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ON INTERSECTIONS OF SMALL PERFECT SETS

H. FAST

Abstract. For a not empty perfect subset of the unit circle C there is a per-
fect subset of C measure zero which being rotated to every position intersects
the first set on a nonempty perfect set. This result may be stated in terms
of set of distances between pairs of points from these two sets.

A generalization of this result to a product of tori is suggested.
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1. The fact that the set of distances between pairs of points of the ternary
Cantor set fills the unit interval was noticed a long time ago [1]. This fact can
be equivalently stated by saying that every line {(x, y) : y−x = t}, t ∈ [−1, 1] in
the (x, y)-plane meets the cross-product of the Cantor set with itself. Actually,
except for a countable set of values of t every such line intersects that cross-
product on a nonempty perfect set.

Seing the mentioned lines as ‘light rays’, the product of the Cantor set with
itself appears as an ‘impenetrable obstacle’ to such light. Since such product
is just a kind of ‘dust-set’ in the plane, its total light-blocking ability seems
contrary to intuition.

Another form of the same property: placed on the circle C of length one the
Cantor set intersects its own arbitrarily placed on C copy and except for a count-
able set of the copy’s exceptional positions, their intersection is a nonempty
perfect set.

In the sequel we refer to a not empty perfect set of measure zero as ‘Cantor-
like’. One may ask about Cantor-like pairs of sets which exhibit a property
similar to the one just mentioned of two copies of the ternary Cantor set. We
show in this paper that for every perfect subset P ⊂ C a Cantor-like set may
be found such that the two placed arbitrarily on C intersect on a Cantor-like
set (and unlike in the case of two copies of the Cantor set, wit no exceptional
positions.). It needs to be emphasized that the original set P may be small
according to any additional criteria of smallness (for instance, its Hausdorff
dimension may as small as desired).

The result of this paper may be equivalently stated in terms of set of distances
between pairs of points from the two sets. Our result is:

Proposition 1. For every nonempty perfect subset P ⊂ C there is a Cantor-
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like subset Q ⊂ C such that both sets arbitrarily placed on C intersect on a
Cantor-like set.

In the references section we list a number of studies dealing with various
aspects of quests similar to the one pursued in this paper.

Close in spirit to this paper is the construction in a general space of a ‘tiny’
set with total ‘light obstructing’ capability [2]. Sets of distances between pairs
of points of a set or of points taken from two different sets were the subject of
two monographs: [3] and [4] and partially of [5] (in the latter one finds among
others an old published in [6] result and its subsequent generalizations). Close
to the result of this paper is one found in [7], [9]. Finally we would like to
mention the papers [9], [10] and a the monograph [11, Problem 23, p. 374; p.
509].

2. All the sets considered in this section are elementary subsets of the unit
circle, by which we mean finite unions of disjoint closed arcs.

Introduce into considerations a class of numerical positive sequences [t] =
[tk]

∞
k=1 referred to as strongly decreasing sequences which is defined by the con-

ditions: t1 < 1, tm+1

tm
< 1

10n . Sequences of that class are subjected to down
adjustment, an operation consisting in replacement of one sequence by another
in the same class with smaller terms or with faster rate of decrease. For instance,
in order to satisfy an extra condition a term is made smaller, which causes a
necessary change in the part of the sequence following that term. Selecting a
subsequence from a given strongly decreasing sequence is another example of
down-adjusting.

In the course of our construction infinite iterations of down-adjustment op-
eration take place. Thus created sequence of ever smaller strongly decreasing
sequences converge to a limit sequence, also in that class.

An important role in this paper plays the class ℘(t), t > 0 of subsets E of C
defined by the condition that out of every couple of point x, y ∈ C at a mutual
distance t at least one of the two points falls into E.

When |E| < 1
2
, the complement of the set E ∪ (E + t) is of positive measure,

hence nonempty. Which means that a couple of points: x /∈ E ∪ (E + t) and
y = x − t is not in E. Therefore, E ∈ ℘(t) for even one number t implies:
|E| ≥ 1

2
.

(A trivial observation: C∈ ℘(t) for every t. Also and for an E ∈ ℘(t).)
When both sets A1, A2 of a pair A = (A1, A2) are in ℘(t) we write is simply

A ∈ ℘(t).
We write for simplicity: ℘(t, t′, t′′, . . . ) for the intersection ℘(t) ∩ ℘(t′) ∩

℘(t′′) · · · of classes corresponding to individual numbers: t, t′, t′′, . . . .
And one more convenient description of a two-set relation: a set A is said to

be at most ε-half dense within a set B when |A∩B|
|B| ≤ 1

2
+ ε.

The construction to which the remainder of this section is devoted aims at
constructing pairs of nearly symmetrical in properties sets with possibly small
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measures and which belong to ℘ classes containing ever increasing number of
entries.

Let a counterclockwise oriented circle C be placed in the (x, y) plane with its
center at the origin. One of its intersection points which the coordinate axes
mark as 0-point. (Let us mention here that the operations of sum or difference
x± y performed on points x, y ∈ C are understood as usual, as such operations
modulo one. The E + t = {x+ t : x ∈ E} is the rotational t-translate of E ⊂ C).

Lemma 2.1. For a t > 0 there is a pair A(t) = (A1(t), A2(t)) of subsets
of C such that A(t) ∈ ℘(t) and |Ai(t)| is at most t-half dense in C, i = 1, 2.
Moreover, A1(t) ∪ A2(t) = C and |A1(t) ∩ A2(t)| = 2t.

Proof. Starting with the point 0 ∈ C and moving counterclockwise partition C
into arcs Ik of length t, (with exception of the last which is in general incomplete
- shorter than t arc.). The number s(t) of partition points equals the integer
part of 1

t
.

Take the union of odd-numbered complete arcs Ik, adjoin to that union the
closed t-neighborhood [−t, t] of 0 ∈ C and name the resulting set A1(t). Repeat
the same, taking this time union of even-numbered Ik and name this set A2(t).

It is quite clear that the A(t) satisfies conditions of the lemma.

Introduce in turn an operation Φ acting on pairs of subsets of C and numbers,
producing from an input pair A = (A1, A2) and a number t > 0 an output

pair Â = (Â1, Â2). The description how this is performed we present below
in a number of consecutive steps. (The reader will recognize similarity to the
process of formation a pair in Lemma 2.1.)

(i) Starting with the 0 ∈ C and moving counterclockwise, partition C into
arcs Ik of length t the same way as it was done in the proof of Lemma 2.1.

(ii) Select one particular complete Ik, for instance the I1. Then in every odd-
numbered complete Ik place a congruent copy of I1 ∩A1 and in every complete
even-numbered Ik place the congruent copy of I1 ∩ A2. Form the union of all
these copies. As easily seen, the measure of each of the two unions is not larger
than 1

2
+ t.

Adjoin to that union the closed t-neighborhood [−t, t] of the point 0 ∈ C.

Name the resulting set Â1′ .
(iii) Repeat the step (ii) switching A1 with A2, that is, place copies of I1∩A1

in even-numbered arcs and copies of A2 in even numbered.
Name the resulting set Â2′ . Clearly, about the two created sets we may say:

|Ai′| ≤ 1
2

+ 3t, i = 1, 2, and |A1′ ∩ A2′| = 2t.

(Note the nearly 2t-periodic character of both created sets: A1′ and A2′ , their
periodicity being disturbed only in the vicinity of 0 ∈ C.)

(iv) We are close to the completion of the construction but we make yet one
more addition to the two constructed sets, namely, we adjoin to each of them
the closed t′-neighborhood U(t′) of the set of endpoint of the Ik arcs, after which

it becomes: Âi = Âi′ ∪ U(t′), i = 1, 2.
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This is a good place to add one more useful observation: since |U(t′)| ≤
2t′s(t) ≤ 2t′/t, adjoining it adds at most 2t′/t to measure, hence |Ai| ≤ 1

2
+3t+

2t′/t, i = 1, 2, and |A1 ∩ A2| ≤ 2t + t′/t.
The pair: Â = (Â1, Â2) = Φ(A|t) is the result of Φ acting on A and t.

Lemma 2.2. s(E) denote the number of endpoints of arc-components of a
set (elementary) E ⊂ C. Let ε > 0 and let A = (A1, A2) be a pair of subsets of
C and t, t′ a couple of positive numbers: t′ < t About A assume that:

(a) A1 ∪ A2 = C;
(b) |A1 ∩ A2| ≤ 3t;
(c) A ∈ ℘(t′).

Then under additional appropriate conditions on smallness of t and t′ the fol-
lowing holds for Â = Φ(A, t):

(a′) Â1 ∪ Â2 = C;
(b′) Â ∈ ℘(t, t′);
(c′) For an ε > 0 under t appropriately chosen small enough we achieve that

Âi, i = 1, 2 are at most ε-half dense in E.

Proof. (a′) From the assumption (a) follows I1 ∩ (A1 ∪ A2) = I1. From here,
taking into account steps describing the construction of Φ operation follows (a′).

(b′) From the fact that I1 ∩ (A1 ∪ A2) = I1 it follows that a couple of points
x, x + t with x ∈ I1 and x + t ∈ I2 must have at least one point within (I1 ∩
A1) ∪ (I2 ∩ A2). Since as a result of (ii) in the Φ construction this set is 2t-
periodically repeated along C with the irregularity to its periodicity remaining
near 0 point. When that part of C is sealed away by the adjoined [−t, t], at

least one of the two points of the couple x, x+ t falls within Â1 for any position
of x ∈ C. The same goes for Â2. Thus far this yields Â ∈ ℘(t) only.

But the assumption (c) implies already that a couple x, x+t′ remaining within
the I1 must have a point within each of the two sets I1 ∩Ai, i = 1, 2, hence the
same remains true for each set Ai′ , i = 1, 2. when such couple remains within
any other partition arc Ik (or [−t, t]). Due to adjoining the U(t′), however, this

property holds for the enlarged set Âi, i = 1, 2. and for such a x, x + t′ couple
in every position on C without exception. In other words, Â ∈ ℘(t′) as well.

Combinely, we obtain: Â ∈ ℘(t, t′), that is, (b′).
(c′). Selecting arc-pairs Ik ∪ Ik+1 which cover E (that is, all those which

have nonempty intersections with E) we see easily that the total length of such
arc-pairs is bounded from above by the number |E|+ 4ts(E).

In the step (ii) of the Φ construction, within both arcs of a pair Ik, Ik+1 one
copy of I1∩A1 and one of I1∩A2 were respectively placed and these two copies
become the Ik ∪ Ik+1-portion of the set Â1′ .

The assumption |A1 ∩A2| < 3t of this lemma implies that among the Ik arcs
there is (at least) one where |Ik∩A1∩A2| < 3 t

s(t)
and without loss of generality

one may assume in the construction of Φ that I1 is such an arc. From here
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follows |(Ik ∪ Ik+1)∩ Â1| ≤ 1
2
|Ik ∪ Ik+1|+ 3t

s(t)
(= t + 3t

s(t)
), in other words, A1′ is

at most 3t
s(t)

-half dense within an Ik ∪ Ik+1.

Adding these estimates over all the Ik ∪ Ik+1 which cover E we obtain that
the measure of the portion of Â1 ∩ Â2 contained within the union of all such
arcs is bounded from above by 1

2
(|E|+ 4t s(E)) + 3t = 1

2
|E|+ t (2s(E) + 3).

By imposing on smallness of t an additional condition: t |E|(2s(E) + 3) < ε
we derive (c′).

Quite a similar answer for A2 and Â2. Hence (d′).
ν(n), n = 1, 2, . . . , denote for brevity the triangular naturals: ν(n) = n(n+1)

2
,

n = 1, 2, . . . .

Lemma 2.3. Let [t] be a strongly decreasing sequence. Let En, n = 1, 2, . . . ,
be a sequence of (elementary) subsets of C. There is a subsequence [t̂n] of [t]
and a sequence of pairs An = (A1

n, A
2
n), n = 1, 2, . . . , of subsets of C having the

properties:
(a) A1

n ∪ A2
n = C,

(b) An ∈ ℘(t̂ν(n), . . . , t̂ν(n+1)−1),
(c) Ai

n is at most 1
n
-half dense in En, i = 1, 2.

Proof. First a remark about the notation: the result of performing a number
n of iterative operations: Φ(. . . Φ((Φ(A|un)|un−1) . . . )|u1) we shall write simply
A(u1, . . . , un).

Both sequences, [t̂] and An, n = 1, 2, . . . , shall be constructed inductively.
On two selected terms t̂1 < t̂2 from [t] extra requirements will be imposed as

needed.
Use the pair A(t̂2) produced in Lemma 2.1 (in which t = t̂2) as the input

pair in Lemma 2.2. It is easy to verify for A(t̂2) the (a),(b) (c) of Lemma
2.2: (a): A1(t̂2) ∪ A2(t̂2) = C, (b): |A1(t̂2) ∩ A2(t̂2)| ≤ 3t1 (note: this requires

2t̂2s(t̂1) < 2t̂2/t̂1 < t̂1), (c): A(t̂2) ∈ ℘(t̂2). The output pair A1 = Â(t̂2) =
A(t̂1, t̂2) = Φ(A(t̂2)|t̂1) has the properties (a′)–(c′). We have thus:

(a′): A1
1 ∪ A2

1 = C,
(b′): A1 ∈ ℘(t̂1, t̂2),
(c′): Ai

2 are at most 1
2
-half dense within E1.

These mean satisfaction of the (a)–(c) properties of this lemma for n = 1.
We have defined the first term of the sequence of pairs, the pair A1.
In order to facilitate grasping the general inductive step we shall demonstrate

here in detail the next step of passing from A1 to A2.
Let t̂3 > t̂4 > t̂5 be the next three terms selected from [t], smaller than t̂2,

which will be still subjected to additional smallness requirements, as needed.
Use this time the obtained in the previous step pair A1 = A(t̂1, t̂2) in which the

subscripts of the two terms have been shifted forwards to produce an A(t̂4, t̂5), a
pair which is now used as the input along with the number t̂3 of the Φ operation.
The output is a pair A2 = A(t̂3, t̂4, t̂5) = Φ(A(t̂4, t̂5)|t̂3).

Following the earlier pattern we have to verify first that this input satisfied
the assumptions (a)–(c) of Lemma 2.2. This is so because that is implied by the
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verified already (a)–(c) properties of this lemma for A1. The output conclusions
(a′)–(c′) of Lemma 2.2 follow, of which the important for us are the two last:
(b′): A2 ∈ ℘(t̂3, t̂4, t̂5) and (c′): Ai

2, i = 1, 2 are at most 2-half dense in E2.
The needed additional requirements on t̂3 - t̂5 are easy to figure out but

clumsy to write explicitly. We leave this detail to the reader.

And finally the general inductive step.
We assume here that the initial segment {t̂k, k = 1, . . . , ν(n)} of the prospec-

tive subsequence of [t] and n satisfying the (a) - (c) conditions of this lemma
pairs Ak = A(t̂ν(k)+1, . . . , t̂ν(k+1), k = 1, . . . , n, have been already constructed.

In order to extend further the subsequence select from [t] next n terms:
t̂k, k = ν(n + 1), . . . , ν(n + 2)− 1 and tν(n)+1 < 1

2n < ε.

Set An+1 = Φ(A(t̂ν(n+1)+1, . . . , tν(n+2)−1) | tν(n+1)).
Similarly as was done in the presented above exemplary case of passing from

A1 to A2, having An satisfying the inductive assumptions of this lemma, under
appropriate additional conditions on smallness of the terms t̂k, k = ν(n +
1), . . . , ν(n + 2) − 1, Lemma 2.2 permits us to conclude that also the An+1

can be made to satisfy these conditions, in particular, the important for later
applications conditions: An+1 ∈ ℘(t̂ν(n)+2, . . . , tν(n+1)) and A1

n+1 being at most
2 + 1

2n ε-half dense in En+1.

3. This section carries further the construction of set sequences of the previous
section. Three sequences of elementary sets are introduced here: Bm, Qm and
Q̂m, m = 1, 2, . . . , the last of which is used directly to produce the figuring in
Proposition 1 set Q.

The whole Section 2 of this paper in fact serves as a preparation to define
the Bm sets.

In order to simplify the notation, the derived in the last section subsequence
[t̂] of the originally given sequence [t] we shall write again as [t].

From the sequence of pairs of sets constructed in the previous section select
the subsequence A2m , m = 1, 2, . . . . Actually, only the first set of every pair
of sets A2m will be used in the sequel of this paper. Rename this set Bm, thus
Bm = A1

2m .
Let us repeat two properties of Bm as following from Lemma 2.3:

Bm ∈ ℘(t2ν(m) , . . . , t2ν(m+1)−1)

and
|Bm ∩ E2m|
|E2m | ≤ 1

2
+

1

2m
.

And again the notation: [t2ν(m) , . . . , t2ν(m+1)−1 ] for the 2m-long segment is cum-
bersome and calls for simplification. We shall write for it [tm1 , . . . , tm2m ] instead.

In what follows we adopt the convenient notation E+δ for a closed δ-neigh-
borhood of a set E.

We shall write for brevity δm = 3tm1 for the triple of the initial term of a
[tm1 , . . . , tm2m ] segment.
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Having defined based on a strongly decreasing sequence [t] sets Bm, define
recursively based on the same sequence another sequence of elementary sets,
Qm, m = 1, 2, . . . , as follows:

Set Q1 = C and the general term Qm define by:

Qm+1 = Q+δn
m ∩Bm.

(Thus, as an example, Q2 = B1 = A1
2, Q3 = B+δ2

1 ∩B2, and so forth.)

Lemma 3.1. Qm+1 is at most 1
2m−1 -half dense in the Qm, m = 1, 2, . . . .

Proof. Bm is at most 1
2m -half dense within Em. Since Em is one of a sequence

of arbitrarily chosen elementary subsets of C, we may set: Em = Q+δm . By this
we achieve:

|Q+δm
m ∩Bm|
|Q+δm

m | =
|Qm+1|
|Q+δm

m | <
1

2
+

1

2m
.

By making δm small enough (which, let us mention it, requires appropriate
down-adjustment of [t]) we replace |Q+δm

m | with |Qm| in the denominator of the
last fraction at the price of increasing the right term in the inequality from 1

2m

to 1
2n−1 . This yields the lemma.

The following is a helpful intrusion valid in a general metric space X. It is a
lemma dealing with the operation of taking a neighborhood of a set.

Lemma 3.2. Let E ⊂ X, and r, r′ > 0. The set resulting from two con-
secutive r and r′ neighborhood taking of a set results in a subset of the r + r′

neighborhood of the same set: (E+r)+r′ ⊂ E+(r+r′).

Proof. Indeed, let x ∈ (E+r)+r′ and let x′ be the closest to x point of E+r and
x′′ be the closest ro x′ point of Ē. We have: |x−x′′| ≤ |x−x′|+ |x′−x′′| which
proves the inclusion.

Introduce yet one more, this time the last one, sequence Q̂m, m = 1, 2, . . . ,
of elementary sets.

Write ρ(m) for the remainder of the series
∞∑

k=1
2δm, that is, ρ(m) = 2

∞∑
k=m

δm.

Set: Q̂m = Q+ρ(m)
m . A Q+ρ(m)

m is a ‘ρ(m)-blow-up’ of an earlier defined set Qm.

By Q denote the intersection:
∞⋂

m=1
Q̂m.

Lemma 3.3. Q is a not empty compact.

Proof. We have: Qm+1 ⊂ Q+δm
m . Using Lemma 3.2 and taking into account that

δm + ρ(m + 1) = δm + ρ(m) < ρ(m), we derive:

Q̂m+1 = Q
+ρ(m+1)
m+1 ⊂ (Q+δm

m )+ρ(m+1) ⊂ Q+(δm+ρ(m+1))
m ⊂ Qρ(m)

m = Q̂m.

The Q̂m form a descending sequence, which makes Q a not empty com-
pact.

Lemma 3.4. Q is of measure zero.
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Proof. We show that a Q̂m+1 is 1
2m−2 -half dense in Q̂m, m = 1, 2, . . . .

In the inequalities |Qm+1|
|Qm| < 1

2
+ 1

2m−1 of Lemma 3.1, the term |Qm+1| may for

a sufficiently small ρ(m) (requiring a down-adjustment of [t] again) be replaced

by |Q̂m+1| at the price of increasing the 1
2m−1 on the right side of the inequality

to 1
2m−2 . Under consecutive down-adjustments of [t] (and, consequently, of the

derived from [t] sequence ρ(m), m = 1, 2, . . . ) we come to the inequalities:

|Q̂m+1|
|Q̂m|

<
1

2
+

1

2m−2
, m = 1, 2, . . . .

This sequence of inequalities implies: limm→∞ |Q̂m| = |Q| = 0.

4. In the present section the defined earlier in Section 3. set Q becomes finally
related to the given perfect set P .

Again, a little note about the notation: In what follows, at some places we
find it convenient to write a segment [tm1 , . . . , tm2m ] of a strongly decreasing [t]

rather in the form: [τm
1 , τm,′

1 , . . . , τk, τ
m,′
k , . . . , τ2m−2 , τm,′

2m−2 ] in which the letters

have been changed to τm
k and τm′

k and the 2m terms tmk grouped into 2m−1 pairs
of neighboring terms.

Introduce one more sequence of subsets of C, a cascade. It is not a sequence
of sets elementary, but that of finite sets. We define it recursively:

Start with a strongly decreasing sequence [t]. A based on it cascade is a
sequence Ym ⊂ C, m = 1, 2, . . . . defined as follows:

Y1 is a one-point set {y}, where y ∈ C is arbitrary. Assume that the sets of
a cascade have been already defined for 1 ≤ n ≤ m and that Ym contains 2m−1

points. Write the counterclockwise ordered Ym in the form: Ym = {ym
k , k =

1, . . . , 2m−1}.
Bring in Bm sets based on the same [t]. By their definition, we have: Bm ∈

℘(tm1 , . . . , tm2m), that is, Bm contains at least one point out of every couple of
points x, x− tmk ∈ C, where k = 1, . . . , 2m. In particular, for m > 2 it contains
at least one point out of every of two couples: {ym

k , ym
k − τm

k } and {ym
k − τm

k −
τm′
k , ym

k − τm
k − 2τm′

k }, both made of points of the Ym set of the cascade. Select
one such point within each of the two couples (should both points from a couple
be in Bm, select the one which is closest to ym

k ) and name these two points zm
k

and zm′
k .

After this preparation define the Ym+1 by the formula:

Ym+1 =
2m−1⋃

k=1

{zm
k , zm′

k }. (Y )

Note the implication: Ym+1 ⊂ Bm. Also note that in passing from Ym to
Ym+1 a point yk of Ym is replaced by the generated by that point pair zm

k , zm′
k

of points.
The following lemmas illustrate a few properties of the just introduced con-

cept of a cascade.
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Lemma 4.1. The set Y∞ =
∞⋂

m=1

∞⋃
k=m

Yk is a not empty perfect set.

Proof. The intersection of the descending sequence of not empty compacts
∞⋃

k=m
Yk is a not empty compact. As follows from (Y), for m large enough every

point of a set
∞⋃

k=m
Yk has in that set arbitrarily close to it but different from it

point. Therefore, Y∞ cannot have isolated points.

The following lemma ties a cascade to a corresponding to it Qm, m = 1, 2, . . . ,
sequence.

Lemma 4.2. To a cascade Ym, m = 1, 2 . . . , corresponds a sequence Qm,
m = 1, 2, . . . , such that:

Y∞ ⊂ Qm, m = 1, 2, . . . .

Proof. First, we shall prove by induction a chain of inclusions: Ym ⊂ Qm,
m = 1, 2, . . . .

The case m = 1 is beyond question. Assume Ym ⊂ Qm for a given m.
Since tm1 is the largest among the terms of the segment [tm1 , . . . , tm2m and since

the union of the two couples: {ym
k , ym

k − τm
k }∪{ym

k − τm
k − τm′

k , ym
k − τm

k − 2τm′
k }

is of diameter smaller than δm = 3tm1 and also since one point of the first couple
is in Ym, both couples are contained within the closed neighborhood Y +δm

m of
Ym, hence Ym+1 ⊂ Y +δm

m . Consequently, we have: Ym+1 ⊂ Q+δm
m . But according

to (Y) also Ym+1 ⊂ Bm.
Combinely, the two inclusions yield: Ym+1 ⊂ Q+δm

m ∩ Bm = Qm+1. The
induction is complete.

(Note that an appropriate adjustment-down of [t] is to be applied to the
segment [tm1 , . . . , tm2m ] and consecutively to all the following segments, which in
limit will create a strongly decreasing limit sequence.)

Corollary 4.3. To a cascade Ym, m = 1, 2, . . . , corresponds a sequence Q̂m,
m = 1, 2, . . . , such that Y∞ ⊂ Q.

Proof. By Lemma 4.2 and the definition of Q̂m we have: a sequence Ŷm, m =
1, 2, . . . , with Y∞ ⊂ Q̂m for m = 1, 2, . . . , hence Y∞ ⊂ Q.

Lemma 4.4. For a nonempty perfect set P ⊂ C there are: a string cascade
Ym, m = 1, 2 . . . , and a sequence Q̂m, m = 1, 2, . . . , such that Y∞ ⊂ P ∩Q.

Proof. Starting with an arbitrary strongly decreasing [t], one forms based on
it sequences Bm and Ym, m = 1, 2, . . . , and a corresponding by Lemma 4.2
sequence Qm, m = 1, 2, . . . , and that under the restriction that the picked up
points to form an Ym are to be right-hand accumulation points of P . This
restriction calls at every stage of construction of a cascade for an appropriate
down adjustment of [t] and this results in a sequence of down-adjustments of [t]
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leading to creation of a strongly decreasing limit sequence. The density-in-itself
of P guarantees the possibility of indefinite continuation of such a process.

By the corollary 4.3 one obtains as a result that Y∞ is contained in both sets
P and Q simultaneously. (Note, that except for an at most countable subset all
points of P are its both-sided accumulation points. The requirement for right-
sidedness comes from our choice of counterclockwise orientation on C.)

Enter now into the picture rotations of all the sets Qm from their original
positions by a θ ∈ C. Since in general the selections of a pair of zm

k , zm′
k points

(out for four choices) which are in Bm + θ depends on θ, the corresponding sets
Ym+1 of the cascade depend on θ. Write for them Ym(θ).

Corollary 4.5. For every θ ∈ C the set P ∩ (Q + θ) contains a Cantor-like
subset.

Proof. Lemma 4.4 is equally valid for every position Q + θ of Q on C. The
constructed in Lemma 4.4 corresponding to θ set Y∞(P, θ) is a Cantor-like set
included in both P and Q + θ.

This is the ultimate result we were after.

5. In closing, a few side comments.
What a ‘small set’ is may be understood in various ways. Questions similar

to our may range from difficult to almost trivial. For instance, asking for a Q
as in our case but nowhere-dense only (measure zero is not required), is but an
elementary exercise.

Another digression: a rather superficial but instantly derivable from Propo-
sition 1 corollary is the following result:

Let Pk ⊂ C, k = 1, 2, . . . , be a countable family of nonempty perfect sets.
There is an universal for that family set of first category and measure zero
which placed in every position on C intersects every Pk on a Cantor-like set.
Indeed, the union ∪kQ

k of the corresponding (by Proposition 1) Cantor-like
counterparts Qk to the Pk sets is such a set.

One may also suggest a generalization of Proposition 1 by replacing the unit
circle C with an arbitrary product of copies of the unit circle, a ‘torus-space’,
CΞ (over an arbitrary set Ξ). Such super-torus is easily made into a linear space
under the naturally defined linearity (a shift is the product of rotations in the
factor circles). It can be turned into a topological space with weak product-
topology and into a measure space carrying product measure of the Lebesgue
measures on the factor-circles.

To pursue such generalization an expansion of the concepts of Cantor-like set
is be needed: let us say that a subset of CΞ is Cantor-like in all the coordinates
if all its coordinate projections on the factor-circles are Cantor-like sets. In a
similar fashion be defined the congruency of two subsets of CΞ by reducing it
to congruency of the projections on all the factor-circles. With that done the
following generalization of Proposition 1 would hold:
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Proposition 2. To every nonempty perfect in all the coordinates set P ⊂ CΞ

there is a perfect in all the coordinates set Q ⊂ CΞ of product measure zero, such
such that every congruent to Q subset intersects P over a nonempty perfect in
all the coordinates set.

We leave it to an interested reader to fill in the needed steps.

References

1. R. P. Boas, Jr., A primer of real functions. The Carus Mathematical Monographs 13.
Published by The Mathematical Association of America; distributed by John Wiley and
Sons, Inc., New York, 1960.

2. H. Fast, Thin sets in cartesian products can be opaque. Math. Centrum, Amsterdam,
Afd. zuivere Wisk. ZW 35/74 (1974).

3. S. Piccard, Sur les ensembles de distances des ensembles de points d’un espace Eu-
clidean. Mém. Univ. Neuchâtel, 13. Secrétariat de l’Université, Neuchâtel, 1939.
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