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Abstract

In this paper, we introduced a generalized moment generating function
(GMGF) and showed that fractional moments, that is moments of order nq−th
of a certain distribution, was expressed in Caputa fractional derivation of
GMGF in zero, n bieng a positive integer and 0 < q ≤ 1 . The case q = 1 is
reduced to the integer moments.

Keywords: Fractional calculus (FC), Mittag-leffler function, Beta distri-
bution, confluent hypergeometric function.

1 Introduction

Classical moment generating function of random variable X, MX(t), is ex-
pectation of exponential function and multiplication tn \ n! at its Mac-laurin
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extention one, are the integer moments of that distribution. In this work paper
we introduced a generalized moment generating ffunction GMGF.

In first, we defined the Mittag-leffler-type function Eq(x)q , which we will
call the generalized exponential function. this function is the produce of a
Mittag-leffler function and a power function. This function allows us to di-
rectly obtain GMGF of a random variable, by using the fractional Taylor series
(discussed in [3]). our mains of FC, for this generalization, were Caputa and
Riemann-Liouville operatprs. Taking into consideration the presented method,
the fractional moments of a certain distribution was expressed in Caputa frac-
tional derivation of GMGF in zero. The interesting point is the relationship
between fractional moments and fractional special functions.The special func-
tions used here were generalized fractional confluent hypergeometric function
(discussed in [3,4]) and generalized fractional Bell polynomials (discussed in
[5]). For example, the fractional moments of Beta distribution was expressed
in Caputa fractional derivation of generalized confluent hypergeometric func-
tion in zero. Moreover, the fractional moments of poisson distribution was
expressed in Caputa fractional derivation of generalized Bell polynomials in
zero. Therefore, this generating, in several aspects, corresponds with results
from FC, namely (i) generalized Taylor series by Caputa fractional derivation,
(ii) generalized fractional special functions.

The fractional Taylor series of an infinitely fractionally differentiable func-
tion is based on the Fundamental theorem of FC. By using of Fundamental
theorem of FC, one can say that the right Caputa derivative operastion and
the right Riemann-Liouville integral operation are inverse to each other. The
reasons for using of Caputa derivative are (i) the Fundamental theorem of FC
and (ii) using of the generalized exponential function expectation for defin-
ing of the GMGF of original probability distribution which produces arbitrary
moments. It has also been shown that the GMGF equals with expectation of
the generalized exponential function and therefor fractional moments concides
with Caputa fractional derivation of GMGF in zero. The case q = 1 is reduced
to the classical moment generating function of random variable X.

2 Problem Formulations

Definition 2.1 Let f(x) is a function defined on the interval [a, b]. Let q
be a positive real number. The right Riemann-Liouville fractional integral is
defined by:

aI
q
xf(x) =

1

Γ(q)

∫ x

a
(x− t)q−1f(t)dt, −∞ ≤ a < x <∞ (1)
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And also the right Riemann Liouville fractional derivative” is defined by:

aD
q
xf(x) = (

d

dx
)n(aI

n−q
x ) =

1

Γ(n− q)
(
d

dx
)n

∫ x

a

f(t)

(x− t)q−n+1
dt, (2)

for n = [q] + 1, a < x [1,2].

Definition 2.2 Let n = [q] + 1 , the right Caputa fractional derivative is
defined by

c
aD

q
xf(x) =a I

n−q
x

dn

dxn
f(x) =

1

Γ(n− q)

∫ x

a
(x− t)n−q−1 d

n

dtn
f(t)dt, (3)

and the sequential fractional derivatives is given by:

c
aD

kq
x = c

aD
q
x

c
aD

q
x ...

c
aD

q
x︸ ︷︷ ︸

k−times

(4)

[1,2].

Definition 2.3 Let f(x) be a function defined on the right neighborhood
of a, and be an infinitely fractionally- differentiable function at a , that is to
say, all (caD

q
x)
kf(x), (k = 0, 1, 2, ...) exist. The formal fractional right Riemann-

Liouville Taylor series of a function is

f(x) =
∞∑
k=0

(caD
q
x)
kf(x)|x=a × [(aI

q
x)k(1)] (5)

expilicity
(aI

q
x)k(1) = 1

Γ(kq+1)
(x− a)kq

where c
aD

q
x is the right Caputa fractional derivative and aI

q
x is the right

Riemann- Liouville fractional integral [3].

Definition 2.4 We define the generalized exponential function, Eq(x
q), by

the series
∞∑
k=0

xkq

Γ(kq + 1)
. (6)
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The explicit solutions to the equation

(C0 D
q
xy)(x)− λy(x) = 0, (x > 0, n− 1 < q ≤ n, n ∈ N, λ ∈ R) (7)

is in terms of this function, that is

y(x) = Eq(λx
q). (8)

Sequential fractional derivative of the function gives

(C0 D
kq
x y) = λky. (9)

and in general case

C
aD

q
x Eq((x− a)q) = Eq((x− a)q) (10)

In addition, The generalized exponential function satisfied

Eq(0) = 1 (11)

and
Eq(λx

q)Eq(λy
q) = Eq(λ(x+ y)q), (12)

That is,Eq(x
q) is the fractional analogue of exp(x) The fractional Taylor series

of this function is as following:

Eq((x− a)q) =
∞∑
k=0

[(aI
q
x)k(1)] =

∞∑
k=0

xkq

Γ(kq + 1)
, (13)

because C
aD

q
x Eq((x− a)q)|x=a = 1. It can be seen that,

L{Eq((x)q)} =
sq−1

sq − 1
, (14)

where L is Laplace transform. With substitutions q = 1, a = 0 , the results
(7) t0 (14) valid for the elementary exponential function.

Definition 2.5 The generalized moment generating function M̃X(t)of any
random variable X, is defined by

M̃X(t) = E[Eq((Xt)
q)] (15)

where Eq((xt)
q) is the generalized exponential function and in the special case

q = 1 we obtain the ordinary moment generating function

MX(t) = E[exp(Xt)]. (16)
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Definition 2.6 Let q ∈ [n − 1, n) and n = 1, 2, ... The generalized Bell
polynomials of order q and (−q) are

Bq(x) = e−x Dq
xe
−x (17)

and
B−q(x) = e−x Iqxe

−x (18)

where Dq
x is the right Riemann−Liouville fractional derivative and Iqx is the

right Riemann−Liouville fractional integral [5].

3 Conclusion

Theorem 3.1

(i) Suppose that the GMGF of a random variable X is finite in some open
interval contaning zero. Then, all the moments exist and

M̃X(t) =
∞∑
k=0

E(Xkq)
tkq

Γ(kq + 1)
(19)

and the GMGF is infinitely fractionally differentiable in the open interval, and
for 0 < q ≤ 1 and k = 1, 2, ...

E(Xkq) = (C0 D
q
x)
kM̃X(t) |t=0 (20)

in the special case q = 1, we have

E(Xk) = (C0 Dx)
kMX(t) |t=0= M

(k)
X (t) |t=0 (21)

(ii) If X and Y are independent random variables, then X + Y has the GMGF

M̃X+Y (t) = M̃X(t)M̃Y (t). (22)

Proof: (i) Since the fractional Mac-Lourin series of Eq((x)q) is

Eq((x)q) =
∑∞
k=0

xkq

Γ(kq+1)

we have

M̃X(t) = E{Eq((Xt)q)} = E{∑∞k=0(Xtkq) tkq

Γ(kq+1)
}

=
∑∞
k=0E(Xkq) tkq

Γ(kq+1)
.

In the other hand, by using (9), we have:
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(c0D
q
x)
kM̃X(t) = (c0D

q
x)
k(E{Eq((Xt)q)})

=E{(c0Dq
x)
k(Eq((Xt)

q)} = E{XkqEq((Xt)
q)}.

(ii) By using (12), we have:

˜MX+Y (t) = E{(Ekq((t(X + Y ))kq)} = E{(Ekq((tX)kqEkq((tY )kq)}.

Theorem 3.2 If X ∼ Beta(α, β), then

(i) the GMGF equals

M̃X(t) =1 F̃1(α;α + β; t) =
∞∑
k=0

(α)qk
(α + β)qk

tkq

Γ(kq + 1)
(23)

where 1F̃1(α;α+β; t) denotes the generalized confluent hypergeometric function
and

(a)qk =


1 , k = 0
a , k = 1

(a)q1(a+ Γ(q+1)
Γ(1)

)...(a+ Γ(kq−q+1)
Γ(kq−2q+1)

) , k ≥ 2

(ii) the (qk)th moment equals

E[Xqk] =
(α)qk

(α + β)qk
(24)

in the special case q = 1, we have

MX(t) =1 F1(α;α + β; t) =
∞∑
k=0

(α)k
(α + β)k

tk

Γ(k + 1)
(25)

where

E[Xk] =
(α)k

(α + β)k
. (26)

Proof: The proof (i) is considering simply with definition 1. For (ii), we have

Eq((Xt)
q) =

∑∞
k=0(Xtkq) tkq

Γ(kq+1)

and so
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M̃X(t) = E{Eq((Xt)q)} =
∑∞
k=0E(Xkq) tkq

Γ(kq+1)

comparing recent express to (i), we obtain

E[Xqk] =
(α)q

k

(α+β)q
k
.

Theorem 3.3 If X ∼ Poisson(λ), then

(i) the GMGF equals

M̃X(t) =
∞∑
k=0

Bqk(λ)
tkq

Γ(kq + 1)
(27)

where Bqk(λ) denotes the generalized Bell polynomials and

(ii) the (qk)th moment equals

E[Xqk] = Bqk(λ) (28)

in the special case q = 1, we have

MX(t) = eλ(et−1) =
∞∑
k=0

Bk(λ)
tk

Γ(k + 1)
(29)

that
E[Xk] = Bk(λ). (30)

Proof: The proof is similar to the proof of theorem 3.2, we only out line this
point that, for 0 < q < 1, the right Caputa fractional derivative coincides with
the right fractional Riemann- Liouville derivative in the following case:

(C0 D
q
xy)(x) = (0D

q
xy)(x), q /∈ N0. (31)
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