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ON A GENERALIZATION OF THE DIRICHLET INTEGRAL

T. CHANTLADZE, N. KANDELAKI, A. LOMTATIDZE, AND D. UGULAVA

Abstract. Using the theory of spline functions, we investigate the problem
of minimization of a generalized Dirichlet integral

Fλ(u) =
∫

Ω

(
λ2 +

n∑

i=1

u2
xi

)p/2

, 1 < p < ∞,

where Ω is a bounded domain of an n-dimensional Euclidean space Rn, λ ≥ 0
is a fixed number, and uxi

is a generalized according to Sobolev with respect
to xi derivative of the function u defined on Ω. Minimization is realized with
respect to the functions u whose boundary values on Γ form a preassigned
function, and for them Fλ(u) is finite.
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Let X and Z be linear normed spaces and Y be a Banach space possessing
properties E and U . Property E means that in any closed subspace there exists
an element g, least deviating from the given one y ∈ Y . Property U shows that
such an element g is unique. It is known that the linear normed space possesses
property E if and only if it is reflexive, and property U if and only if it is
strictly convex (i.e., when the norm of a midpoint of the segment connecting
two different points on the unit sphere, is less than 1). Suppose that t and a
are continuous linear mappings from X into Y and from X into Z, respectively.
For a fixed element z ∈ Im a let us consider its pre-image in X, i.e., a set
Iz = {x ∈ X : a(x) = z} and then in Y , i.e., a set ∆z = t(Iz). This is the set of
those elements in Y which have the form y = t(x), where x ∈ Iz. Find ‖t(x)‖

Y

when x ∈ Iz. If this inf is attained on some element σ from the set Iz, then it
is called a spline corresponding to t, a and z. By the definition,

‖t(σ)‖
Y

= inf
X∈Iz

‖t(X)‖
Y
. (1)

Such a definition of a spline was introduced first for Hilbert spaces X, Y , Z
([1], Ch. 4, §4.4). The above-given definition of the spline is given in [2].

In the sequel, instead of Ker(·) the operator kernel will be denoted by N(·).
Theorem 1. The spline corresponding to t, a and z exists if the set t(N(a))

is closed in Y . It is unique if N(a) ∩N(t) = {0}.
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Proof. Clearly, the set ∆z = t(Iz) is a shift of the subspace ∆0 = t(I0) =
t(N(a)) by the element t(x0), where x0 is an arbitrary fixed element from Iz.
By the condition, any subspace of the space Y possesses properties E and U .
Then the shifts of the subspace possess the same properties. (Indeed, let x ∈ Y ,
x 6∈ ∆z and let x0 be an arbitrary element from ∆z. For x−x0 in ∆0 there exists
a best approximation element of g0, i.e., ‖x−x0−g0‖Y

= infg∈∆0 ‖x−x0−g‖
Y

=
infg∈∆0 ‖x−(x0 +g)‖

Y
= inf g̃∈∆z

‖x− g̃‖
Y
, i.e., g̃0 = x0 +g0 is the element of the

best approximation in ∆z. Analogously, we can see that g̃0 is unique.) Since,
by the condition, the set ∆0 = t(I0) is closed, it is a subspace, and hence its
shift ∆z likewise possesses properties E and U . Let y be a best approximation
element of zero in ∆z, i.e., ‖y‖

Y
= infy∈∆z ‖y‖Y

. Thus we have proved the
existence of the spline.

Let us prove its uniqueness under the condition N(a)∩N(t) = {0}. Suppose
that there exist two splines σ and σ̃ ∈ Iz, a(σ) = a(σ̃) = z, a(σ − σ̃) = 0,
i.e., σ − σ̃ ∈ I0 = N(a). Since y is a best approximation unique element,
t(σ) = t(σ̃) = y, t(σ − σ̃) = 0, i.e., σ − σ̃ ∈ N(a) ∩N(t) = {0} and σ = σ̃.

Remark. Let y0 be an arbitrary fixed element, and instead of problem (1)
let us consider a somewhat modified problem. We are to find that infx∈Iz ‖y0 +
t(x)‖

Y
. If the conditions of Theorem 1 are fulfilled, then there exists an element

σ̃ ∈ Iz for which
‖y0 + t(σ̃)‖

Y
= inf

x∈Iz

‖y0 + t(x)‖
Y
.

Now we need establish the sufficient condition for the set t(N(a)) from Y to
be closed.

Lemma 1. If X is a Banach space, Im t is closed in Y , and N(t) is finite-
dimensional, then t(N(a)) is a closed subspace in Y .

Proof. Since N(t) is finite-dimensional, it has a complement, i.e., there exists a
subspace N(t)⊥ in X such that N(t)∩N(t)⊥ = {0}, X = N(t)⊕N(t)⊥. Every
element x ∈ X is represented uniquely as x = u + v, u ∈ N(t), v ∈ N(t)⊥.
Denote by t̃ the restriction of the mapping t on N(t). It is clear that Im t =
Im t̃, and t̃ is a continuous one-to-one mapping acting from N(t)⊥ to a closed
subspace of the space Y . According to the Banach theorem on the continuity
of an inverse mapping, s = t−1 is a continuous mapping. Denote by Na(t) the
projection of N(a) onto N(t)⊥. We have

t(N(a)) = t(Na(t)) = t̃(Na(t))

= s−1(Na(t)) = s−1((N(a) + N(t)) ∩N(t)⊥). (2)

Here we have taken into account the fact that Na(t) = ((N(a)+N(t))∩N(t))⊥.
Indeed, if x ∈ Na(t), then x ∈ N(t)⊥, i.e., x is the projection of some element
x1 ∈ N(a) onto N(t) and x = x1 − x2, where x2 ∈ N(t). This implies that
x ∈ N(a) + N(t) and hence x ∈ (N(a) + N(t)) ∩ N(t)⊥. Conversely, if x ∈
(N(a) + N(t)) ∩N(t)⊥, then x = x1 + x2, where x1 ∈ N(a), x2 ∈ N(t). Next,
x1 = x − x2, but x belongs to N(t)⊥ and hence it is the projection of x1 onto
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N(t)⊥, i.e., x ∈ Na(t). N(a) is closed, and since N(t) is finite-dimensional,
N(a) + N(t) is likewise closed. Indeed, let the sequence xn ∈ N(a) + N(t),
n = 1, 2, . . . , converge in X. This sequence can be written as follows:

xn = xn +
r∑

k=1

α(k)
n tk, (3)

where xn ∈ N(a), and t1, . . . , tr are linear independent elements from N(t) such
that a(t1), . . . , a(tr) are also linear independent in Z. (Indeed, let {tk}1≤k≤m be a
basis in N(t) such that a(t1), . . . , a(tr), r ≤ m, is a maximal linear independent
subset of the set {a(tk)}1≤k≤m. Then for tj, j = r + 1, . . . , m, we have a(tj) =∑r

k=1 β
(j)
k a(tk); and tj−∑r

k=1 β
(j)
k tk = ξj ∈ N(a), or tj =

∑r
k=1 β

(j)
k tk +ξj, β

(j)
k ∈

R, ξj ∈ N(a), r + 1 ≤ j ≤ m. But, by the definition, xn = x̃n +
∑m

k=1 γ(k)
n tk,

x̃n ∈ N(a), γ(k)
n ∈ R. Taking into account all the above-said, we can see that (3)

is valid). By virtue of the convergence of (3) and the continuity of the mapping
a, the sequence a(xn) =

∑r
k=1 α(k)

n a(tk) converges as well.
Thus we conclude that for all 1 ≤ k ≤ r the number of sequences α(k)

n

converge. Further, according to (3), there exists lim xn = x ∈ N(a), and if
lim xn = x, then x ∈ N(a) + N(t). Hence N(a) + N(t) is a closed set. N(t) is
closed, and since s−1 is a continuous mapping, from (2) it follows that the set
t(N(a)) is closed in Y .

Let us realize the above-described construction for the following case. Let Ω
be a simply-connected bounded domain of an n-dimensional Euclidean space Rn

for which Sobolev embedding theorems (see, e.g., [3], pp. 279–280) are valid.
For instance, they are valid if Ω is representable in the form of a union of a
finite number of star-shaped domains.

Let X = W 1
p (Ω) be a set of integrable on Ω in the p-th degree, 1 < p <

∞, functions u(x) = u(x1, . . . , xn) having the integrable in the p-th degree
generalized, according to Sobolev, partial derivatives of first order uxi

, 1 ≤ i ≤
n. The set of such functions with the norm

‖u‖
W1

p (Ω)
=

{∫

Ω

(u2
x1

+ · · ·+ u2
xn

)p/2dσ

}1/p

+

{∫

Ω

|u|pdσ

}1/p

, dσ=dx1, . . . , dxn,

is the Banach space, or more precisely, the Sobolev space (its different equivalent
norms are well-known (see, e.g., [3]). In the capacity of the space Y we take
the Cartesian product of n samples of the space Lp(Ω) and of one-dimensional
space R, i.e., Y = R × Lp(Ω) × · · · × Lp(Ω) = R × ∏

n Lp(Ω). Introduce in Y
the norm of the element (λ, u1, . . . , un) as follows:

‖(λ, u1, . . . , un)‖
Y

= ‖(λ2 + u2
1 + · · ·+ u2

n)1/2‖
Lp(Ω)

=

{ ∫

Ω

(λ2 +
n∑

i=1

ui)
p/2dv

}1/p

. (4)
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It is known that Lp(Ω) is a reflexive and strictly normed space for 1 < p < ∞.
The same will be Y with norm (4). Let us prove that the space Y is strictly
convex. To this end, we take in Y different points u = (λ1, u1, . . . , un) and
v = (λ2, v1, . . . , vn) with norms, equal to unity, and prove that ‖u + v‖

Y
< 2.

By means of the inequality
√

(λ1 + λ2)2 + (u1 + v1)2 + · · ·+ (un + vn)2

≤
√

λ2
1 + u2

1 + · · ·+ u2
n +

√
λ2

2 + v2
1 + · · ·+ v2

n (5)

we get

‖u + v‖
Y

=

{ ∫

Ω

((λ1 + λ2)
2 + (u1 + v1)

2 + · · ·+ (un + vn)2)p/2dσ

}1/p

≤
{ ∫

Ω

(√
λ2

1 + u2
1 + · · ·+ u2

n +
√

λ2 + v2
1 + · · ·+ v2

n

)p

dσ

}1/p

def
=

{ ∫

Ω

(f1 + f2)
pdσ

}1/p

, (6)

where

f1 =
√

λ2
1 + u2

1 + · · ·+ u2
n, f2 =

√
λ2

2 + v2
1 + · · ·+ v2

n,

‖f1‖Lp(Ω)
= ‖f2‖Lp(Ω)

= ‖u‖
Y

= ‖v‖
Y

= 1.

Consider the following cases:
(1) f1 6= f2. By virtue of the strict convexity of the space Lp(Ω) for 1 < p <

∞, from (6) we find that

‖u + v‖
Y

< ‖f1‖Lp(Ω)
+ ‖f2‖Lp(Ω)

= ‖u‖
Y

+ ‖v‖
Y

= 2;

(2) f1 = f2, i.e., λ2
1 +u2

1 + · · ·+u2
n = λ2

2 +v2
1 + · · ·+v2

n a.e. on Ω. Suppose first
that at least one of the numbers λ1 and λ2 is not equal to zero. The equality in
inequality (5) is obtained, when the vectors u and v are proportional a.e., and
since the first coordinates are the numbers, the coefficient of proportionality is
a positive number C, i.e., v = Cu. But ‖u‖ = ‖v‖ = 1 and hence C = 1, v = u
which is impossible by our supposition.

If λ1 = λ2 = 0, then the equality a.e. in (5) is obtained if a.e. v = C(x)u,
where C(x) > 0 for almost all x ∈ Ω. In this case u = 0 a.e. in Ω if and only
if v = 0 a.e. in Ω. But |v| = |u| a.e., and hence C(x) = 1 a.e. in Ω. We obtain
u = v and this contradicts our supposition. Thus the strict convexity of the
space Y is proved.

In the sequel, we shall need some of the Sobolev embedding theorems on
a structure of traces for elements from Sobolev spaces on manifolds of lesser
dimensions. As such a manifold we take the boundary Γ of the domain Ω which
is required to consist of a finite number of surfaces of the class C1. By the
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Sobolev embedding theorems, for p > n the function f from the space W 1p(Ω)
is continuous everywhere in Ω, including the boundary Γ. Moreover,

max
x∈Γ

|f(x)| ≤ c‖f‖
W1

p (Ω)
, (7)

where c is the constant depending on Γ. If 1 < p ≤ n, the function f ∈ W 1
p (Ω)

has a trace on Γ, which belongs to Lq(Γ), where q < (n− 1)p/(n− p) and

‖f‖
Lq(Γ)

≤ c‖f‖
W1

p (Ω)
. (8)

Since (n− 1)p/(n− p) > p, for 1 < p ≤ n the trace of elements of the space
W 1

p (Ω) on Γ belongs to Lp(Γ) (the fact that f |
Γ

is the trace of the element

f ∈ W 1
p (Ω) on Γ means that in the class of equivalent functions f we can find

a function which possesses limit values in the ordinary, or in the Lp sense. The
above-mentioned theorems are proved, for example, in [3] or in [4].

As the Banach space Z we introduce the space of Lp(Γ)-functions, integrable
on Γ in the p-th degree. Denote by a a linear operator from X to Z which to
the element u ∈ X puts into correspondence its trace on the boundary Γ of the
domain Ω. Inequalities (7) and (8) imply that a is a linear continuous operator.
The operator t, acting from X to Y , can be defined by the formula

t(u) = (0, ux1 , . . . , uxn).

Clearly,

‖t(u)‖
Y

=

{ ∫

Ω

(
n∑

i=1

u2
xi

)p/2

dv

}1/p

.

The right-hand side of the latter equality is the summand of the norm ‖u‖
X
,

and hence t is a linear continuous operator.
In the space Z we fix an element f ∈ Im a and denote by If a set of elements

u of the space X whose trace on Γ is f , i.e., a(u) = f , Λ = (λ, 0, . . . , 0) belongs
to Y , and the set Λ + t(u) = (λ, ux1 , . . . , uxn) for all possible u ∈ If is a shift of
the set t(N(a)) onto the element (λ, vx1 , . . . , vxn), where v is some fixed element
from If .

Consider the functional

Fλ(u) =

{ ∫

Ω

(
λ2 +

n∑

i=1

u2
xi

)p/2

dσ

}1/p

= ‖Λ + t(u)‖
Y

(9)

defined on If and find its inf with respect to all u ∈ If . By Theorem 1, the
closure of the set t(N(a)) in Y and the equality N(a) ∩N(t) = {0} guarantee
the existence and uniqueness of the minimizing element ũ ∈ If . To prove the
closure of the set t(N(a)), it is sufficient, following Lemma 1, to prove finite
dimensionality of N(t) and closure of Im t in Y . N(t) is the set of functions
from X whose all generalized partial derivatives of first order are zeros. This
means that N(t) is a one-dimensional space of constants. It remains to prove
the closure Im t. Let u(m) be a sequence in X such that all the sequences
u(m)

xi
, 1 ≤ i ≤ n, composed of generalized partial derivatives of u(m) converge
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in Lp(Ω) to the functions αi. We have to prove that the vector (α1, . . . , αn) is
the generalized gradient of a function u ∈ X, i.e., uxi

= αi, 1 ≤ i ≤ n. For
1 ≤ i, j ≤ n denote by (u(m))xixj

the derivative with respect to xj of the function

(u(m))xi
in a sense of the theory of generalized functions. Then for any finite in

Ω function f we have

(u(m))xixj
(f) =

∂u(m)

∂xi

(
∂f

∂xj

)
→

∫

Ω

αi
∂f

∂xj

dσ,

(u(m))xjxi
(f) =

∂u(m)

∂xj

(
∂f

∂xi

)
→

∫

Ω

αj
∂f

∂xi

dσ.

The left-hand sides of these relations are equal to u(m)(fxixj
) (elements u(m) ∈ X

are considered as regular generalized functions). Hence their right-hand sides
are likewise equal: ∫

Ω

αi ∂f/∂xjdσ =
∫

Ω

αj∂f/∂xidσ,

i.e., (αj)xi
= (αi)xj

, where the derivatives are considered in a sense of the theory
of generalized functions. It is known ([3], p. 160; [5], Ch. 5, 5.9.3, 5.11.1) that
in the case, where Ω is simply connected, there exists a locally integrable in
Ω function u whose generalized partial derivatives uxi

, 1 ≤ i ≤ n, belong to
Lp(Ω), and grad u = (α1, . . . , αn). But by the Sobolev embedding theorem ([3],
pp. 280–282), such a function u belongs to Lp(Ω), and hence u ∈ X, i.e., Im t
is closed in Y . The condition N(a) ∩ N(t) = {0} can be easily verified. Thus
we have proved the following

Theorem 2. Let Ω be a bounded simply connected domain from Rn, whose
boundary Γ consists of a finite number of surfaces of the class C1, f be the
defined on Γ function for which the set If = {u ∈ W 1

p (Ω) : u|
Γ

= f} is non-
empty, and let λ be an arbitrary fixed real number. Then for the functional Fλ,
defined by formula (9), infu∈If

Fλ(u) is obtained on some element u ∈ If .

Remark 1. Theorem 2 is also valid for the domain which is divided by means
of surfaces of the class C1 into a finite number of simply connected domains. In-
deed, the functions u ∈ If will have, according to the above-mentioned Sobolev
theorems, on such surfaces a trace belonging to the corresponding space Lp, and
the problem of minimization of the functional Fλ can be considered in the ob-
tained simply connected domains. Using minimizing elements, we can construct
a minimizing function in the initial domain.

Remark 2. Using the method described above, we can investigate a functional
of more general type such as

Fλ,s(u) =

{ ∫

Ω

(λ2 + Du)p/2dσ

}1/p

, (10)
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where

Du =
∑

s1+···+sn=s

c(s1, . . . , sn)
(

∂su

∂xs1
1 . . . ∂xsn

n

)2

, c(s1, . . . , sn) > 0,

and λ is a fixed function belonging to Lp(Ω), while the derivatives are under-
stood in the Sobolev sense. Not going into details, we note that for functional
(10) we obtain a theorem analogous to Theorem 2. Here we restrict ourselves
to case (9).

For the element u minimizing functional (9) we derive the so-called Euler’s
generalized equation. To this end, we consider some function η belonging to
D(Ω), a space of finite, infinitely differentiable in Ω function, and for the real
numerical parameter α we compose the set {u + αη}. Let p = l + 1, l > 0. The
function u minimizes the functional

Iλ(u) =
∫

Ω

(
λ2 +

n∑

i=1

u2
xi

)(l+1)/2

dσ,

and since the trace of the function u + αη belonging to Wl+1(Ω) on Γ is f , for
any α ∈ R we have

Iλ(u + αη) ≥ Iλ(u).

Let us prove that

Iλ(u + αη) =
∫

Ω

(
λ2 +

n∑

i=1

(uxi
+ αηxi

)2

)(l+1)/2

dσ (11)

has a derivative with respect to α for any α ∈ R, and I ′λ can be calculated by
differentiation under the integral sign. For this we write the expression

∆Iλ

∆α
=

Iλ(u + (α + ∆α))η − Iλ(u + αη)

∆α

(∆α is an increment of α) and transform it by means of the Lagrange mean
value theorem. We obtain

∆Iλ

∆α
= (l + 1)

∫

Ω

(
λ2 +

n∑

i=1

(uxi
+ αθηxi

)2
)(l−1)/2

×
[

n∑

i=1

(uxi
+ αθηxi

)ηxi

]
dσ, (12)

where αθ = α + θ(ux1 , . . . , uxn , α), 0 < |θ(ux1 , . . . , uxn , α)| < |∆α|.
By the Cauchy–Bunjakovsky inequality we find that the integrand is esti-

mated from the above by the expressions

[
λ2 +

n∑

i=1

(uxi
+ αθηxi

)2

]l/2( n∑

i=1

η2
xi

)1/2
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and

max

{
1,

[
λ2 +

n∑

i=1

(uxi
+ αθηxi

)2

]l+1/2}(
n∑

i=1

η2
xi

)1/2

.

But

λ2 +
n∑

i=1

(uxi
+ αθηxi

)2 ≤
(
λ2 +

n∑

i=1

u2
xi

)
(1 + |αθ|) + (|αθ|+ α2

θ)
n∑

i=1

η2
xi

,

and u ∈ Wl+1. Therefore we can easily see that the integrand in (12) has a
majorant belonging to L1(Ω). By the Lebesgue theorem, we can pass in (12) to
the limit under the integral sign. Thus from (11) we find that

I ′λ(u + αη) = (l + 1)
∫

Ω

(
λ2 +

n∑

i=1

(uxi
+ αηxi

)2

)(l−1)/2[ n∑

i=1

(uxi
+ αηxi

)ηxi

]
dσ.

Since α = 0 is the minimum point of the function Iλ(u + αη), we have that
I ′λ(u) = 0, and hence the function u, minimizing Iλ(u), satisfies the generalized
Euler equation

∫

Ω

(
λ2 +

n∑

i=1

u2
xi

)(l−1)/2( n∑

i=1

uxi
ηxi

)
dσ = 0 (13)

for any function η ∈ D(Ω). For λ = 0 we get the equation

∫

Ω

| grad u|l−1

(
n∑

i=1

uxi
ηxi

)
dσ = 0. (14)

It is seen from (14) that u is a solution of the equation

∆l(u)
def
= div

(
| grad u|l−1 grad u

)
=

n∑

i=1

∂

∂xi

(
| grad u|l−1uxi

)
= 0, (15)

where partial derivatives ∂/∂xi are understood in a sense of the theory of gen-
eralized functions. The solution of equation (13) satisfies in the same sense

equation (14), where grad u is replaced by an expression of the type
(
λ2 +

∑n
i=1 u2

xi

)1/2
. Equation (14) is known in the literature as the l-Laplace equa-

tion, and the corresponding operator ∆l is called the l-Laplacian ([8]). For
λ = 0, l = 1 the functional Fλ, defined by formula (9), coincides with the
known Dirichlet integral, and ∆1 is the known Laplace operator.

Let now the function u belonging to the space W 1
l+1(Ω), l > 0, satisfy in Ω

the equation

{∆l}λu = div
((

λ2 + | grad u|2
)(l−1)/2

grad u
)

= 0 (16)

in a sense of the theory of generalized functions. Suppose that the trace of the
function u on the boundary Γ of the domain Ω is the function f ∈ Ll+1(Γ). Let
us prove that in such a case a solution u ∈ W 1

l+1(Ω) of equation (16) minimizes
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functional (9) in the class If . As above, If denotes the set of functions from
W 1

l+1(Ω) whose trace on Γ is f . It is clear that the solution u of equation
(16) satisfies equation (13) for any function η ∈ D(Ω). Note first that (13)
is also satisfied for any function η ∈ W 1

l+1(Ω) whose trace on Γ is zero. We

denote the set of such functions by
◦

W 1
l+1(Ω). Indeed, let η be an arbitrary

function from
◦

W 1
l+1(Ω). Then there exists in Ω a sequence ηn ∈ D(Ω) such that

‖η − ηn‖1
Wl+1

(Ω) → 0 as n →∞. For l = 1 this proposition is known (see, e.g.,

[6], p. 119). The proof is analogous for any l > 0. The integral in the left-hand
side of (10) exists if u, η ∈ W 1

l+1(Ω). Indeed, from the Hölder inequality we
obtain

∫

Ω

(
λ2 + | grad u|2

)(l−1)/2
(

n∑

i=1

uxi
ηxi

)
dσ

≤
∫

Ω

(
λ2 + | grad u|2

)(l−1)/2

| grad u‖ grad η|dσ

≤
∫

Ω

(
λ2 + | grad u|2

)l/2

| grad η|dσ

≤
{∫

Ω

(
λ2 + | grad u|2

)(l+1)/2

σ

}(l+1)/l{∫

Ω

| grad u|(l+1)dσ

}1/(l+1)

<∞. (17)

Since (10) is valid for ηn ∈ D(Ω), estimate (17) shows that (10) is now valid

for any function η ∈ ◦
W 1

l+1(Ω).
Along with the solution u of equation (13), we consider the set {u + αη},

α ∈ R, η ∈
◦

W 1
l+1(Ω). Since (u + αη)|

Γ
= f , u + αη ∈ If . Then (9) implies that

Fλ(u + αη) =
∫

Ω

(
λ2 + | grad(u + αη)|2

)(l+1)/2

dσ. (18)

Denote now
(
λ2 + | grad(u)|2

)(l+1)/2
by φl(α) and prove that for any l > 0 and

α ∈ R the estimate

φl(α) ≥ φl(0) + αφl(0) (19)

is valid. To this end, we prove the following

Lemma 2. If α ∈ R and a = (a1, . . . , an), b = (b1, . . . , bn) are the points
from Rn, then the inequality

(
λ2 +

n∑

i=1

(ai + bi)
2

)(l+1)/2

≥
(
λ2 +

n∑

i=1

a2
i

)(l+1)/2

+ (l + 1)

(
λ2 +

n∑

i=1

a2
i

)(l−1)/2( n∑

i=1

aibi

)
(20)
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is valid for any l > 0.

Proof. Let t and s be vectors from Rk, and the length s be equal to unity.
Then |s + t| ≥ |1 + (t, s)|, where (t, s) is the scalar product of the vectors t
and s. Indeed, if θ is the angle between the vectors t + s and t, then |s + t| ≥
|s+ t||s|| cos θ| = |(s+ t, s)| = |(s, s)+ (t, s)| = |1+ (t, s)|. The (1+ l)-th degree
of |1 + (t, s)| can be estimated from below: |1 + (t, s)|(l+1) ≥ 1 + (l + 1)(t, s);
this inequality coincides, in fact, with that of [9] (p. 12). Therefore

|s + t|(l+1) ≥ 1 + (l + 1)(t, s). (21)

Let x be an arbitrary non-zero vector from Rk. Substituting s = x/|x| and
y = |x|t into (21), we obtain

|x + y|(l+1) ≥ |x|(l+1) + (l + 1)|x|(l−1)(x, y). (22)

Clearly, the obtained inequality is likewise valid for x = 0. To estimate (20),
we have to substitute x = (λ, a1, . . . , an) and y = (0, b1, . . . , bn) into (22).

Applying now Lemma 2 to ai = uxi
and bi = α.ηxi

, we see that estimate (19)
is valid. Further, according to (18) we have

Fλ(u + η) ≥ Fλ(u) + (l + 1)
∫

Ω

(
λ2 + | grad u|2

)(l−1)/2
(

n∑

i=1

uxi
ηxi

)
dσ,

and by virtue of (13) we make sure that Fλ(u + η) ≥ Fλu for any function

η ∈ ◦
W 1

l+1(Ω). As we know, inf in (9) is obtained on some element u0 from If .

Take η = u0 − u ∈
◦

W 1
l+1(Ω). Then we have Fλ(u0) ≥ Fλ(u). Since u0 is the

unique minimizing element, u = u0, i.e., u minimizes the functional Fλ. Thus
we proved the following

Theorem 3. Let the function f ∈ Ll+1(Γ), l > 0, be given on the boundary
Γ of the domain Ω (satisfying the above conditions) which is the trace of a
function from the space W 1

l+1(Ω). Then the element u of the class If which
minimizes functional (9) (u exists by Theorem 2) is a solution of equation (13)
in a sense of the theory of generalized functions. Conversely, if there exists a
solution u of equation (13) belonging to W 1

l+1(Ω) and having a trace u|
Γ

= f ,
then it minimizes functional (9) in the class If and is unique.
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