, On sequences of fuzzy numbers, Fuzzy Sets Syst., 33(1989),
123-126.

[42] S. Radenovic and Z. Kadelburg, Generalized weak contractions in partially
ordered metric spaces, Comput. Math. Appl., 60(2010), 1776-1783.

[43] S.L. Singh and B. Prasad, Some coincidence theorems and stability of
iterative procedures, Comput. Math. Appl., 55(2008), 2512-2520.

[44] U. Kadak and F. Ba³ar, Power series of fuzzy numbers, AIP Conference
Proceedings, 1309(2010), 538-550.

[45] U. Kadak and F. Ba³ar, Power series of fuzzy numbers with reel or fuzzy
coe�cients, Filomat, 25(3) (2012), 519-528.

[46] U. Kadak and F. Ba³ar, On some sets of fuzzy-valued sequences with the
level sets, Contemp. Anal. Appl. Math., 1(2) (2013), 70-90.

[47] U. Kadak and F. Ba³ar, On Fourier series of fuzzy valued functions, The
Scienti�c World Journal, Article ID 782652, (2014).

[48] U. Kadak and M. Ozluk, On partial metric spaces of fuzzy numbers with
the level sets, Adv. Fuzzy Sets Syst., 16(1) (2013), 31-64.



108 U§ur Kadak

[49] W. Shatanawi and B. Samet, On weakly contractive condition in partially
ordered metric spaces, Comput. Math. Appl., 62(2011), 3204-3214.

[50] Y.K. Kim and B.M. Ghil, Integrals of fuzzy-number-valued functions,
Fuzzy Sets Syst., 86(1997), 213-222.

[51] Y. Alt�n, M. Et and R. Çolak, Lacunary statistical and lacunary strongly
convergence of generalized di�erence sequences of fuzzy numbers, Comput.
Math. Appl., 52(2006), 1011-1020.

[52] Z. Gong and C. Wu, Bounded variation, absolute continuity and ab-
solute integrability for fuzzy-number-valued functions, Fuzzy Sets Syst.,
129(2002), 83-94.


