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FRAME CHARACTERIZATIONS OF BESOV AND
TRIEBEL–LIZORKIN SPACES ON SPACES OF

HOMOGENEOUS TYPE AND THEIR APPLICATIONS

DACHUN YANG

Abstract. The author first establishes the frame characterizations of Besov
and Triebel–Lizorkin spaces on spaces of homogeneous type. As applications,
the author then obtains some estimates of entropy numbers for the compact
embeddings between Besov spaces or between Triebel–Lizorkin spaces. More-
over, some real interpolation theorems on these spaces are also established by
using these frame characterizations and the abstract interpolation method.
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1. Introduction

It is well-known that the spaces of homogeneous type introduced by Coifman
and Weiss in [3] include Rn, the n-torus in Rn, the C∞-compact Riemannian
manifolds, and in particular, the Lipschitz manifolds recently introduced by
Triebel in [19] and the d-sets in Rn as special models. It has been proved by
Triebel in [17] that the d-sets in Rn include various kinds of fractals; see also
[18].

In [9], the inhomogeneous Besov and Triebel–Lizorkin spaces on spaces of
homogeneous type were introduced by the generalized Littlewood-Paley g-fun-
ctions when p, q ≥ 1. In [10], the inhomogeneous Triebel–Lizorkin spaces were
generalized to the cases where p0 < p ≤ 1 ≤ q < ∞ via the generalized
Littlewood-Paley S-functions, where p0 is a positive number. The inhomoge-
neous Besov and Triebel–Lizorkin spaces on spaces of homogeneous type when
p0 ≤ p, q ≤ 1 were introduced in [14]. The main purpose of this paper is first
to establish the frame characterizations of these spaces. Applying the frame
characterization, we will then obtain some estimates of entropy numbers for
the compact embeddings between Besov spaces or between Triebel–Lizorkin
spaces and we will also establish some real interpolation theorems on Besov
and Triebel–Lizorkin spaces by use of these frame characterizations and the
abstract interpolation method.
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We mention that, recently, some new characterizations on inhomogeneous
Besov and Triebel–Lizorkin spaces and their applications were given in [13]
and [20]. In particular, in [20], it was proved that the Besov spaces on d-
sets introduced by Triebel via traces in [17] and, equivalently, via quarkonial
decompositions in [18] are the same as those Besov spaces introduced in [9] by
regarding d-sets as spaces of homogeneous type.

Let us now recall some definitions and notation on spaces of homogeneous
type. A quasi-metric ρ on a set X is a function ρ : X ×X → [0,∞) satisfying

(i) ρ(x, y) = 0 if and only if x = y;
(ii) ρ(x, y) = ρ(y, x) for all x, y ∈ X;
(iii) There exists a constant A ∈ [1,∞) such that for all x, y and z ∈ X,

ρ(x, y) ≤ A[ρ(x, z) + ρ(z, y)].

Any quasi-metric defines a topology, for which the balls

B(x, r) = {y ∈ X : ρ(y, x) < r}
for all x ∈ X and all r > 0 form a basis.

The spaces of homogeneous type defined below, which was first introduced in
[13], are the variants of the spaces of homogeneous type introduced by Coifman
and Weiss in [3]. In what follows, we set diam X = sup{ρ(x, y) : x, y ∈
X}. We also make the following conventions. We denote by f ∼ g that there
is a constant C > 0 independent of the main parameters such that C−1g <
f < Cg. Throughout the paper, we will denote by C a positive constant
which is independent of the main parameters, but it may vary from line to line.
Constants with subscripts, such as C0, do not change in different occurrences.
We denote N ∪ {0} simply by Z+ and for any q ∈ [1,∞], we denote by q′ its
conjugate index, namely, 1/q + 1/q′ = 1. Let A be a set and we will denote by
χA the characteristic function of A. Also, for two topological spaces, A1 and
A2, A1 ⊂ A2 means a linear and continuous embedding.

Definition 1.1. Let d > 0 and 0 < θ ≤ 1. A space of homogeneous type
(X, ρ, µ)d,θ is a set X together with a quasi-metric ρ and a nonnegative Borel
measure µ on X with supp µ = X and there exists a constant C0 > 0 such that
for all 0 < r < diam X and all x, x′, y ∈ X,

µ(B(x, r)) ∼ rd (1.1)

and

|ρ(x, y)− ρ(x′, y)| ≤ C0ρ(x, x′)θ[ρ(x, y) + ρ(x′, y)]1−θ. (1.2)

Remark 1.1. From (1.1), it is easy to deduce µ({x}) = 0 for all x ∈ X.
This means that the spaces of homogeneous type defined by Definition 1.1 are
atomless measure spaces.

When diam X < ∞, spaces of homogeneous type in Definition 1.1 cover the
boundaries of bounded Lipschitz domains, Lipschitz manifolds of compact case
in [19], and compact d-sets; see [17], [18] and [20]; while when diam X = ∞,
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spaces of homogeneous type in Definition 1.1 specifically include Euclidean
spaces and Lipschitz manifolds of non-compact case in [19]. Moreover, in Defi-
nition 1.1, if we choose d = 1, then Macias and Segovia in [15] have proved that
the spaces (X, ρ, µ)d,θ are just the spaces of homogeneous type in the sense
of Coifman and Weiss, whose definitions only require that ρ is a quasi-metric
without (1.2) and µ satisfies the following doubling condition which is weaker
than (1.1): there is a constant C ′ > 0 such that for all x ∈ X and all r > 0,

µ(B(x, 2r)) ≤ C ′µ(B(x, r)).

However, in [15], Macias and Segovia have shown that for the spaces of homo-
geneous type in the sense of Coifman and Weiss, one can replace the original
quasi-metric ρ by another quasi-metric ρ̄, which yields the same topology on X
as ρ, such that

ρ̄(x, y) ∼ inf{µ(B) : B is a ball containing x and y}
and (1.2) holds with ρ, C0 and θ replaced, respectively, by ρ̄, some C̄0 > 0 and
some θ̄ ∈ (0, 1]. Moreover, µ satisfies (1.1) with d = 1 for the balls corresponding
to ρ̄.

We now recall the definition of the spaces of test functions on X in [12]; see
also [8].

Definition 1.2. Fix γ > 0 and θ ≥ β > 0. A function f defined on X is said
to be a test function of type (x0, r, β, γ) with x0 ∈ X and r > 0, if f satisfies
the following conditions:

(i) |f(x)| ≤ C
rγ

(r + ρ(x, x0))d+γ
;

(ii) |f(x)− f(y)| ≤ C
(

ρ(x, y)

r + ρ(x, x0)

)β rγ

(r + ρ(x, x0))d+γ

for ρ(x, y) ≤ 1

2A
[r + ρ(x, x0)].

If f is a test function of type (x0, r, β, γ), we write f ∈ G(x0, r, β, γ), and the
norm of f in G(x0, r, β, γ) is defined by ‖f‖G(x0,r,β,γ) = inf{C : (i) and (ii) hold}.

Now fix x0 ∈ X and let G(β, γ) = G(x0, 1, β, γ). It is easy to see that
G(x1, r, β, γ) = G(β, γ) with the equivalent norms for all x1 ∈ X and r > 0.
Furthermore, it is easy to check that G(β, γ) is a Banach space with respect to
the norm in G(β, γ). Also, let the dual space (G(β, γ))′ be all linear functionals
L from G(β, γ) to C with the property that there exists a finite constant C ≥ 0
such that for all f ∈ G(β, γ),

|L(f)| ≤ C‖f‖G(β,γ).

We denote by 〈h, f〉 the natural pairing of elements h ∈ (G(β, γ))′ and f ∈
G(β, γ). It is also easy to see that f ∈ G(x0, r, β, γ) with x0 ∈ X and r > 0 if
and only if f ∈ G(β, γ). Thus, for all h ∈ (G(β, γ))′, 〈h, f〉 is well defined for all
f ∈ G(x0, r, β, γ) with x0 ∈ X and r > 0.
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It is well-known that even when X = Rn, G(β1, γ) is not dense in G(β2, γ) if
β1 > β2, which will bring us some inconvenience. To overcome this defect, in

what follows, we let
◦
G(β, γ) be the completion of the space G(θ, θ) in G(β, γ)

when 0 < β, γ < θ.
To state the definition of the inhomogeneous Besov spaces Bs

pq(X) and the
inhomogeneous Triebel–Lizorkin spaces F s

pq(X) studied in [14], we need the
following approximations to the identity which were first introduced in [8].

Definition 1.3. A sequence {Sk}∞k=0 of linear operators is said to be an
approximation to the identity of order ε ∈ (0, θ] if there exist C1, C2 > 0 such
that for all k ∈ Z+ and all x, x′, y and y′ ∈ X, Sk(x, y), the kernel of Sk is a
function from X ×X into C satisfying

(i) Sk(x, y) = 0 if ρ(x, y) ≥ C12
−k and ‖Sk‖L∞(X) ≤ C22

dk;

(ii) |Sk(x, y)− Sk(x
′, y)| ≤ C22

k(d+ε)ρ(x, x′)ε;

(iii) |Sk(x, y)− Sk(x, y′)| ≤ C22
k(d+ε)ρ(y, y′)ε;

(iv) |[Sk(x, y)−Sk(x, y′)]−[Sk(x
′, y)−Sk(x

′, y′)]| ≤ C22
k(d+2ε)ρ(x, x′)ερ(y, y′)ε;

(v)
∫

X

Sk(x, y) dµ(y) = 1;

(vi)
∫

X

Sk(x, y) dµ(x) = 1.

Remark 1.2. By a similar Coifman’s construction in [4], one can construct
an approximation to the identity with compact supports as in Definition 1.3 for
those spaces of homogeneous type in Definition 1.1.

We also need the following construction of Christ in [2], which provides an
analogue of the grid of Euclidean dyadic cubes on a space of homogeneous type.

Lemma 1.1. Let X be a space of homogeneous type. Then there exists a
collection {Qk

α ⊂ X : k ∈ Z+, α ∈ Ik} of open subsets, where Ik is some
(possibly finite) index set, and constants δ ∈ (0, 1) and C4, C5 > 0 such that

(i) µ(X \ ∪αQk
α) = 0 for each fixed k and Qk

α ∩Qk
β = ∅ if α 6= β;

(ii) for any α, β, k, l with l ≥ k, either Ql
β ⊂ Qk

α or Ql
β ∩Qk

α = ∅;
(iii) for each (k, α) and each l < k there is a unique β such that Qk

α ⊂ Ql
β;

(iv) diam(Qk
α) ≤ C4δ

k;
(v) each Qk

α contains some ball B(zk
α, C5δ

k), where zk
α ∈ X.

In fact, we can think of Qk
α as being essentially a cube of diameter rough δk

with center zk
α. In what follows, we always suppose δ = 1/2. See [12] for how

to remove this restriction. Also, we will denote by Qk,ν
τ , ν = 1, 2, . . . , N(k, τ),

the set of all cubes Qk+j
τ ′ ⊂ Qk

τ , where j is a fixed large positive integer. Denote
by yk,ν

τ a point in Qk,ν
τ . For any dyadic cube Q and any f ∈ L1

loc(X), we set

mQ(f) =
1

µ(Q)

∫

Q

f(x) dµ(x),
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and we also let a+ = max(a, 0).

Definition 1.4. Let s ∈ (−θ, θ), {Sk}∞k=0 be as in Definition 1.3 with order
θ, D0 = S0 and Dk = Sk − Sk−1 for k ∈ N. Suppose β and γ satisfying

max(0,−s + d(1/p− 1)+) < β < θ and 0 < γ < θ. (1.3)

Let j ∈ N be fixed and large enough and {Q0,ν
τ : τ ∈ I0, ν = 1, . . . , N(0, τ)}

be as above. The inhomogeneous Besov space Bs
pq(X) for max(d/(d + θ),

d/(d + θ + s)) < p ≤ ∞ and 0 < q ≤ ∞ is the collection of all f ∈
( ◦
G(β, γ)

)′

such that

‖f‖Bs
pq(X) =

{ ∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )

[
mQ0,ν

τ
(|D0(f)|)

]p
}1/p

+
{ ∞∑

k=1

[
2ks‖Dk(f)‖Lp(X)

]q
}1/q

< ∞;

The inhomogeneous Triebel–Lizorkin space F s
pq(X) for max(d/(d + θ), d/(d +

θ + s)) < p < ∞ and max(d/(d + θ), d/(d + θ + s)) < q ≤ ∞ is the collection

of all f ∈
( ◦
G(β, γ)

)′
such that

‖f‖F s
pq(X) =

{ ∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )

[
mQ0,ν

τ
(|D0(f)|)

]p
}1/p

+

∥∥∥∥∥
{ ∞∑

k=1

[
2ks|Dk(f)|

]q
}1/q

∥∥∥∥∥
Lp(X)

< ∞.

Here, for k ∈ Z+ and a suitable f ,

Dk(f)(x) =
∫

X

Dk(x, y)f(y) dµ(y).

It was proved in [14] that Definition 1.4 is independent of the choices of large
positive integers j, approximations to the identity and the pairs (β, γ) as in
(1.3).

2. Frame Characterizations

In this section, we will establish the frame characterizations of the Besov
spaces Bs

pq(X) and the Triebel–Lizorkin spaces F s
pq(X) in Definition 1.4. These

results were given in [13] when p, q > 1. However, our proof here is quite
different from that in [13]. In [13], the proof strongly depends on the dual
argument. The new ingredient in the current proof is the application of the
inhomogeneous Plancherel-Pôlya inequality in [5]. We also point that in this
section, we have no restriction on µ(X), namely, µ(X) can be finite or infinite.
Let us now give some basic properties of the spaces Bs

pq(X) and F s
pq(X).

Lemma 2.1. Let |s| < θ.
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(i) If max (d/(d + θ), d/(d + θ + s)) < p < ∞ and max(d/(d + θ), d/(d +
θ + s)) < q ≤ ∞, then Bs

p,min(p,q)(X) ⊂ F s
pq(X) ⊂ Bs

p,max(p,q)(X).

(ii) If f ∈ G(β, γ) with max(0, s) < β and max(0, d(1/p − 1)+) < γ, then
f ∈ Bs

pq(X) when max (d/(d + θ), d/(d + θ + s))<p≤∞ and 0< q≤∞,
and f ∈ F s

pq(X) when max (d/(d + θ), d/(d + θ + s)) < p < ∞ and

max (d/(d + θ), d/(d + θ + s)) < q ≤ ∞.

Proof. The proof of (i) is trivial; see Proposition 2.3 in [18]. To prove (ii), let
us first prove the following claim: for all k ∈ Z+ and all x ∈ X,

|Dk(f)(x)| ≤ C2−kβ‖f‖G(β,γ)
1

(1 + ρ(x, x0))d+γ
. (2.1)

In fact, we have

|D0(f)(x)| ≤ C‖f‖G(β,γ)

∫

{y: ρ(x,y)≤C1}

1

(1 + ρ(y, x0))d+γ
dµ(y)

≤C‖f‖G(β,γ)

{
χ{x:ρ(x,x0)≤2AC1}(x)

∫

{y:ρ(x,y)≤C1}

1

(1+ρ(y, x0))d+γ
dµ(y)

+ χ{x: ρ(x,x0)>2AC1}(x)
∫

{y: ρ(x,y)≤C1}

1

(1 + ρ(y, x0))d+γ
dµ(y)

}

≤C‖f‖G(β,γ)

{
χ{x:ρ(x,x0)≤2AC1}(x)+

1

(1+ρ(x, x0))d+γ
χ{x:ρ(x,x0)>2AC1}(x)

}

≤ C‖f‖G(β,γ)
1

(1 + ρ(x, x0))d+γ
,

which is a desired estimate. For k ∈ N, we write

|Dk(f)(x)| =
∣∣∣∣
∫

X

Dk(x, y)[f(y)− f(x)] dµ(y)
∣∣∣∣

≤ C2kd‖f‖G(β,γ)
1

(1 + ρ(x, x0))d+β+γ

∫

{y: ρ(x,y)≤2C12−k}
ρ(x, y)β dµ(y)

≤ C2−kβ‖f‖G(β,γ)
1

(1 + ρ(x, x0))d+γ
,

which is also a desired estimate. Thus, (2.1) holds. From (2.1), it follows that

χQ0,ν
τ

(x)|D0(f)(x)| ≤ C‖f‖G(β,γ) inf
x∈Q0,ν

τ

1

(1 + ρ(x, x0))d+γ
. (2.2)

By (2.1), (2.2) and Definition 1.4, we obtain

‖f‖Bs
pq(X) =

{∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )

[
mQ0,ν

τ
(|D0(f)|)

]p
}1/p

+

{ ∞∑

k=1

[
2ks‖Dk(f)‖Lp(X)

]q
}1/q
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≤ C‖f‖G(β,γ)

{[ ∑

τ∈I0

N(0,τ)∑

ν=1

∫

Q0,ν
τ

1

(1 + ρ(x, x0))(d+γ)p
dµ(x)

]1/p

+
[ ∞∑

k=1

2k(s−β)q
]1/q∥∥∥∥

1

(1 + ρ(·, x0))d+γ

∥∥∥∥
Lp(X)

}
≤ C‖f‖G(β,γ),

since β > s and γ > d(1/p − 1). This proves (ii) with the spaces Bs
pq(X). On

the spaces F s
pq(X), we can deduce a desired concusion by this and (i). We finish

the proof of Lemma 2.1.

Before we state our main theorem, we recall the discrete Calderón reproducing
formulas in [11], which is the key of the whole theory.

Lemma 2.2. Suppose that {Dk}∞k=0 is as in Definition 1.4. Then there exist

functions D̃Q0,ν
τ

with τ ∈ I0 and ν = 1, . . . , N(0, τ) and D̃k(x, y) with k ∈ N
such that for any fixed yk,ν

τ ∈ Qk,ν
τ with k ∈ N, τ ∈ Ik and ν ∈ {1, . . . , N(k, τ)}

and all f ∈ (G(β1, γ1))
′ with 0 < β1 < θ and 0 < γ1 < θ,

f(x) =
∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )mQ0,ν

τ
(D0(f))D̃Q0,ν

τ
(x)

+
∞∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ν
τ )Dk(f)(yk,ν

τ )D̃k(x, yk,ν
τ ), (2.3)

where the series converge in (G(β′1, γ
′
1))

′ for β1 < β′1 < θ and γ1 < γ′1 < θ;

D̃k(x, y) with k ∈ N satisfies that for any given ε ∈ (0, θ),

(i)
∣∣∣D̃k(x, y)

∣∣∣ ≤ C
2−kε

(2−k + ρ(x, y))d+ε
,

(ii)
∣∣∣D̃k(x, y)− D̃k(x

′, y)
∣∣∣ ≤ C

(
ρ(x, x′)

2−k + ρ(x, y)

)ε 2−kε

(2−k + ρ(x, y))d+ε
for

ρ(x, x′) ≤ 1

2A
(2−k + ρ(x, y)),

(iii)
∫

X

D̃k(x, y) dµ(x) =
∫

X

D̃k(x, y) dµ(y) = 0;

diam(Q0,ν
τ ) ∼ 2−j for τ ∈ I0 and ν = 1, . . . , N(0, τ) with some j ∈ N; D̃Q0,ν

τ
(x)

for τ ∈ I0 and ν = 1, . . . , N(0, τ) satisfies that

(iv)
∫

X

D̃Q0,ν
τ

(x) dµ(x) = 1,

(v) for any given ε ∈ (0, θ), there is a constant C > 0 such that

|D̃Q0,ν
τ

(x)| ≤ C
1

(1 + ρ(x, y))d+ε

for all x ∈ X and y ∈ Q0,ν
τ and
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(vi) |D̃Q0,ν
τ

(x)− D̃Q0,ν
τ

(z)| ≤ C
(

ρ(x, z)

1 + ρ(x, y)

)ε 1

(1 + ρ(x, y))d+ε

for all x, z ∈ X and all y ∈ D0,ν
τ satisfying

ρ(x, z) ≤ 1

2A
(1 + ρ(x, y)).

Moreover, j can be any fixed large positive integer and the constant C in (v)
and (vi) is independent of j.

The following lemma is an obvious corollary of Theorem 1 in [5].

Lemma 2.3. Let s ∈ (−θ, θ). Let {Dk}∞k=0 be as in Lemma 2.2. Then, if

max (d/(d + θ), d/(d + θ + s)) < p ≤ ∞
and 0 < q ≤ ∞, for all f ∈ (G(β, γ))′ with 0 < β, γ < θ, we have

{ ∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )

[
mQ0,ν

τ
(|D0(f)|)

]p
}1/p

+

{ ∞∑

k=1

[
2ks‖Dk(f)‖Lp(X)

]q
}1/q

∼
{ ∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )

[
mQ0,ν

τ
(|D0(f)|)

]p
}1/p

+

{ ∞∑

k=1

2ksq
( ∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ν
τ )

[
inf

z∈Qk,ν
τ

|Dk(f)(z)|
]p)q/p

}1/q

∼
{ ∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )

[
mQ0,ν

τ
(|D0(f)|)

]p
}1/p

+

{ ∞∑

k=1

2ksq
(∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ν
τ )

[
sup

z∈Qk,ν
τ

|Dk(f)(z)|
]p)q/p

}1/q

; (2.4)

If max(d/(d + θ), d/(d + θ + s)) < p < ∞ and max(d/(d+θ), d/(d+θ+s))<
q ≤ ∞, for all f ∈ (G(β, γ))′ with 0 < β, γ < θ, we have

{ ∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )

[
mQ0,ν

τ
(|D0(f)|)

]p
}1/p

+

∥∥∥∥∥
{ ∞∑

k=1

[
2ks|Dk(f)|

]q
}1/q

∥∥∥∥∥
Lp(X)

∼
{ ∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )

[
mQ0,ν

τ
(|D0(f)|)

]p
}1/p

+

∥∥∥∥∥

{ ∞∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

[
2ks inf

z∈Qk,ν
τ

|Dk(f)(z)|χQk,ν
τ

(·)
]q

}1/q∥∥∥∥∥
Lp(X)

∼
{ ∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )

[
mQ0,ν

τ
(|D0(f)|)

]p
}1/p
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+

∥∥∥∥∥

{ ∞∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

[
2ks sup

z∈Qk,ν
τ

|Dk(f)(z)|χQk,ν
τ

(·)
]q

}1/q∥∥∥∥∥
Lp(X)

. (2.5)

On the estimates relative to the spaces F s
pq(X), we need the following useful

lemma which can be found in [12, p. 93] and [7, pp. 147-148].

Lemma 2.4. Let 1 ≤ p ≤ ∞, 0 < r ≤ 1, µ, η ∈ Z+ with η ≤ µ and for
“dyadic cubes” Qµ

τ ,

|fQµ
τ
(x)| ≤ (1 + 2ηρ(x, zµ

τ ))−d−σ,

where zµ
τ is the “center” of Qµ

τ as in Lemma 1 and σ > d(1/r − 1) (recall that
µ(Qµ

τ ) ∼ 2−µd). Then

∑
τ

|λQµ
τ
||fQµ

τ
(x)| ≤ C2(µ−η)d/r

[
M

( ∑
τ

|λQµ
τ
|rχQµ

τ

)
(x)

]1/r

,

where C is independent of x, µ and η, and M is the Hardy-Littlewood maximal
operator on X.

The following theorem is the main theorem of this section which will play a
fundamental role in the estimates of entropy numbers between Besov spaces or
between Triebel–Lizorkin spaces in next section.

Theorem 2.1. With the notation of Lemma 2.2, let

λ =
{
λk,ν

τ : k ∈ Z+, τ ∈ Ik, ν = 1, . . . , N(k, τ)
}

be a sequence of complex numbers. Let |s| < θ.

(i) If max(d/(d + θ), d/(d + θ + s)) < p ≤ ∞, 0 < q ≤ ∞ and

‖λ‖bs
pq(X) =

{ ∞∑

k=0

2ksq
[ ∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ν
τ )

∣∣∣λk,ν
τ

∣∣∣
p

]q/p
}1/q

< ∞, (2.6)

then the series

∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )λ0,ν

τ D̃Q0,ν
τ

(x)+
∞∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ν
τ )λk,ν

τ D̃k(x, yk,ν
τ ) (2.7)

converge to some f ∈Bs
pq(X) both in the norm of Bs

pq(X) and in (G(β, γ))′

with β and γ as in (1.3) when p, q < ∞ and only in (G(β, γ))′ with β
and γ as in (1.3) when max(p, q) = ∞. Moreover,

‖f‖Bs
pq(X) ≤ C‖λ‖bs

pq(X). (2.8)

(ii) If max(d/(d + θ), d/(d + θ + s))<p<∞, max(d/(d + θ), d/(d + θ + s))<
q≤∞ and

‖λ‖fs
pq(X) =

∥∥∥∥∥
{ ∞∑

k=0

∑

τ∈Ik

N(k,τ)∑

ν=1

[
2ks

∣∣∣λk,ν
τ

∣∣∣ χQk,ν
τ

(·)
]q

}1/q
∥∥∥∥∥

Lp(X)

< ∞, (2.9)
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then the series in (2.7) converge to some f ∈ F s
pq(X) both in the norm

of F s
pq(X) and in (G(β, γ))′ with β and γ as in (1.3) when q < ∞ and

only in (G(β, γ))′ with β and γ as in (1.3) when q = ∞. Moreover,

‖f‖F s
pq(X) ≤ C‖λ‖fs

pq(X). (2.10)

Proof. Let us first show the series in (2.7) converge in (G(β, γ))′ with β and γ
as in (1.3). It is easy to see that for all k ∈ Z+ and τ ∈ Ik, N(k, τ) is a finite
set. Let us suppose Ik = N for all k ∈ Z+; the other cases are easier. With this
assumption, for L ∈ N, we define

fL(x) =
L∑

τ=1

N(0,τ)∑

ν=1

µ(Q0,ν
τ )λ0,ν

τ D̃Q0,ν
τ

(x) +
L∑

k=1

L∑

τ=1

N(k,τ)∑

ν=1

µ(Qk,ν
τ )λk,ν

τ D̃k(x, yk,ν
τ ).

Then fL ∈ G(ε, ε) and fL ∈ (G(β, γ))′ with any β, γ ∈ (0, θ), where ε can be
any positive number in (0, θ). In what follows, we will choose ε > max(β, γ)
such that p > max(d/(d + ε), d/(d + ε + s)) for the spaces bs

pq(X) and

p, q > max(d/(d + ε), d/(d + ε + s))

for the spaces f s
pq(X).

For any ψ ∈ G(β, γ) with (β, γ) as in (1.3), L1, L2 ∈ N and L1 < L2, we
have

∣∣∣〈fL2 − fL1 , ψ〉
∣∣∣ ≤

L2∑

τ=L1+1

N(0,τ)∑

ν=1

µ(Q0,ν
τ )

∣∣∣λ0,ν
τ

∣∣∣
∣∣∣〈D̃Q0,ν

τ
, ψ〉

∣∣∣

+
L2∑

k=L1+1

L2∑

τ=1

N(k,τ)∑

ν=1

µ(Qk,ν
τ )

∣∣∣λk,ν
τ

∣∣∣
∣∣∣〈D̃k(·, yk,ν

τ ), ψ〉
∣∣∣

+
L1∑

k=1

L2∑

τ=L1+1

N(k,τ)∑

ν=1

µ(Qk,ν
τ )

∣∣∣λk,ν
τ

∣∣∣
∣∣∣〈D̃k(·, yk,ν

τ ), ψ〉
∣∣∣ = D1 + D2 + D3.

To estimate D1, D2 and D3, let us first establish the following estimates:
for τ ∈ I0 and ν = 1, . . . , N(0, τ),

∣∣∣〈D̃Q0,ν
τ

, ψ〉
∣∣∣ ≤ C‖ψ‖G(β,γ) inf

x∈Q0,ν
τ

1

(1 + ρ(x, x0))d+γ
, (2.11)

and for k ∈ N, τ ∈ Ik, ν = 1, . . . , N(k, τ),

∣∣∣〈D̃k(·, yk,ν
τ ), ψ〉

∣∣∣ ≤ C2−kβ‖ψ‖G(β,γ) inf
x∈Qk,ν

τ

1

(1 + ρ(x, x0))d+γ
. (2.12)

For (2.11), we have that for any x ∈ Q0,ν
τ ,

∣∣∣〈D̃Q0,ν
τ

,ψ〉
∣∣∣≤C‖ψ‖G(β,γ)

{ ∫

{y:ρ(y,x0)≥ 1
2A

ρ(x,x0)}

∣∣∣D̃Q0,ν
τ

(y)
∣∣∣ 1

(1+ρ(y, x0))d+γ
dµ(y)
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+
∫

{y: ρ(x,y)≥ 1
2A

ρ(x,x0)}

1

(1 + ρ(y, x))d+ε′
1

(1 + ρ(y, x0))d+γ
dµ(y)

}

≤ C‖ψ‖G(β,γ)
1

(1 + ρ(x, x0))d+γ
.

Thus, (2.11) holds.

To show (2.12), we write

∣∣∣〈D̃k(·,yk,ν
τ ), ψ〉

∣∣∣ =

∣∣∣∣∣
∫

X

D̃k(y, yk,ν
τ )

[
ψ(y)− ψ(yk,ν

τ )
]

dµ(y)

∣∣∣∣∣

≤ C‖ψ‖G(β,γ)
1

(1 + ρ(yk,ν
τ , x0))d+γ+β

∫

X

∣∣∣D̃k(y, yk,ν
τ )

∣∣∣ ρ(y, yk,ν
τ )β dµ(y)

≤ C2−kβ‖ψ‖G(β,γ)
1

(1 + ρ(yk,ν
τ , x0))d+γ

≤ C2−kβ‖ψ‖G(β,γ) inf
x∈Qk,ν

τ

1

(1 + ρ(x, x0))d+γ
.

That is, (2.12) also holds.

From (2.11) and the Hölder inequality, it follows that

|D1| ≤ C‖ψ‖G(β,γ)





{ L2∑

τ=L1+1

N(0,τ)∑

ν=1

µ(Q0,ν
τ )p

∣∣∣λ0,ν
τ

∣∣∣
p

}1/p

, p < 1,

{ L2∑

τ=L1+1

N(0,τ)∑

ν=1

µ(Q0,ν
τ )

∣∣∣λ0,ν
τ

∣∣∣
p

}1/p

×
{ ∫

X
L2
L1

1

(1 + ρ(x, x0))(d+γ)p′ dµ(x)
}1/p′

, 1≤p≤∞,

≤ C‖ψ‖G(β,γ)

{ L2∑

τ=L1+1

N(0,τ)∑

ν=1

µ(Q0,ν
τ )p

∣∣∣λ0,ν
τ

∣∣∣
p

}1/p

, (2.13)

where

XL2
L1

=
L2⋃

τ=L1+1

N(0,τ)⋃

ν=1

Q0,ν
τ ,

and when p ≤ 1, we used the following well-known inequality:

( ∑

j

|aj|
)p

≤ ∑

j

|aj|p (2.14)

with aj ∈ C for all j.
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For D2, by (2.12), (2.14) and the Hölder inequality, we obtain

|D2| ≤ C‖ψ‖G(β,γ)





L2∑

k=L1+1

2−kβ
[ L2∑

τ=1

N(k,τ)∑

ν=1

µ(Qk,ν
τ )p

∣∣∣λk,ν
τ

∣∣∣
p

]1/p

, p < 1,

L2∑

k=L1+1

2−kβ
[ L2∑

τ=1

N(k,τ)∑

ν=1

µ(Qk,ν
τ )

∣∣∣λk,ν
τ

∣∣∣
p

]1/p

×
{ ∫

X

1

(1 + ρ(x, x0))(d+γ)p′ dµ(x)
}1/p′

, 1≤p≤∞,

≤ C‖ψ‖G(β,γ)





L2∑

k=L1+1

2−k[β+s−d(1/p−1)]2ks
[ L2∑

τ=1

N(k,τ)∑

ν=1

µ(Qk,ν
τ )

∣∣∣λk,ν
τ

∣∣∣
p
]1/p

, p<1,

L2∑

k=L1+1

2−k(β+s)2ks
[ L2∑

τ=1

N(k,τ)∑

ν=1

µ(Qk,ν
τ )

∣∣∣λk,ν
τ

∣∣∣
p

]1/p

,

1 ≤ p ≤ ∞,

≤ C‖ψ‖G(β,γ)





{
L2∑

k=L1+1

2ksq
[ L2∑

τ=1

N(k,τ)∑

ν=1

µ(Qk,ν
τ )

∣∣∣λk,ν
τ

∣∣∣
p

]q/p
}1/q

, p, q<1,

{
L2∑

k=L1+1

2ksq
[ L2∑

τ=1

N(k,τ)∑

ν=1

µ(Qk,ν
τ )

∣∣∣λk,ν
τ

∣∣∣
p

]q/p
}1/q

×
{ L2∑

k=L1+1

2−k[β+s−d(1/p−1)]q′
}1/q′

,

p < 1, 1 ≤ q ≤ ∞,{
L2∑

k=L1+1

2ksq
[ L2∑

τ=1

N(k,τ)∑

ν=1

µ(Qk,ν
τ )

∣∣∣λk,ν
τ

∣∣∣
p

]q/p
}1/q

,

1 ≤ p ≤ ∞, q < 1,{
L2∑

k=L1+1

2ksq
[ L2∑

τ=1

N(k,τ)∑

ν=1

µ(Qk,ν
τ )

∣∣∣λk,ν
τ

∣∣∣
p

]q/p
}1/q

×
{ L2∑

k=L1+1

2−k(β+s)q′
}1/q′

, 1 ≤ p, q ≤ ∞,

≤ C‖ψ‖G(β,γ)

{
L2∑

k=L1+1

2ksq
[ L2∑

τ=1

N(k,τ)∑

ν=1

µ(Qk,ν
τ )

∣∣∣λk,ν
τ

∣∣∣
p

]q/p
}1/q

, (2.15)

where we used the fact that β > max(0, d(1/p− 1)+ − s).
Similarly, by (2.12), the Hölder inequality and (2.14), we can verify

|D3| ≤ C‖ψ‖G(β,γ)

{
L1∑

k=1

2ksq
[ L2∑

τ=L1+1

N(k,τ)∑

ν=1

µ(Qk,ν
τ )

∣∣∣λk,ν
τ

∣∣∣
p

]q/p

×
[ ∫

X
L2
L1

1

(1 + ρ(x, x0))(d+γ)p′ dµ(x)
]q/p′

}1/q
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≤C‖ψ‖G(β,γ)

{
L1∑

k=1

2ksq
[ L2∑

τ=L1+1

N(k,τ)∑

ν=1

µ(Qk,ν
τ )

∣∣∣λk,ν
τ

∣∣∣
p
]q/p

}1/q

. (2.16)

Combining (2.13), (2.15) and (2.16), by (2.6),
∫

X

1

(1 + ρ(x, x0))d+γ
dµ(x) < ∞

when p = ∞,
∞∑

k=1

2−k[β+s−d(1/p−1)] < ∞

when p < 1 and q = ∞, and

∞∑

k=1

2−k(β+s) < ∞

when 1 ≤ p ≤ ∞ and q = ∞, it is easy to see that {〈fL, ψ〉}L∈N is a Cauchy se-
quence. This just means that the series in (2.7) converge to some f ∈ (G(β, γ))′

with β, γ satisfying (1.3) if λ satisfies (2.6). If λ satisfies (2.9), by this fact and

bs
p,min(p,q)(X) ⊂ f s

pq(X) ⊂ bs
p,max(p,q)(X) (2.17)

(see Proposition 2.3 in [18]), we also obtain that the series in (2.7) converge in
(G(β, γ))′ with β and γ as in (1.3).

Let us now show that the series in (2.7) converge in the norm of Bs
pq(X) when

p, q < ∞, if λ satisfies (2.6). Let f be the series in (2.7). We estimate the
norm in Bs

pq(X) of f − fL by writing

f − fL =
∞∑

τ=L+1

N(0,τ)∑

ν=1

µ(Q0,ν
τ )λ0,ν

τ D̃Q0,ν
τ

(x)

+
∞∑

k=1

∞∑

τ=L+1

N(k,τ)∑

ν=1

µ(Qk,ν
τ )λk,ν

τ D̃k(x, yk,ν
τ )

+
∞∑

k=L+1

L∑

τ=1

N(k,τ)∑

ν=1

µ(Qk,ν
τ )λk,ν

τ D̃k(x, yk,ν
τ ) = G1 + G2 + G3.

To estimate G1, G2 and G3, we first recall the following known estimates: for
k′ ∈ Z+, τ ∈ I0 and ν = 1, . . . , N(0, τ),

∣∣∣Dk′
(
D̃Q0,ν

τ

)
(z)

∣∣∣ ≤ C2−k′ε 1

(1 + ρ(z, y0,ν
τ ))d+ε

; (2.18)

and for k′ ∈ Z+, k ∈ N, τ ∈ Ik and ν = 1, . . . , N(k, τ),

∣∣∣Dk′
(
D̃k

)
(z, yk,ν

τ )
∣∣∣ ≤ C2−|k−k′|ε 2−(k∧k′)ε

(2−(k∧k′) + ρ(z, yk,ν
τ ))d+ε

, (2.19)
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where ε ∈ (0, θ) satisfies p > max(d/(d + ε), d/(d + ε + s)) for the spaces bs
pq(X)

and p, q > max(d/(d+ ε), d/(d+ ε+ s)) for the spaces f s
pq(X), a∧ b = min(a, b)

and

Dk′
(
D̃k

)
(z, yk,ν

τ ) =
∫

X

Dk′(z, x)D̃k(x, yk,ν
τ ) dµ(x);

see [5], (3.9) in [8] and (1.6) in [9] for their proofs.

By (2.18), (2.14) and the Hölder inequality, we have

{ ∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

µ(Q0,ν′
τ ′ )

[
m

Q0,ν′
τ ′

(|D0(G1)|)
]p

}1/p

≤
{ ∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

µ(Q0,ν′
τ ′ )

[ ∞∑

τ=L+1

N(0,τ)∑

ν=1

µ(Q0,ν
τ )

∣∣∣λ0,ν
τ

∣∣∣

× sup
z∈Q0,ν′

τ ′

∣∣∣D0

(
D̃Q0,ν

τ

)
(z)

∣∣∣
]p

}1/p

≤ C





{ ∞∑

τ=L+1

N(0,τ)∑

ν=1

µ(Q0,ν
τ )

∣∣∣λ0,ν
τ

∣∣∣
p

∫

X

1

(1 + ρ(z, y0,ν
τ ))(d+ε)p

dµ(z)
}1/p

, p≤1,

{ ∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

µ(Q0,ν′
τ ′ )

[ ∞∑

τ=L+1

N(0,τ)∑

ν=1

µ(Q0,ν
τ )

∣∣∣λ0,ν
τ

∣∣∣
p

× 1

(1 + ρ(y0,ν′
τ ′ , y0,ν

τ ))d+ε

]

×
[ ∫

X

1

(1 + ρ(y0,ν′
τ ′ , y))d+ε

dµ(y)
]p/p′

}1/p

, 1 < p < ∞,

≤ C
{ ∞∑

τ=L+1

N(0,τ)∑

ν=1

µ(Q0,ν
τ )

∣∣∣λ0,ν
τ

∣∣∣
p

}1/p

. (2.20)

From (2.19), (2.14) and the Hölder inequality, it follows that

{ ∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

µ(Q0,ν′
τ ′ )

[
m

Q0,ν′
τ ′

(|D0(G2)|)
]p

}1/p

≤ C

{ ∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

µ(Q0,ν′
τ ′ )

×
[ ∞∑

k=1

2−kε
∞∑

τ=L+1

N(k,τ)∑

ν=1

µ(Qk,ν
τ )

∣∣∣λk,ν
τ

∣∣∣ 1

(1 + ρ(y0,ν′
τ ′ , yk,ν

τ ))d+ε

]p
}1/p
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≤ C





{ ∞∑

k=1

2−kεp
∞∑

τ=L+1

N(k,τ)∑

ν=1

µ(Qk,ν
τ )

∣∣∣λk,ν
τ

∣∣∣
p

×
∫

X

1

(1 + ρ(z, yk,ν
τ ))(d+ε)p

dµ(z)

}1/p

, p ≤ 1,

{ ∞∑

k=1

2−kε1p
∞∑

τ=L+1

N(k,τ)∑

ν=1

µ(Qk,ν
τ )

∣∣∣λk,ν
τ

∣∣∣
p

×
[ ∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

µ(Q0,ν′
τ ′ )

1

(1 + ρ(y0,ν′
τ ′ , yk,ν

τ ))d+ε

]

×
[ ∞∑

k=1

2−kε2p
∫

X

1

(1 + ρ(y0,ν′
τ ′ , y))d+ε

dµ(y)
]p/p′

}1/p

,

1 < p < ∞,

≤ C





{ ∞∑

k=1

2−k[ε+s−d(1/p−1)]p2ksp
∞∑

τ=L+1

N(k,τ)∑

ν=1

µ(Qk,ν
τ )

∣∣∣λk,ν
τ

∣∣∣
p

}1/p

, p≤1,

{ ∞∑

k=1

2−k(ε1+s)p2ksp
∞∑

τ=L+1

N(k,τ)∑

ν=1

µ(Qk,ν
τ )

∣∣∣λk,ν
τ

∣∣∣
p

}1/p

, 1<p<∞,

≤ C

{ ∞∑

k=1

2ksq
[ ∞∑

τ=L+1

N(k,τ)∑

ν=1

µ(Qk,ν
τ )

∣∣∣λk,ν
τ

∣∣∣
p

]q/p
}1/p

, (2.21)

where we choose ε1 > 0 and ε2 > 0 such that ε = ε1 + ε2 and ε1 > −s.

Similarly, by (2.19), (2.14) and the Hölder inequality, we can show

{ ∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

µ(Q0,ν′
τ ′ )

[
m

Q0,ν′
τ ′

(|D0(G3)|)
]p

}1/p

≤ C

{ ∞∑

k=L+1

2ksq
[ L∑

τ=1

N(k,τ)∑

ν=1

µ(Qk,ν
τ )

∣∣∣λk,ν
τ

∣∣∣
p

]q/p
}1/p

. (2.22)

By (2.18), (2.14), the Hölder inequality and the fact that µ(Q0,ν
τ ) can be

regarded as a constant, we have

{ ∞∑

k′=1

2k′sq
( ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk′,ν′
τ ′ )

[
inf

z∈Qk′,ν′
τ ′

|Dk′(G1)(z)|
]p)q/p

}1/q

≤ C

{ ∞∑

k′=1

2k′(s−ε)q
( ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk′,ν′
τ ′ )

×
[ ∞∑

τ=L+1

N(0,τ)∑

ν=1

∣∣∣λ0,ν
τ

∣∣∣ 1

(1 + ρ(yk′,ν′
τ ′ , y0,ν

τ ))d+ε

]p)q/p
}1/q
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≤ C





{ ∞∑

k′=1

2k′(s−ε)q
[ ∞∑

τ=L+1

N(0,τ)∑

ν=1

∣∣∣λ0,ν
τ

∣∣∣
p

×
∫

X

1

(1 + ρ(z, y0,ν
τ ))(d+ε)p

dµ(z)
]q/p

}1/q

,

p ≤ 1,
{ ∞∑

k′=1

2k′(s−ε)q
( ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk′,ν′
τ ′ )

[ ∞∑

τ=L+1

N(0,τ)∑

ν=1

∣∣∣λ0,ν
τ

∣∣∣
p

× 1

(1 + ρ(yk′,ν′
τ ′ , y0,ν

τ ))d+ε

]

×
[ ∫

X

1

(1+ρ(yk′,ν′
τ ′ , y))d+ε

dµ(y)
]p/p′)q/p

}1/q

, 1<p<∞

≤ C
[ ∞∑

τ=L+1

N(0,τ)∑

ν=1

µ(Q0,ν
τ )

∣∣∣λ0,ν
τ

∣∣∣
p

]1/p

. (2.23)

From (2.19), (2.14) and the Hölder inequality, it follows that

{ ∞∑

k′=1

2k′sq
( ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk′,ν′
τ ′ )

[
inf

z∈Qk′,ν′
τ ′

|Dk′(G3)(z)|
]p

)q/p
}1/q

≤ C

{ ∞∑

k′=1

( ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk′,ν′
τ ′ )

[ ∞∑

k=L+1

L∑

τ=1

N(k,τ)∑

ν=1

2(k′−k)s−|k′−k|εµ(Qk,ν
τ )

× 2ks
∣∣∣λk,ν

τ

∣∣∣ 2−(k∧k′)ε

(2−(k∧k′) + ρ(yk′,ν′
τ ′ , yk,ν

τ ))d+ε

]p)q/p
}1/q

≤ C





{ ∞∑

k′=1

[ ∞∑

k=L+1

L∑

τ=1

N(k,τ)∑

ν=1

2(k′−k)sp−|k′−k|εpµ(Qk,ν
τ )p2ksp

∣∣∣λk,ν
τ

∣∣∣
p

×
∫

X

2−(k∧k′)εp

(2−(k∧k′) + ρ(z, yk,ν
τ ))(d+ε)p

dµ(z)
]q/p

}1/q

, p ≤ 1,

{ ∞∑

k′=1

( ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk′,ν′
τ ′ )

[ ∞∑

k=L+1

L∑

τ=1

N(k,τ)∑

ν=1

2(k′−k)sp−|k′−k|ε1pµ(Qk,ν
τ )

×2ksp
∣∣∣λk,ν

τ

∣∣∣
p 2−(k∧k′)ε

(2−(k∧k′) + ρ(yk′,ν′
τ ′ , yk,ν

τ ))d+ε

][ ∞∑

k=L+1

2−|k−k′|ε2p′

×
∫

X

2−(k∧k′)ε

(2−(k∧k′) + ρ(yk′,ν′
τ ′ , y))d+ε

dµ(y)
]p/p′)q/p

}1/q

, 1 < p < ∞,
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≤ C





{ ∞∑

k′=1

[ ∞∑

k=L+1

2(k′−k)sp−|k′−k|εp+kd(1−p)−(k∧k′)d(1−p)2ksp

×
( L∑

τ=1

N(k,τ)∑

ν=1

µ(Qk,ν
τ )

∣∣∣λk,ν
τ

∣∣∣
p

)]q/p
}1/q

, p ≤ 1,

{ ∞∑

k′=1

[ ∞∑

k=L+1

2(k′−k)sp−|k′!k|ε1p2ksp
( L∑

τ=1

N(k,τ)∑

ν=1

µ(Qk,ν
τ )

∣∣∣λk,ν
τ

∣∣∣
p

)]q/p
}1/q

,

1 < p < ∞,

≤C

{ ∞∑

k=L+1

2ksq
[ L∑

τ=1

N(k,τ)∑

ν=1

µ(Qk,ν
τ )

∣∣∣λk,ν
τ

∣∣∣
p

]q/p
}1/q

, (2.24)

where we choose ε1, ε2 > 0 such that ε = ε1 + ε2 and ε1 > |s|.
Similarly, by (2.19), (2.14) and the Hölder inequality, we can prove

{ ∞∑

k′=1

2k′sq
( ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk′,ν′
τ ′ )

[
inf

z∈Qk′,ν′
τ ′

|Dk′(G2)(z)|
]p)q/p

}1/q

≤ C

{ ∞∑

k=1

2ksq
[ ∞∑

τ=L+1

N(k,τ)∑

ν=1

µ(Qk,ν
τ )

∣∣∣λk,ν
τ

∣∣∣
p

]q/p
}1/q

. (2.25)

Combining (2.20), (2.21), (2.22), (2.23), (2.24) and (2.25), by Lemma 2.3, we
have

‖f − fL‖Bs
pq(X) → 0

as L → ∞, if λ satisfies (2.6). Moreover, by Lemma 2.1, we know that
fL ∈ Bs

pq(X). Thus, it follows f ∈ Bs
pq(X) when λ satisfies (2.6). The same

arguments as those for (2.20), (2.21), (2.22), (2.23), (2.24) and (2.25) also give
(2.8). This finishes the proof of (i) of Theorem 2.1.

To finish the proof of (ii) of Theorem 2.1, we still need to show ‖f−fL‖F s
pq(X)→

0 as L→∞ and (2.10), if λ satisfies (2.9). To see this, by (2.18), (2.14) and the
Hölder inequality, we have

∥∥∥∥∥

{ ∞∑

k′=1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

[
2k′s inf

z∈Qk′,ν′
τ ′

|Dk′(G1)(z)|χ
Qk′,ν′

τ ′
(·)

]q
}1/q∥∥∥∥∥

p

Lp(X)

≤ C

∥∥∥∥∥

{ ∞∑

k′=1

2k′(s−ε)
∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

[ ∞∑

τ=L+1

N(0,τ)∑

ν=1

∣∣∣λ0,ν
τ

∣∣∣ χ
Qk′,ν′

τ ′
(·)

× 1

(1 + ρ(yk′,ν′
τ ′ , y0,ν

τ ))d+ε

]q
}1/q∥∥∥∥∥

p

Lp(X)

≤ C
∫

X

∞∑

k′=1

2k′(s−ε)pa
∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

χ
Qk′,ν′

τ ′
(·)

[ ∞∑

τ=L+1

N(0,τ)∑

ν=1

∣∣∣λ0,ν
τ

∣∣∣

× 1

(1 + ρ(yk′,ν′
τ ′ , y0,ν

τ ))d+ε

]p

dµ(x)
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≤ C





∞∑

τ=L+1

N(0,τ)∑

ν=1

∣∣∣λ0,ν
τ

∣∣∣
p

∫

X

1

(1 + ρ(z, y0,ν
τ ))(d+ε)p

dµ(z), p ≤ 1,

∞∑

k′=1

2k′(s−ε)pa
∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk′,ν′
τ ′ )

[ ∞∑

τ=L+1

N(0,τ)∑

ν=1

∣∣∣λ0,ν
τ

∣∣∣

× 1

(1 + ρ(yk′,ν′
τ ′ , y0,ν

τ ))d+ε

][ ∫

X

1

(1 + ρ(yk′,ν′
τ ′ , y))d+ε

dµ(y)
]p/p′

,

1 < p < ∞,

≤ C
∞∑

τ=L+1

N(0,τ)∑

ν=1

µ(Q0,ν
τ )

∣∣∣λ0,ν
τ

∣∣∣
p
, (2.26)

where a = 1 if p ≤ q and a = 1/2 if p > q. From (2.19), Lemma 2.4, (2.14),
the Hölder inequality and the Fefferman–Stein vector-valued maximal function
inequality in [6], it follows that

∥∥∥∥∥

{ ∞∑

k′=1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

[
2k′s inf

z∈Qk′,ν′
τ ′

|Dk′(G2)(z)|χ
Qk′,ν′

τ ′
(·)

]q
}1/q∥∥∥∥∥

Lp(X)

≤ C

∥∥∥∥∥

{ ∞∑

k′=1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k′sqχ
Qk′,ν′

τ ′
(·)

[ ∞∑

k=1

∞∑

τ=L+1

N(k,τ)∑

ν=1

2−|k−k′|εµ(Qk,ν
τ )

∣∣∣λk,ν
τ

∣∣∣

× 2−(k∧k′)ε

(2−(k∧k′) + ρ(·, yk,ν
τ ))d+ε

]q
}1/q∥∥∥∥∥

Lp(X)

≤ C

∥∥∥∥∥

{ ∞∑

k′=1

( ∞∑

k=1

2(k′−k)s−|k−k′|ε−kd+(k∧k′)d+[k−(k∧k′)]d/r

×
[
M

( ∞∑

τ=L+1

N(k,τ)∑

ν=1

2ksr
∣∣∣λk,ν

τ

∣∣∣
r
χQk,ν

τ

)
(·)

]1/r)q
}1/q∥∥∥∥∥

Lp(X)

≤ C

∥∥∥∥∥

{ ∞∑

k=1

[
M

( ∞∑

τ=L+1

N(k,τ)∑

ν=1

2ksr
∣∣∣λk,ν

τ

∣∣∣
r
χQk,ν

τ

)
(·)

]q/r
}1/q∥∥∥∥∥

Lp(X)

≤ C

∥∥∥∥∥

{ ∞∑

k=1

∞∑

τ=L+1

N(k,τ)∑

ν=1

2ksq
∣∣∣λk,ν

τ

∣∣∣
q
χQk,ν

τ
(·)

}1/q∥∥∥∥∥
Lp(X)

, (2.27)

where we choose r satisfying max(d/(d + ε), d/(d + ε + s)) < r < min(p, q, 1).
Similarly, by (2.19), Lemma 2.4, (2.14), the Hölder inequality and the Feffer-

man-Stein vector-valued maximal function inequality in [6], we can show

∥∥∥∥∥

{ ∞∑

k′=1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

[
2k′s inf

z∈Qk′,ν′
τ ′

|Dk′(G3)(z)|χ
Qk′,ν′

τ ′
(·)

]q
}1/q∥∥∥∥∥

Lp(X)

≤ C

∥∥∥∥∥

{ ∞∑

k=L+1

L∑

τ=1

N(k,τ)∑

ν=1

2ksq
∣∣∣λk,ν

τ

∣∣∣
q
χQk,ν

τ
(·)

}1/q∥∥∥∥∥
Lp(X)

. (2.28)
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Combining (2.20), (2.21), (2.22), (2.26), (2.27) and (2.28), we see that if λ
satisfies (2.9), then ‖f − fL‖F s

pq(X) → 0 as L → ∞. Moreover, by Lemma 2.1,

fL ∈ F s
pq(X). Thus, it follows that f ∈ F s

pq(X) if λ satisfies (2.9). The same
arguments as those for (2.20), (2.21), (2.22), (2.26), (2.27) and (2.28) also give
(2.10). This finishes the proof of Theorem 2.1.

From Theorem 2.1, Lemma 2.3, Lemma 2.2 and Definition 1.4, it is easy to
deduce the following frame characterizations of the spaces Bs

pq(X) and F s
pq(X).

Theorem 2.2. Let all the notation be as in Lemma2.2. For all f ∈
(◦
G(β1,γ1)

)′

with 0 < β1, γ1 < θ, then (2.3) holds in
( ◦
G(β′1, γ

′
1)

)′
for β1 < β′1 < ε and

γ1 < γ′1 < θ. Moreover,

(i) if f ∈ Bs
pq(X) with s ∈ (−θ, θ), max(d/(d + θ), d/(d + θ + s)) < p ≤ ∞

and 0 < q ≤ ∞, then

‖f‖Bs
pq(X) ∼

{ ∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )

[
mQ0,ν

τ
(|D0(f)|)

]p
}1/p

+

{ ∞∑

k=1

2ksq
[ ∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ν
τ )

∣∣∣Dk(f)(yk,ν
τ )

∣∣∣
p

]q/p
}1/q

and the series in (2.3) also converge in the norm of Bs
pq(X) if max(p, q) <

∞;
(ii) if f ∈ F s

pq(X) with s ∈ (−θ, θ), max(d/(d + θ), d/(d + θ + s)) < p < ∞
and

max(d/(d + θ), d/(d + θ + s)) < q ≤ ∞,

then

‖f‖F s
pq(X) ∼

{ ∑

τ∈I0

N(0,τ)∑

ν=1

µ(Q0,ν
τ )

[
mQ0,ν

τ
(|D0(f)|)

]p
}1/p

+

∥∥∥∥∥

{ ∞∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksq
∣∣∣Dk(f)(yk,ν

τ )
∣∣∣
q
χQk,ν

τ
(·)

}1/q∥∥∥∥∥
Lp(X)

and the series in (2.3) also converge in the norm of F s
pq(X) if q < ∞.

We should remark that Theorem 2.2 is established in [13] when p, q > 1 by
a different method.

3. Some Applications

In this section, we will give two applications of the frame characterizations
of the spaces Bs

pq(X) and F s
pq(X) established in Section 2. By using these

characterizations, we will first obatin the estimates for the entropy numbers
of the compact embeddings between the spaces Bs

pq(X) or between the spaces
F s

pq(X) when µ(X) < ∞. It has been proved that the entropy numbers play an
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extremely key role in the study on the spectra of various differential operators;
see [17]. Secondly, we will establish some real interpolation theorems via the
abstract interpolation method in [16] and [1] by using these characterizations.

Let us now recall the definition of the entropy numbers; see [17] and [13].
In the following, if A is a quasi-Banach space, then UA = {b ∈ A : ‖b‖A ≤ 1}
stands for the unit ball in A.

Definition 3.1. Let A1 and A2 be two quasi-Banach spaces and T be a
linear continuous operator from A1 to A2. Then for all k ∈ N, the kth entropy
number, ek(T ), of T is defined by

ek(T ) = inf
{
ε > 0 : T (UA1) ⊂

2k−1⋃

j=1

(bj + εUA2) for some b1, . . . , b2k−1 ∈ A2

}
.

The theorem below is proved in [13] when p, q > 1 and can be proved by
the same procedure as there when p, q ≤ 1 by replacing Theorem 4.1 and
Proposition 4.1 in [13] by Theorem 2.1 and Theorem 2.2. We omit the details.

Theorem 3.1. Let µ(X) < ∞ and −θ < s2 < s1 < θ.

(i) If max(d/(d + θ), d/(d + θ + si)) < pi ≤ ∞ and 0 < qi ≤ ∞ for i = 1, 2,
and

δ+ = s1 − s2 − d(1/p1 − 1/p2)+ > 0,

then the embedding of Bs1
p1,q1

(X) into Bs2
p2,q2

(X) is compact and for the
related entropy numbers holds

ek

(
id : Bs1

p1,q1
(X) → Bs2

p2,q2
(X)

)
∼ k−(s1−s2)/d,

where k ∈ N.
(ii) If max(d/(d+ θ), d/(d+ θ+si)) < pi < ∞ and max(d/(d+ θ), d/(d+ θ+

si)) < qi ≤ ∞ for i = 1, 2, and δ+ > 0, then the embedding of F s1
p1,q1

(X)
into F s2

p2,q2
(X) is compact and for the related entropy numbers holds

ek

(
id : F s1

p1,q1
(X) → F s2

p2,q2
(X)

)
∼ k−(s1−s2)/d,

where k ∈ N.

We remark that if X is a compact d-set, in this case, we have θ = 1, and our
Theorem 3.1 on the Besov spaces Bs

pq(X) is covered by Theorem 20.6 in [17]
and the other cases are new.

Let us now consider the real interpolations of the spaces Bs
pq(X) and F s

pq(X).
We first recall the general background of the real interpolation method; see [16,
pp. 62–64] and [1]. Let H be a linear complex Hausdorff space, and let A0

and A1 be two complex quasi-Banach spaces such that A0 ⊂ H and A1 ⊂ H.
Let A0 + A1 be the set of all elements a ∈ H which can be represented as
a = a0 + a1 with a0 ∈ A0 and a1 ∈ A1. If 0 < t < ∞ and a ∈ A0 + A1, then
Peetre’s celebrated K-functional is given by

K(t, a) = K(t, a;A0,A1) = inf (‖a0‖A0 + t‖a1‖A1) ,
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where the infimum is taken over all representations of a of the form a = a0 + a1

with a0 ∈ A0 and a1 ∈ A1.

Definition 3.2. Let 0 < σ < 1. If 0 < q < ∞, then

(A0,A1)σ,q =

{
a : a ∈ A0+A1, ‖a‖(A0,A1)σ,q =

{ ∞∫

0

[
t−σK(t, a)

]q dt

t

}1/q

< ∞
}

.

If q = ∞, then

(A0,A1)σ,∞ =
{
a : a ∈ A0 +A1, ‖a‖(A0,A1)σ,∞ = sup t−σK(t, a) < ∞

}
.

Using Theorem 2.1, Theorem 2.2 and the method of retraction and coretrac-
tion as in the proofs of Theorem 2.4.1 and Theorem 2.4.2 in [16], we can obtain
the below theorems on the real interpolations of the spaces Bs

pq(X) and F s
pq(X),

where there is no restriction on µ(X), namely, µ(X) can be finite or infinite.

Theorem 3.2. Let σ ∈ (0, 1).

(i) Let −θ < s0, s1 < θ, s0 6= s1, 1 ≤ p ≤ ∞, and 0 < q0, q1, q ≤ ∞. Then
(
Bs0

p,q0
(X), Bs1

p,q1
(X)

)
σ,q

= Bs
pq(X),

where s = (1− σ)s0 + σs1.
(ii) Let −θ < s < θ, 1 ≤ p ≤ ∞, 0 < q0, q1 ≤ ∞ and q0 6= q1. Then

(
Bs

p,q0
(X), Bs

p,q1
(X)

)
σ,q

= Bs
pq(X),

where 1/q = (1− σ)/q0 + σ/q1.
(iii) Let −θ < s0, s1 < θ and 1 ≤ p0, p1 ≤ ∞. Then

(
Bs0

p0,p0
(X), Bs1

p1,p1
(X)

)
σ,p

= Bs
p,p(X),

where 1/p = (1− σ)/p0 + σ/p1.

Theorem 3.3. Let −θ < s0, s1 < θ, max(d/(d+θ), d/(d+θ+s0)) < p0 < ∞,
max(d/(d + θ), d/(d + θ + s1)) < p1 < ∞, 1 ≤ q0, q1 ≤ ∞, σ ∈ (0, 1),
s = (1− σ)s0 + σs1, 1/p = (1− σ)/p0 + σ/p1 and 1/q = (1− σ)/q0 + σ/q1.

(i) If s0 6= s1, then
(
F s0

p0,q0
(X), F s1

p1,q1
(X)

)
σ,p

= Bs
p,p(X)

(
= F s

p,p(X)
)
.

(ii) If s0 = s1 = s, p0 = q0, p1 = q1 and q0 6= q1, then
(
F s

p0,p0
(X), F s

p1,p1
(X)

)
σ,p

= Bs
p,p(X).

(iii) If s0 = s1 = s, q0 = q1 = q and p0 6= p1, then
(
F s

p0,q(X), F s
p1,q(X)

)
σ,p

= F s
pq(X).
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Proofs of Theorems 3.2 and 3.3. Since the definitions of the spaces Bs
pq(X)

and F s
pq(X) are independent of the pair (β, γ) as in (1.3). We can suppose

Bsi
pi,qi

(X), F si
pi,qi

(X) ⊂
( ◦
G(βi, γi)

)′
,

where max(0,−si + d(1/pi − 1)+) < βi < θ and 0 < γi < θ, and i = 0, 1. We
then let β = max(β0, β1) and γ = (γ0, γ1). Then

Bsi
pi,qi

(X), F si
pi,qi

(X) ⊂
( ◦
G(β, γ)

)′
.

In this sense,
{
Bs0

p0,q0
(X), Bs1

p1,q1
(X)

}
and

{
F s0

p0,q0
(X), F s1

p1,q1
(X)

}
are interpola-

tion couples in the sense of §1.2.1 in [16]. Now, for f ∈
( ◦
G(β, γ)

)′
, with the

notation of Lemma 2.2, we can define the coretraction operator S by

S(f)(x) = {S(f)k(x)}∞k=0 ,

where

S(f)0(x) =
∑

τ∈I0

N(0,τ)∑

ν=1

mQ0,ν
τ

(D0(f))χQ0,ν
τ

(x)

and for k ∈ N,

S(f)k(x) =
∑

τ∈Ik

N(k,τ)∑

ν=1

Dk(f)(yk,ν
τ )χQk,ν

τ
(x),

and the corresponding retraction operator R by

R
(
{fk}

)
(x) =

∑

τ∈I0

N(0,τ)∑

ν=1

[ ∫

Q0,ν
τ

f0(y) dµ(y)
]
D̃Q0,ν

τ
(x)

+
∞∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

[ ∫

Qk,ν
τ

fk(y) dµ(y)
]
D̃k(x, yk,ν

τ ).

By Lemma 2.2, for any f ∈
( ◦
G(β, γ)

)′
, we have

RS(f)(x) = f(x).

In what follows, for s ∈ R, 0 < q ≤ ∞ and 0 < p ≤ ∞, we say {fk}∞k=0 ∈ lsq(L
p),

if ∥∥∥ {fk}∞k=0

∥∥∥
lsq(Lp)

=
{ ∞∑

k=0

2ksq ‖fk‖q
Lp(X)

}1/q

< ∞;

and we say {fk}∞k=0 ∈ Lp(lsq), if

∥∥∥ {fk}∞k=0

∥∥∥
Lp(lsq)

=

∥∥∥∥∥
{ ∞∑

k=0

2ksq |fk(x)|q
}1/q

∥∥∥∥∥
Lp(X)

< ∞,
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where the usual modifications are made when p = ∞ or q = ∞. If F is an
interpolation functor, then one obtains by Theorem 1.2.4 in [16] that

‖f‖F({B
s0
p0,q0

(X),B
s1
p1,q1

(X)}) ∼ ‖S(f)‖F({l
s0
q0

(Lp0 ),l
s1
q1

(Lp1 )})
and

‖f‖F({F
s0
p0,q0

(X),F
s1
p1,q1

(X)}) ∼ ‖S(f)‖F({Lp0(l
s0
q0),Lp1(l

s1
q1)}) .

Using Theorem 2.1 and Theorem 2.2, we can then finish the proofs of Theorem
3.2 and Theorem 3.3 by the same procedures as those in [16, pp. 182-183] and
[16, pp. 185-186]. We omit the details.

This finishes the proofs of Theorems 3.2 and 3.3.
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of homogeneous type and their applications. (Submitted.)

6. C. Fefferman and E. M. Stein, Some maximal inequalities. Amer. J. Math. 93(1971),
107–116.

7. M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution
spaces. J. Funct. Anal. 93(1990), 34–170.

8. Y. Han, Inhomogeneous Calderón reproducing formula on spaces of homogeneous type.
J. Geometric Anal. 7(1997), No. 2, 259–284.

9. Y. Han, S. Lu, and D. Yang, Inhomogeneous Besov and Triebel–Lizorkin spaces on
spaces of homogeneous type. Approx. Theory Appl. (N.S.) 15(1999), No. 3, 37–65.

10. Y. Han, S. Lu, and D. Yang, Inhomogeneous Triebel–Lizorkin spaces on spaces of
homogeneous type. Math. Sci. Res. Hot-Line 3(9)(1999), No. 9, 1–29.

11. Y. Han, S. Lu, and D. Yang, Inhomogeneous discrete Calderón reproducing formulas
for spaces of homogeneous type. J. Fourier Anal. Appl. 7(2001), No. 6, 571–600.

12. Y. Han and E. T. Sawyer, Littlewood-Paley theory on spaces of homogeneous type
and classical function spaces. Mem. Amer. Math. Soc. 110(1994), No. 530, 1–126.



590 DACHUN YANG

13. Y. Han and D. Yang, New characterizations and applications of inhomogeneous Besov
and Triebel–Lizorkin spaces on homogeneous type spaces and fractals. Dissertationes
Math. (to appear).

14. Y. Han and D. Yang, Some remarks on Besov and Triebel–Lizorkin spaces over spaces
of homogeneous type. (Submitted.)

15. R. A. Macias and C. Segovia, Lipschitz functions on spaces of homogeneous type.
Adv. in Math. 33(1979), No. 3, 257–270.

16. H. Triebel, Interpolation theory, function spaces, differential operators, 2nd ed. Johann
Ambrosius Barth, Heidelberg, 1995.

17. H. Triebel, Fractals and spectra. Birkhäuser Verlag, Basel, 1997.
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