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AMD-NUMBERS, COMPACTNESS, STRICT SINGULARITY
AND THE ESSENTIAL SPECTRUM OF OPERATORS

A. CASTEJÓN, E. CORBACHO, AND V. TARIELADZE

Abstract. For an operator T acting from an infinite-dimensional Hilbert
space H to a normed space Y we define the upper AMD-number δ(T ) and
the lower AMD-number δ(T ) as the upper and the lower limit of the net
(δ(T |E))E∈FD(H) , with respect to the family FD(H) of all finite-dimensional
subspaces of H. When these numbers are equal, the operator is called AMD-
regular.

It is shown that if an operator T is compact, then δ(T ) = 0 and, conversely,
this property implies the compactness of T provided Y is of cotype 2, but
without this requirement may not imply this. Moreover, it is shown that
an operator T has the property δ(T ) = 0 if and only if it is superstrictly
singular. As a consequence, it is established that any superstrictly singular
operator from a Hilbert space to a cotype 2 Banach space is compact.

For an operator T , acting between Hilbert spaces, it is shown that δ(T ) and
δ(T ) are respectively the maximal and the minimal elements of the essential
spectrum of |T | := (T ∗T )

1
2 , and that T is AMD-regular if and only if the

essential spectrum of |T | consists of a single point.
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1. Introduction

For a given linear operator T : E → Y , where E is an Euclidean space ( i.e.,
E is a non-zero finite-dimensional Hilbert space) and Y is a normed space, its
mean dilatation number (briefly MD-number), δ(T ) is defined by the equality

δ(T ) =




∫

SE

‖Tx‖2ds(x)




1
2

, (1.1)

in which s denotes the uniform distribution on the unit sphere SE of E.
The quantity δ(T ), without giving it any special name, has already been used

earlier in the local theory of normed spaces (see, e.g., [61, p. 81], compare also
[45, p. 110]).
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The MD-number δ(T ) is related to the l-norm or γ-summing norm of T
through the relation (see [61, pp. 81–82])

δ(T ) =
1√

dim E
l(T ). (1.2)

Recall that

l(T ) =

( ∫

E

‖Tx‖2dγ(x)

) 1
2

, (1.3)

where γ denotes the standard Gaussian distribution on E.
The l-norm was introduced in [38] and, independently, in [19] and proved to be

a powerful tool of modern Functional Analysis and Operator Theory (see, e.g.,
[18], [10], [54], [55], [61]). It is clear that thanks to (1.2) these two functionals
lead to equivalent approaches. However sometimes it is preferable to work with
δ (cf., e.g., [45], [46]).

When Y is an inner product space, we have

l(T ) = ‖T‖HS, δ(T ) =
1√

dim E
‖T‖HS, (1.4)

where ‖T‖HS denotes the Hilbert–Schmidt norm of T .
The problem of extension of the functional l to the operators acting from

infinite-dimensional domain has been treated by many authors. Recall that
a continuous linear operator T : H → Y , where H is an infinite-dimensional
Hilbert space and Y is a normed space, is called γ-summing or Gauss-summing
if

l̃(T ) := sup
M∈FD(H)

l(T |M) < ∞, (1.5)

where FD(H) stands for the family of all finite-dimensional vector subspaces
M ⊂ H, dim(M) ≥ 1. This notion was introduced in [38] (see also [61, p. 82]
and [55, p. 38]). It is not hard to see that when Y is a Hilbert space, then
an operator T : H → Y is γ-summing if and only if it is a Hilbert–Schmidt
operator and l̃(T ) = ‖T‖HS. In general, the study of γ-summing operators is
closely related to the problem of description of Gaussian measures in Banach
spaces. In this connection (see [13], [39]), and also directly (see [38], [10],
[54], [55], [61]), they were intensively studied and their relations with summing,
nuclear, etc., operators were clarified.

The aim of this paper is to study appropriate asymptotic versions of MD-
numbers for an operator T from an infinite-dimensional Hilbert space H to any
normed space Y . Note first that always

sup
M∈FD(H)

δ(T |M) = ‖T‖.

Therefore in this case the above described way of extending l-norm gives nothing
new. Using the fact that the set FD(H) is upward directed by set-theoretic
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inclusion and viewing (δ(T |M))M∈FD(H) as a net with this index set, we assign
to T two quantities:

δ(T ) := lim sup
M∈FD(H)

δ(T |M) (1.6)

and

δ(T ) := lim inf
M∈FD(H)

δ(T |M). (1.7)

We call these quantities, resp., upper and lower asymptotic mean dilatation
numbers (briefly upper and lower AMD-numbers) of T . In the case, where

these numbers are the same, we put δ(T ) := δ(T ) = δ(T ) and call the operator
asymptotically mean dilatation regular, briefly AMD-regular.

The notions of AMD-numbers and AMD-regularity were already considered
in [12] for Hilbert space-valued operators, where it was observed, in particular,
that not every operator is AMD-regular.

In this paper we study the AMD-numbers of Banach space valued operators
and apply them for the investigation of compactness-like properties and the
essential spectrum of operators.

The paper is organized as follows.
In Section 2 auxiliary material is collected about approximation numbers,

compact operators, diagonalizable operators, strictly singular operators, Bern-
stein numbers and superstrictly singular operators. A proof of the following
assertion, which seems not to have appeared earlier in the literature is pre-
sented: if X is a Banach space with (infra) type 2 and with an unconditional
basis and Y is either an abstract L-space or a Banach space with the Orlicz
property and with an unconditional basis, then any strictly singular operator
T : X → Y is compact (Theorem 2.18).

Section 3 is dedicated to the MD-numbers. Among other, rather technical,
inequalities, it is shown, in particular, that the MD-number δ(T ) and the me-
dian of T with respect to the uniform distribution are equivalent quantities
(see Proposition 3.7 and the Remark following it). The most delicate result is
Proposition 3.9 which in fact is related to the Isoperimetric Inequality.

In Section 4 the general properties of AMD-numbers are analyzed. In the case
of diagonalizable operators, i.e., operators having the form T =

∑
λnen ⊗ yn,

where (λn) is a bounded sequence of scalars and (en) and (yn) are orthonormal
bases in H and Y , respectively, the following concrete expressions of these
numbers are obtained:

δ(T ) = lim sup
n

|λn|, δ(T ) = lim inf
n

|λn|.

From this result it follows that diagonalizable T with diagonal (λn) is AMD-
regular if and only if the sequence (|λn|) is convergent and when this is the case,
we have

δ(T ) = lim
n
|λn|.
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This assertion implies, in particular, that not every operator is AMD-regular
(cf. [12], where it is shown directly that for any partial isometry T with infinite-

dimensional initial and final spaces one has δ(T ) = 1, while δ(T ) = 0).
In the final part of Section 4 AMD-numbers are applied for characterization

of compactness, strict singularity and superstrict singularity of operators. It is

shown, e.g., that if T is a compact operator, then δ(T ) = 0 and that the converse
statement is also true provided Y has cotype 2, but may not be true without this
requirement. More precisely, it turns out that for a given operator T , in general,

δ(T ) ≤ d(T,K(H, Y )) and if Y is of cotype 2, then δ(T ) ≥ c−1d(T, K(H,Y )),
where c is the cotype 2 constant of Y and d(T, K(H, Y )) stands for the distance
from T to the space of all compact operators K(H,Y ). The core of the section
is Theorem 4.11 which establishes, in particular, that in case of an arbitrary

Y for a given T the fulfilness of the condition δ(T ) = 0 is equivalent to the
superstrict singularity of T . This result shows that the upper AMD-number

δ(T ) can also be viewed as a “distance” from the operator T to the set of
superstrictly singular operators. The section ends with the following “mean
dilatation free” consequence of the previous results: any superstrictly singular
operator from a Hilbert space to an arbitrary cotype 2 Banach space is compact
(Theorem 4.12).

Section 5 deals with the operators between Hilbert spaces. The general case
of non-necessarily diagonalizable operators is treated. We prove that for a given

operator T , δ(T ) is the maximal and δ(T ) is the minimal element of the essential

spectrum of |T | := (T ∗T )
1
2 and that T is asymptotically mean dilatation regular

if and only if the essential spectrum of |T | consists of a single point (Theorem
5.6).

We derive this result from the corresponding statement concerning diagonal-
izable operators. For this several assertions, about the continuity of a spectrum
and spectral radius in a Banach algebra, essential spectrum, etc. are used.
Surely, most of these facts are well-known for specialists, we give their precise
formulations and outline the proofs only for the reader’s convenience.

2. Auxiliary Results on Compact and Diagonalizable Operators

2.1. Notation. Hereinafter K denotes either the field R of real numbers or the
field C of complex numbers. The considered normed or inner-product spaces are
supposed to be defined over K. The norm of a normed space, resp., the scalar
product of an inner-product space is denoted by ‖ · ‖, resp., (·|·). Also, ‖T‖
stands for the ordinary norm of a continuous linear operator T acting between
normed spaces.

For a normed space X,

• X∗ stands for the topological dual space.
• We put:

BX := {x ∈ X : ‖x‖ ≤ 1}, SX := {x ∈ X : ‖x‖ = 1}.
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• For x ∈ X and a non-empty A ⊂ X

d(x,A) := inf{‖x− a‖ : a ∈ A}.
• FD(X) stands for the family of all finite-dimensional non-zero vector

subspaces of X.

For normed spaces X and Y ,

• L(X,Y ) is the normed space of all continuous linear operators T : X →
Y and L(X) := L(X, X).

• K(X, Y ) stands for the set of all compact linear operators T : X → Y
and K(X) := K(X,X).

• d(T, K(X, Y )) := inf{‖T − A‖ : A ∈ K(X, Y ), T ∈ L(X, Y )}.
• For an operator T ∈ L(X, Y ) we put

m(T ) := inf{‖Tx‖ : x ∈ SX}
and call the quantity the lower bound of T.

• rank T := dim T (X), T ∈ L(X,Y ).

By H we always denote an infinite-dimensional (not necessarily separable)
Hilbert space, which is canonically identified with H∗. In particular, when Y is
also a Hilbert space, for a given operator T ∈ L(H,Y ) its adjoint operator T ∗

is supposed to act from Y to H.
For Hilbert spaces H,Y and an operator T ∈ L(H, Y ) the unique self-adjoint

positive (=non-negative) square root of the operator T ∗T ∈ L(H) is denoted
by |T |.

Let J be an infinite abstract index set and (βj)j∈J be a family of elements
of a topological space. Suppose in J a directed partial order ≺ is given. Then
the family (βj)j∈(J,≺) is a net with respect to (J,≺) and, for it, the notion of
convergence and the meaning of lim

j∈(J,≺)
βj are clear. If (βj)j∈J is a family of real

numbers, then the meaning of notations lim supj∈(J,≺) βj and lim infj∈(J,≺) βj is
also clear:

lim sup
j∈(J,≺)

βj := inf
j∈J

sup
i∈J, iÂj

βj, lim inf
j∈(J,≺)

βj := sup
j∈J

inf
i∈J, iÂj

βj.

Below we shall use the notation of an ‘upper limit’, a ‘lower limit’ and a
‘limit’ of a given family (βj)j∈J of real numbers, which do not assume that
some directed partial order is given in J , namely, we put :

u-lim sup
j∈J

βj := inf
∆⊂J,card ∆<∞

sup
j /∈∆

βj, u-lim inf
j∈J

βj := sup
∆⊂J,card∆<∞

inf
j /∈∆

βj.

The letter ‘u’ means ‘unordered’1. When we have that u-lim supj βj = u-
lim infj βj = β, then we say that the unordered limit of (βj)j∈J exists and put
u-lim

j∈J
βj = β.

1 Let G be the filter generated by complements of finite subsets of J . Following [7, Ch. IV,
§5], instead of u-lim supj∈J βj we could write lim supG βj and call this quantity “the upper
limit with respect to the filter G”.
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The following statement is easy to check.

Lemma 2.1. Let (βj)j∈J be any bounded infinite family of real numbers.
(a) We have the equalities:

u-lim sup
j∈J

βj = sup
(jn)

lim
n

βjn and u-lim inf
j∈J

βj = inf
(jn)

lim
n

βjn ,

where sup, (resp. inf), is taken over all infinite sequences (jn) of distinct
elements of J such that the sequence (βjn)n∈N is convergent in R.

(b) If J = N, then

u-lim sup
j∈N

βj = lim sup
j→∞

βj and u-lim sup
j∈N

βj = lim inf
j→∞

βj.

In particular, lim
j→∞

βj exists if and only if u-lim
j∈N

βj exists and in such a case

lim
j→∞

βj = u-lim
j∈N

βj.

For a given bounded infinite family of scalars λ· := (λj)j∈J and for any fixed
natural number n we put

an(λ·) := inf
∆⊂J, card∆<n

sup{|λj|j ∈J \∆}, ãn(λ·) := sup
∆⊂J, card∆=n

min{|λj| : j ∈ ∆}.

Lemma 2.2. Let λ· := (λj)j∈J be a bounded infinite family of scalars. Then:
(a) We have an(λ·) = ãn(λ·), n = 1, 2, . . .
(a′) If J+ := {j ∈ J : |λj| > 0} 6= ∅ and λ+

· := (λj)j∈J+, then an(λ·) =
an(λ+

· ), n = 1, 2, . . .
(b) (an(λ·)) is a decreasing sequence and u-lim supj∈J |λj| = lim

n
an(λ·).

(c) If J = N and (|λj|)j∈N is a decreasing sequence, then an(λ·) = |λn|, n =
1, 2, . . .

Proof. (a) Fix n and let ãn(λ·) < r < ∞. Then for each ∆ ⊂ J with card(∆) =
n there is j ∈ ∆ such that |λj| < r. Denote Jr = {j ∈ J : |λj| ≥ r}. Then
card Jr < n and sup{|λj| : j ∈ J \ Jr} < r. Hence an(λ·) < r. Since r is
arbitrary, we get an(λ·) ≤ ãn(λ·). The proof of an(λ·) ≥ ãn(λ·) is similar.

(a′) is evident.
We omit a straightforward verification of other statements.2

Denote by F(J) the family of all non-empty finite subsets of a set J , then
(F(J),⊂) is a directed set. A family (xj)j∈J of elements of a Banach space
X is called summable with sum x ∈ X, in symbols

∑
j∈J xj = x, if the net

(
∑

j∈∆ xj)∆∈F(J) is convergent to x in the topology of X.
It is well-known that a sequence (xj)j∈N is summable if and only if the cor-

responding series is unconditionally convergent and in such a case
∑

j∈N xj =∑∞
j=1 xj. Note also that if (xj)j∈J is a summable family, then the set J+ of those

indices j for which xj 6= 0 is at most countable and
∑

j∈J xj =
∑

j∈J+
xj.

2 It is not hard to check that for a given bounded family (λj)j∈J the quantity an(λ·)
coincides with its n-th approximation number in the sense of [52, 13.7.3].
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A family (yj)j∈J of elements of a Banach space Y is called an unconditional
basis of Y if for any y ∈ Y there exists a unique family (tj)j∈J of scalars such
that y =

∑
j∈J tjyj.

If (yj)j∈J is an unconditional basis of Y , then in Y ∗ there exists a family of
coordinate functionals (y∗j )j∈J such that

∑
j∈J y∗j (y)yj = y, ∀y ∈ Y.

A family (yj)j∈J of elements of a Banach space Y is called an unconditional
basic family if it is an unconditional basis for its closed linear span into Y .

Note that if Y is a separable infinite-dimensional Banach space and (yj)j∈J

is an infinite unconditional basic family in it, then J is countable.3

Let Y be a Hilbert space. Recall that for an operator T ∈ L(H, Y ) the
value of the sum

∑
j∈J ‖Tej‖2 does not depend on a particular choice of an

orthonormal basis (ej)j∈J of H and when this value is finite, the operator is
called a Hilbert–Schmidt operator. It is well known that the equality

‖T‖HS =


∑

j∈J

‖Tej‖2




1
2

(2.1)

defines a norm on the vector space of all Hilbert–Schmidt operators. This norm
is called the Hilbert–Schmidt norm.

2.2. Approximation numbers, Bernstein numbers and compact-like
operators. Let X,Y be normed spaces. A linear operator T : X → Y is called
compact if T (BX) is a relatively compact subset of Y .

A linear operator T : X → Y is called completely continuous if for any
weak-null sequence (xn) in X, lim

n
‖Txn‖ = 0. Any T ∈ K(X,Y ) is completely

continuous; the converse is true if X is reflexive (or is ‘almost reflexive’, see
Proposition 2.3), but is not true in general (see the next item).

A normed space X is said to have the Schur property if for any weak-null
sequence (xn) in X, we have lim

n
‖xn‖ = 0 (i.e., if the identity mapping I : X →

X is completely continuous). The space X = l1 is a classical example of an
infinite-dimensional Banach space with the Schur property.

Proposition 2.3 (Rosenthal, Lacey–Whitley). Let X be a Banach space
which does not contain a subspace isomorphic to `1 and Y be another Banach
space.

(a) Any completely continuous linear operator T : X → Y is compact.
(b) If Y has the Schur property, then L(X, Y ) = K(X, Y ).

Proof. According to Rosenthal’s `1-theorem [17, p. 201] each bounded sequence
in X has a weak-Cauchy subsequence, i.e., X is almost reflexive in the sense [36].
For almost reflexive X the assertion coincides with Theorem 5 and Corollary 6
in [36].

3 Every infinite-dimensional Banach space contains a basic sequence [40, Theorem 1.a.5];
however, the famous unconditional basic sequence problem “Does every infinite dimensional
Banach space contain an unconditional basic sequence?” [40, Problem 1.d.5] has been solved
negatively in [24].
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Remark 2.4. The following converse to Proposition 2.3(a) is also true: sup-
pose X is a Banach space such that any completely continuous linear operator
T : X → c0 is compact, then X does not contain a subspace isomorphic to `1

(see [4, Proposition II.6]).

For a given operator T ∈ L(X, Y ) and a natural number n, the n-th approx-
imation number an(T ) of T is defined by the equality:

an(T ) = inf{‖T − T0‖ : T0 ∈ L(X, Y ), rank T0 < n}.
It is easy to see that (an(T )) is a decreasing sequence and a1(T ) = ‖T‖ (see
[52] and [53] for further properties).

Remark 2.5. An operator T ∈ L(X,Y ) is called approximable if lim
n

an(T ) =

0. If Y is a Banach space, then any approximable T ∈ L(X, Y ) is compact. The
converse is also true provided either X∗ or Y has the approximation property
(see [40] for the definition and proofs).

Lemma 2.6 ([55, Lemma 1.8 (p.10)]). Let Y be a normed space and T ∈
L(H, Y ). Then for every ε > 0 there is an orthonormal sequence (en) in H
such that ‖Ten‖ ≥ an(T )− ε for all n ≥ 1.

The next statement characterizes the compact operators acting from a Hilbert
space.

Corollary 2.7. Let Y be a normed space and T ∈ L(H, Y ). Then the fol-
lowing assertions are equivalent:

(i) For any infinite orthonormal sequence (en) in H,lim
n
‖Ten‖ = 0.

(ii) lim
n

an(T ) = 0.

(iii) The operator T is the norm limit of a sequence of finite-rank operators
from L(H,Y ).

(iv) The operator T is compact.
(v) The operator T is completely continuous.

Proof. (i) ⇒ (ii) follows from Lemma 2.6. The implications (ii) ⇒ (iii) and
(iv) ⇒ (v)⇒ (i) are evident. (iii) ⇒ (iv) is well-known, when Y is complete.
In general, (iii) implies that T (BH) is precompact in Y ; since BH is weakly
compact and T is weakly continuous too, T (BH) is also weakly compact in
Y . These two conditions give that T (BH) is compact in Y (see [8, IV, §1,
Proposition 3]).

Corollary 2.8. Let T ∈ L(H, Y ). Then
(a) lim

n
an(T ) = d(T,K(H, Y )).

(b) d(T, K(H, Y )) = sup(en)∈O(H) lim supn ‖Ten‖, where O(H) denotes the set
of all infinite orthonormal sequences (en) in H.
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Proof. (a) follows easily from the implication (iv) ⇒ (iii) of Corollary 2.7. (b)
The inequality d(T, K(H,Y )) ≤ sup(en)∈O(H) lim supn ‖Ten‖ follows from (a)
and Lemma 2.6. The inequality d(T, K(H,Y )) ≥ sup(en)∈O(H) lim supn ‖Ten‖
can be shown as follows: fix any (en) ∈ O(H) and A ∈ K(H, Y ). Clearly (en)
is weak-null in H. Since A is compact, we have lim

n
‖Aen‖ = 0. Consequently,

‖T − A‖ ≥ lim supn(‖Ten‖ − ‖Aen‖) = lim supn ‖Ten‖.
Remark 2.9. The same proof shows that if X is an arbitrary normed space

without the Schur property, then d(T, K(X, Y )) ≥ lim supn ‖Txn‖ for any nor-
malized weak-null sequence (xn) in X (cf. [58, Lemma 2(i)]).

An operator T ∈ L(X, Y ) is called strictly singular (briefly, SS-) if m(T |M) =
0 for any infinite-dimensional closed vector subspace M ⊂ X. Denote SS(X, Y )
the set of all strictly singular operators T : X → Y and SS(X) := SS(X,X).

We have K(X,Y ) ⊂ SS(X,Y ). In general, this inclusion is strict (see Remark
2.11).

Fix T ∈ L(X, Y ) and a natural number n. The n-th Bernstein number bn(T )
of T is defined by the equality (see [48]):

bn(T ) = sup{m(T |M) : M ∈ FD(X), dim M = n}. (2.2)

Obviously, ‖T‖ = b1(T ) ≥ b2(T ) ≥ . . . . If T : X → Y is a compact operator,
then lim

n
bn(T ) = 0, the converse is not true in general (see the next item and

Proposition 2.10(c)).
An operator T ∈ L(X, Y ) is called superstrictly singular (briefly, SSS-) if

lim
n

bn(T ) = 0. Denote SSS(X,Y ) the set of all superstrictly singular operators

T : X → Y and SSS(X) := SSS(X, X).
We have K(X, Y ) ⊂ SS(X, Y ) ⊂ SSS(X,Y ); in general, the second inclusion

also is strict (see Proposition 2.10(e)). It is known that the strictly singular
operators and the superstrictly singular form an operator ideal in the sense of
Pietsch (see [52, (1.9.4)] and [56]).

In the next proposition are collected mainly the known statements.

Proposition 2.10. Let 1 ≤ r, p < ∞.
(a) If r < p, then L(lp, lr) = K(lp, lr) (Pitt’s theorem; [40, p. 76]).
(b) If X and Y are totally incomparable Banach spaces, then any continuous

linear operator from X to Y is strictly singular [40, p. 75].
In particular,
If 1 ≤ r, p < ∞ and r 6= p, then SS(lr, lp) = L(lr, lp) (see [23]).
(c) The natural embedding T : l1 → l2 is a SSS-operator that is not compact

[48].
(d) If 1 ≤ r < p < ∞ and T is the natural embedding of lr into lp, then

T ∈ SSS(lr, lp) \K(lr, lp) (see [44, Lemma 1]).4

(e) If 1 < r < p < ∞, then SSS(lr, lp) 6= SS(lr, lp).
5

4 Cf. also [56], where it is shown that in the considered case one has the equalities bn(T ) =
n1/p−1/r, n = 1, 2, . . . , which imply (d) too.

5 The third author learnt this result, as well as its proof, from Prof. A. PeÃlczyński.
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Proof. (e) For a fixed number s, 1 < s < ∞, let us denote by Xs the ls-sum of
spaces ln2 , n = 1, 2, . . . . According to a well-known result of [49] (see also [40,
p. 73]), there exists a bijective linear homeomorphism Us : Xs → ls. Let Tr,p be
the natural embedding of Xr into Xp. It is clear that Tr,p /∈ SSS(Xr, Xp), hence
UpTr,pU

−1
r /∈ SSS(lr, lp), while, by (b), we have UpTr,pU

−1
r ∈ SS(lr, lp).

Remark 2.11. (1) The notion of a strictly singular operator was introduced
in [30], where it was established that SS(X, Y ) is a closed vector subspace
of L(X, Y ); in the case of Hilbert spaces it was shown the equality K(X, Y ) =
SS(X,Y ) and a question was posed whether the same is true in the general case
(see [30, p. 285]). Later in [21] it was shown that K(c0) = SS(c0) and K(lp) =
SS(lp), ∀p ∈ [1,∞[ and an example was given (due to M. I. Kadets, see [21,
p. 61]) showing that this is not true in general.

(2) The SSS-operators were introduced in fact in [48], where no particular
term was given to this notion. The term is taken from [28]. For this notion the
term “S∗

0-operators” or “operators of class C∗
0” was used in [42], [43], [44].6

(3) Numerous papers were devoted to the study of strictly singular operators,
strictly cosingular operators (introduced in [50]), disjointly strictly singular op-
erators (introduced in [26]) and related operators (see, e.g., [3], [9], [11], [14],
[15], [20], [23], [27], [36], [31], [42], [43], [44], [47], [48], [50], [51], [56], [64]).
Some known facts are already included in the monographs (see [22], [40], [52]).
As far as we know, the most recent work which deals with the superstrictly
singular operators is [56].

Below we present a result about automatic compactness of strictly singular
operators.

2.3. Orlicz property, type 2 and SS-operators. In this subsection X, Y
will be Banach spaces.

Let us say that an (infinite) family (yj)j∈J of elements of a Banach space Y
is Besselian if there exists a constant b > 0 such that the inequality

b

∥∥∥∥∥
∑

j∈J

tjyj

∥∥∥∥∥ ≥
( ∑

j∈J

|tj|2
) 1

2

(2.3)

holds for any family (tj)j∈J of scalars with only a finite number of non-zero
terms.7

For a Besselian family (yj)j∈J any constant b for which (2.3) holds is called
its Besselian constant.

Analogously, let us say that an (infinite) family (yj)j∈J of elements of a Ba-
nach space Y is Hilbertian if there exists a constant b > 0 such that the inequal-

6 As the referee has pointed out, the ”uniformly strictly singular operators” from [47] are
different from SSS-operators.

7 Sometimes a Besselian sequence is called a 2-colacunary sequence, see [1].
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ity

∥∥∥∥∥
∑

j∈J

tjyj

∥∥∥∥∥ ≤ b

( ∑

j∈J

|tj|2
) 1

2

(2.4)

holds for any family (tj)j∈J of scalars with only a finite number of non-zero
terms.

For a Hilbertian family (yj)j∈J any constant b for which (2.4) holds is called
its Hilbertian constant.

In what follows, the set {−1, 1}N will be supposed to be equipped with the
probability measure

∏
n∈N µn, where µn{−1} = µn{1} = 1

2
, n = 1, 2, . . . 8 Recall

that a Banach space Y is said to have the

• Orlicz property if for any summable sequence (yj)j∈N in Y , we have∑∞
j=1 ‖yj‖2 < ∞.

• Rademacher cotype 2 if for every sequence (yj)j∈N in Y for which the
series

∑
j∈N θjyj is convergent in Y for almost all choices of signs (θj) ∈

{−1, 1}N, we have
∑∞

j=1 ‖yj‖2 < ∞.

• infratype 2 if for any sequence (yj)j∈N in Y , with
∑∞

j=1 ‖yj‖2 < ∞ there

exists a sequence of signs (θj) ∈ {−1, 1}N such that the series
∑

j∈N θjyj

is convergent in Y.
• Rademacher type 2 if for any sequence (yj)j∈N in Y , with

∑∞
j=1 ‖yj‖2 <

∞, the series
∑

j∈N θjyj is convergent in Y for almost all choices of signs
(θj) ∈ {−1, 1}N.

Remark 2.12. Let Y be an infinite-dimensional Banach space.
(1) Clearly, if Y has the Rademacher cotype 2, then Y has the Orlicz property.

If Y is a rearrangement invariant (=symmetric) Banach function space on [0, 1],
then, according to [59, Theorem 1], the converse is also true. However, the
converse is not true in general: in [60] an example of a Banach space with an
unconditional (even with a symmetric) basis is produced, which satisfies the
Orlicz property and fails to be of cotype 2.

(2) Also is clear that if Y has the Rademacher type 2, then Y has infratype
2. Whether the converse is true is not known.

(3) It is standard to see that if Y has the Orlicz property, then in Y any
unconditional normalized basic sequence is Besselian.

(4) Also, it is easy to see that if Y has infratype 2, then in Y any unconditional
normalized basic sequence is Hilbertian.

(5) If Y has infratype 2, then Y does not contain a subspace isomorphic to
`1 (since `1 has no infratype 2).

(6) If Y has infratype 2, then Y has no Schur property ( this follows from (5)
and from the fact that any infinite-dimensional Banach space with the Schur
property contains a subspace isomorphic to `1 [17, p. 212]).

8 This is simply the normalized Haar measure of the compact multiplicative group {−1, 1}N.
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Let us say that a Banach space Y possesses the Besselian Selection Prop-
erty, shortly, the BS-property, if in Y any weak-null sequence (yn)n∈N with
infn∈N ‖yn‖ > 0 has a Besselian basic subsequence.9

We say that a Banach space Y possesses the Hilbertian Selection Property,
shortly, the HS-property, if Y has no Schur property and in Y any weak-null
sequence (yn)n∈N with infn∈N ‖yn‖ > 0 has a Hilbertian basic subsequence.

Proposition 2.13. Let Y be an infinite-dimensional Banach space.
(a) Suppose that Y has the Orlicz property and has a (not necessarily count-

able) unconditional basis. Then in Y any weak-null sequence (yn)n∈N with
infn∈N ‖yn‖ > 0 has a Besselian unconditional basic subsequence.

In particular, Y possesses the BS-property.
(b) [1, Theorem 6] If Y is any (abstract) L-space, then Y possesses the BS-

property. 10

(c) Suppose Y has infratype 2 and has a (not necessarily countable) uncon-
ditional basis. Then in Y any weak-null sequence (yn)n∈N with infn∈N ‖yn‖ > 0
has a Hilbertian unconditional basic subsequence.

In particular, Y possesses the HS-property.
(d) If Y = c0, then Y possesses the HS-property.

Proof. (a,c) Fix an unconditional basis (ej)j∈J of Y and let (yn)n∈N be a weak-
null sequence in Y with infn∈N ‖yn‖ > 0. There is a countable J0 ⊂ J such
that yn ∈ Y0, n = 1, 2, . . . , where Y0 is the closed subspace of Y generated by
(ej)j∈J0 .

According to Bessaga–Pelczyński’s selection principle (see [17, p. 46]) (yn)n∈N
has a subsequence (ykn), which is equivalent to a block basic sequence of the
unconditional basis (ej)j∈J0 of Y0. Consequently, (ykn) also is an unconditional
basic sequence. By Remark 2.12(3) (resp.(4)) we get that (ykn) is a Besselian
(resp. Hilbertian) unconditional basic sequence.

(d) is true by the same reasoning as (c) because the natural basis of c0 is
Hilbertian and equivalent to any normalized block basic sequence taken with
respect to it [40, Proposition 2.a.1].

Remark 2.14. (1) The statement (a) of Proposition 2.13 for a separable Ba-
nach Y space with Rademacher cotype 2 and with an unconditional basis follows
at once from [1, Proposition 9].

(2) The statement (b) of Proposition 2.13 is applicable, e.g., for the cotype 2
space Y = L1[0, 1], while (a) is not because this space has not an unconditional
basis.

9 Formally, we get that if Y has the Schur property, then Y possesses the BS-property.
Actually, if Y has the Schur property, then it possesses a stronger property: any bounded
sequence (yn)n∈N in Y , which has no convergent subsequence, admits a basic subsequence,
which is equivalent to the natural basis of l1 (by Rosenthal’s theorem [17, p. 201]).

10 Actually, this is an easy consequence of Theorem 6 in [1], which asserts more: if Y is an
L-space and (yn)n∈N is a bounded sequence in Y , then either (yn)n∈N has a convergent subse-
quence or (yn)n∈N has a Besselian subsequence. We are grateful to Professors A. PeÃlczyński
and H.P. Rosenthal for paying our attention to the paper [1].
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(3) It is not clear whether any Y with the Orlicz property (or with Radema-
cher cotype 2) possesses the BS-property (cf. [1, p. 304, Remark]).

Lemma 2.15. Let X be a Banach space possessing the HS-property, Y be a
Banach space possessing the BS-property and T ∈ L(X, Y ) be an operator which
is not completely continuous. Then

(a) there exists a Hilbertian basic sequence (xn) in X such that (Txn) is a
Besselian basic sequence in Y ;

(b) there exists an infinite-dimensional closed vector subspace M ⊂ X such
that M is isomorphic to `2 and m(T |M) > 0.

Proof. (a) Since T is not completely continuous, there exists a normalized weak-
null sequence (zn) in X such that infn ‖Tzn‖ := r > 0. Clearly, (Tzn) is
a weak-null sequence in Y . Since Y possesses the BS-property, (Tzn) has a
Besselian basic subsequence (Tzkn). Let an := zkn , n = 1, 2, . . . . Now, since
X has the HS-property, the sequence (an) has a Hilbertian basic subsequence
(amn) = (xn). Evidently, the sequence (xn) has the needed properties.

(b) Let (xn) be a sequence from (a). Denote M the closed vector subspace of
X generated by (xn). Let also b1 (resp. b2) be a Hilbertian (resp. a Besselian)
constant of (xn) (resp. of (Txn)). Since (Txn) is Besselian, we get that (xn)
is Besselian too (with constant b2 ‖T‖). Therefore the basis (xn) of M is both
Hilbertian and Besselian. Consequently M is isomorphic to `2.

Fix x ∈ M . Then for a sequence (tj) of scalars we have x =
∑∞

j=1 tjxj and

‖Tx‖ =

∥∥∥∥∥∥

∞∑

j=1

tjTxj

∥∥∥∥∥∥
≥ b−1

2



∞∑

j=1

|tj|2



1/2

≥ b−1
2 b−1

1 ‖x‖.

Hence, m(T |M) ≥ b−1
2 b−1

1 > 0.

Corollary 2.16. Let X be a Banach space possessing the HS-property and
Y be a Banach space possessing the BS-property. Then we have:

(a) Any T ∈ SS(X, Y ) is completely continuous.
(b) If either X or Y does not contain a closed vector subspace isomorphic to

`2, then any T ∈ L(X, Y ) is completely continuous.

Proof. (a,b) Suppose there exists T ∈ L(X, Y ) which is not completely contin-
uous. Then by Lemma 2.15(b) there is an infinite-dimensional closed subspace
M ⊂ X such that M is isomorphic to `2 and m(T |M) > 0. Hence, T /∈ SS(X, Y )
and we get (a). Since m(T |M) > 0, the subspace T (M) of Y is isomorphic to M .
Therefore X and Y both have a subspace isomorphic to `2 and we get (b).

Remark 2.17. The following example shows that in Corollary 2.16(a) it can-
not be asserted that any T ∈ SS(X,Y ) is compact. Let X = `1×c0 and Y = `2.
Then X possesses the HS-property (this is easy to see). Let now T = T1,2P1,
where T1,2 : `1 → `2 is the natural embedding and P1 : `1×c0 → `1 is the natural
projection. Then T is even superstrictly singular (as T1,2 has this property),
but T is not compact.
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We can formulate the result which seems not to have been noticed in the
literature.

Theorem 2.18. Let X be a Banach space of infratype 2 with an uncondi-
tional basis, Y be either a Banach space having the Orlicz property and an
unconditional basis or any abstract L-space. Then any strictly singular operator
T : X → Y is compact.

Proof. Observe that by Proposition 2.13(c) X possesses the HS-property and
by Proposition 2.13(b,c) Y possesses the BS-property. Let now T ∈ SS(X, Y ).
Then by Corollary 2.16(a), T is completely continuous. Since X is of infratype
2, it does not contain a closed vector subspace isomorphic to `1 (see Remark
2.12(5)). Then by Proposition 2.3(a) we get that T is a compact operator.

Remark 2.19. (1) Theorem 2.18 implies, in particular, that K(H) = SS(H).
(2) When X = `2 and Y is a cotype 2 space with unconditional basis, Theorem

2.18 was pointed out to us by Prof. A. Plichko.
(3) In [11] a general result is obtained, from which it follows that if 1 < r ≤

p < ∞, then any regular strictly singular T : Lp[0, 1]) → Lr[0, 1] is compact;
Theorem 2.18 implies that if 1 ≤ r ≤ 2 ≤ p ≤ ∞, then the same conclusion is
true without assuming additionally that T is regular.

(4) Theorem 2.18 leaves the following question open: let Y be an arbitrary
Banach space with Orlicz property (or with Rademacher cotype 2); is then any
strictly singular operator T : l2 → Y compact? Below, through AMD-numbers,
we obtain a positive answer for SSS-operators in cotype 2 case (see Theorem
4.12).

(5) In general, for a Banach space Y the validity of the inclusion SS(`2, Y ) ⊂
K(`2, Y ) may not imply that Y has the Orlicz property. Indeed, let Y be a
Banach space with the Schur property, then L(`2, Y ) = K(`2, Y ) = SS(`2, Y ).
Take now as Y the `1−sum of spaces `n

∞, n = 1, 2, . . . . Then Y has no Orlicz
property (this is evident) and has the Schur property (see [5, Corollary 2.4(c)]).

2.4. Diagonalizable operators and their approximation numbers. Fix
a family of scalars (λj)j∈J .

Let X be a Banach space with an unconditional basis (xj)j∈J and Y be a
Banach space with an unconditional basis (yj)j∈J . An operator T ∈ L(X, Y ) is
called diagonal and the family (λj)j∈J is called the diagonal of T with respect
to (xj)j∈J and (yj)j∈J if Txj = λjyj, ∀j ∈ J.

If X, Y are Banach spaces with unconditional bases (with equal cardinalities),
then an operator T ∈ L(X, Y ) is called diagonalizable (resp., diagonalizable with
the diagonal (λj)j∈J) if there exists an unconditional basis (xj)j∈J in X and an
unconditional basis (yj)j∈J in Y , such that T is diagonal with respect to (xj)j∈J

and (yj)j∈J (resp., with the diagonal (λj)j∈J).
If X is a Banach space with an unconditional basis, then an operator T ∈

L(X, X) is called strictly diagonalizable if there exists an unconditional basis
(xj)j∈J in X such that T is diagonal with respect to (xj)j∈J and (xj)j∈J .
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If X,Y are Hilbert spaces, then an operator T ∈ L(X, Y ) is called ortho-
diagonalizable if there exists an orthonormal basis (xj)j∈J in X and an or-
thonormal basis (yj)j∈J in Y , such that T is diagonal with respect to (xj)j∈J

and (yj)j∈J ; an operator T ∈ L(X,X) is called strictly ortho-diagonalizable if
there exists an orthonormal basis (xj)j∈J in X such that T is diagonal with
respect to (xj)j∈J and (xj)j∈J .

It is well-known that if X, Y are Hilbert spaces, then any compact operator
T : X → Y is ortho-diagonalizable, with the diagonal tending to zero (Schmidt’s
theorem, see, e.g.,[53, p. 119]).

It is easy to see that if H,Y are Hilbert spaces and T ∈ L(H, Y ) is ortho-
diagonalizable, then T ∗T is strictly ortho-diagonalizable and conversely. Notice
that if T ∈ L(H) is an ortho-diagonalizable positive self-adjoint operator, then
it is strictly ortho-diagonalizable, but we shall not use this further.

Lemma 2.20. Let X be a Banach space with an unconditional basis (ej)j∈J ,
Y be a Banach space, T ∈ L(X,Y ) be a non-zero operator, λj := ‖Tej‖, ∀j ∈ J
and J+ := {j ∈ J : ‖Tej‖ > 0}.

(a) If (ej)j∈J is a Besselian family with a constant b and ( Tej

‖Tej‖)j∈J+ is a

Hilbertian family with a constant h , then

an(T ) ≤ b h an(λ·) ∀n ∈ N.

(b) If (ej)j∈J is a Hilbertian family with a constant h and ( Tej

‖Tej‖)j∈J+ is a

Besselian family in Y with a constant b, then

an(T ) ≥ b−1 h−1 an(λ·) ∀n ∈ N.

Proof. Put yj := Tej

‖Tej‖ , ∀j ∈ J+ and λ+
· := (λj)j∈J+ .

(a) Fix a non-empty finite ∆ ⊂ J+. Consider the operator T∆ ∈ L(X, Y )
defined by the equality:

T∆ x =
∑

j∈∆

λje
∗
j(x)yj, x ∈ X.

Since (yj)j∈J+ is a Hilbertian family with a constant h and (ej)j∈J+ is a Besselian
family with a constant b, we can write:

‖T − T∆‖ = sup
‖x‖≤1

∥∥∥∥∥∥
∑

j∈J+\∆
λje

∗
j(x)yj

∥∥∥∥∥∥
≤ h sup

‖x‖≤1


 ∑

j∈J+\∆
|λje

∗
j(x)|2




1
2

≤ h sup
j∈J+\∆

λj sup
‖x‖≤1


∑

j∈J

|e∗j(x)|2



1
2

≤ h b sup
j∈J+\∆

λj.

Fix now n ∈ N and take a ∆ ⊂ J+ with card ∆ < n. Then since rank T∆ < n,
the definition of an(T ) and the above inequality imply:

an(T ) ≤ ‖T − T∆‖ ≤ h b sup
j∈J+\∆

λj.
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Hence,

an(T ) ≤ hb inf
∆⊂J+, card∆<n

sup
j∈J+\∆

λj = h b an(λ+
· ) = h b an(λ·)

and (a) is proved.
(b) Fix any ∆ ⊂ J+ with card ∆ = n and denote E the vector subspace of X

generated by {ej : j ∈ ∆}. Take now any T0 ∈ L(X, Y ) with rank T0 < n. Since
dim(E) = n, the restriction of T0 to E cannot be injective, hence ker T0 ∩ E 6=
{0}. Then we can find x0 ∈ ker T0 such that ‖x0‖ = 1 and x0 =

∑
j∈∆ tjej for

some scalars t1, . . . , tn. Since (yj)j∈J+ is a Besselian family with the constant b
and (ej)j∈J is a Hilbertian family with the constant h, we can write:

‖T − T0‖ ≥ ‖Tx0 − T0x0‖ = ‖Tx0‖ =

∥∥∥∥∥
∑

j∈∆

tjTej

∥∥∥∥∥ =

∥∥∥∥∥
∑

j∈∆

tjλjyj

∥∥∥∥∥

≥ b−1

( ∑

j∈∆

|tjλj|2
) 1

2

≥ b−1 min
j∈∆

λj(
∑

j∈∆

|tj|2) 1
2

≥ b−1 h−1 min
j∈∆

λj‖x0‖ = b−1 h−1 min
j∈∆

λj.

This, as ∆ ⊂ J+ is arbitrary, gives: ‖T − T0‖ ≥ b−1ãn(λ+
· ) and, by Lemma

2.2(a,a′), we get: an(T ) ≥ b−1 h−1an(λ·).

Corollary 2.21. If H, Y are Hilbert spaces and T ∈ L(H, Y ) is an ortho-
diagonalizable operator with the diagonal (λj)j∈J , then

an(T ) = an(λ·) ∀n ∈ N, (2.5)

and

d(T, K(H, Y )) = u-lim sup
j∈J

|λj|. (2.6)

Proof. Since any orthonormal family is both Hilbertian and Besselian with con-
stant 1, from (a) and (b) we get (2.5). Then by Corollary 2.8(a) and Lemma
2.2(b) we can write

d(T, K(H,Y )) = lim
n

an(T ) = lim
n

an(λ·) = u-lim sup
j∈J

|λj|,

i.e., (2.6) holds.

Remark 2.22. (1) Equality (2.5) remains valid also for diagonal operators act-
ing in l∞ (see [29, p. 510, Lemma 27.10.3] from where the method of the above
given proof is taken partially). The same equality is proved in [52, (11.11.3)]
for a diagonal operator T : `p → `p with decreasing nonnegative diagonal.

(2) Let 1 < q < 2 and T : l2 → lq be a diagonal operator with respect to
natural bases with the diagonal (λn) such that (|λn|) is a decreasing sequence.
Then since the natural basis of lq is Besselian with constant 1, from Lemma
2.20(a) we get an(T ) ≥ |λn|, n = 1, 2, . . . . In this case it is known that an(T ) =

(
∑∞

k=n |λk|r)
1
r , n = 1, 2, . . . , where 1

r
= 1

q
− 1

2
[52, (11.11.4)].
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3. Inequalities for δ and l-norm

3.1. General inequalities. In this subsection E will denote a non-zero finite-
dimensional Hilbert space with dim(E) = n over K ∈ {R,C}, Y will stand for
a general normed space over K and T ∈ L(E, Y ) will be a fixed operator.

It is well-known that on the Borel σ-algebra of the unit sphere SE of E there
exists a unique isometrically invariant probability measure sE called a uniform
distribution on SE, which we simply denote by s. This measure is used for the
definition of MD-number δ(T ) in the introduction (see equality (1.1)).

Clearly E carries the Lebesgue measure λ obtained from any realization of E
as Kn.

In what follows, to simplify the notation, we introduce a parameter κ, which
equals 1/2 when the considered spaces are real, and equals 1 in the complex
case.

Recall now that the standard Gaussian measure γE on E is a measure such
that

γE(B) =

(
κ

π

)κ n ∫

B

exp(−κ‖x‖2
E)dλ(x)

for any Borel subset B of E.
Observe that γE is also isometrically invariant Borel probability measure on

E, which is also uniquely defined through its Fourier transform

γ̂E(h) :=
∫

E

exp{i Re (x|h)} d γE(x) = exp{−κ‖h‖2
E} ∀h ∈ E. (3.1)

Let

ap(γE) :=

(∫

E

‖x‖p d γE(x)

) 1
p

, 0 < p < ∞. (3.2)

The exact value of ap(γE) will not be important in the sequel. It is easy to see
that

ap(γE) ≤ a2(γE) =
√

dim(E) ∀p ∈]0, 2] (3.3)

while,

a1(γR) =

√
2

π
, a1(γC) =

√
π

2
. (3.4)

The following statement relates γE with sE and is not difficult to check (using
the uniqueness of sE): if f : E → C is a positively homogeneous measurabe
function, then

(∫

E

|f(x)|p d γE(x)

) 1
p

= ap(γE)

(∫

SE

|f(x)|p d sE(x)

) 1
p

, 0 < p < ∞. (3.5)
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The measure γE is used for the definition of l(T ) in the Introduction (see
equality (1.3)).

We shall use frequently formula (1.2)(see Introduction) which follows at once
from equality in (3.3) and (3.5) applied for p = 2 to x → f(x) := ‖Tx‖.

Evidently, we have

m(T ) ≤ δ(T ) ≤ ‖T‖, ∀T ∈ L(E, Y )

where m(T ) is the lower bound of T .
To get some other more useful observations, some facts about Gaussian mea-

sures and Gaussian random variables are necessary.
Fix a probability space (Ω,A,P) and a sequence (gk)k∈N of independent stan-

dard K-valued Gaussian random variables on this space.11 We denote by E the
integral with respect to probability measure P.

Theorem 3.1 ([37, p. 1925, Corollary 5]). Let Y be a normed space over K,
(gk)k∈N be a sequence of independent standard K-valued random variables, n ∈
N, y1, y2, . . . , yn ∈ Y and 0 < r < p < ∞. Then we have

(
E‖

n∑

k=1

gkyk‖p

) 1
p

≤ Kp,r

(
E‖

n∑

k=1

gkyk‖r

) 1
r

with the constant

Kp,r =
ap(γR)

ar(γR)
,

which is the best possible in the real case. In particular,
(
E‖

n∑

k=1

gkyk‖2

) 1
2

≤
√

π

2
E‖

n∑

k=1

gkyk‖.

This theorem with some universal constant Cp,r depending only on p and r,
was well-known earlier12. We also note that in [37] this statement is proved in
the real case; the complex case (with the same Kp,r as in the real case) follows
easily from this.

Lemma 3.2. Let E be a finite-dimensional Hilbert space with dim E = n ≥
1, Y be a normed space, T ∈ L(E, Y ) and ek, k = 1, . . . , n be any fixed or-
thonormal basis of E. Then γE coincides with the distribution13 of the mapping
ω → ∑n

k=1 gk(ω)ek in E and

l(T ) =

(
E‖

n∑

k=1

gkTek‖2

) 1
2

. (3.6)

11 This means that the random variables gk : Ω → K, k = 1, 2, . . . , are stochastically
independent and gk has the distribution γK for any k ∈ N. E.g., it is possible to take Ω = KN,
P =

∏
k∈N µk, where µk = γK, k = 1, 2, . . . , and (gk) is the sequence of coordinate functionals.

12 See, e.g., [62, Theorem 5.5.3(d)]; the proof of [55, Corollary 4.9, p.48] gives the estima-
tion C2,1 ≤ π

√
π
2 .

13 i.e., with the image of P.
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Moreover, we have
∫

E

‖Tx‖dγE(x) ≤ l(T ) ≤
√

π

2

∫

E

‖Tx‖dγE(x) (3.7)

and
∫

SE

‖Tx‖dsE(x) ≤ δ(T ) ≤
√

π

2

∫

SE

‖Tx‖dsE(x). (3.8)

Proof. Denote by µ the image of P under the mapping ω → ∑n
k=1 gk(ω)ek. Then

µ is a probability measure on E. It is easy to observe (using the independence
of gk, k = 1, . . . , n and equality (3.1)) that µ̂ = γ̂E. Hence µ = γE (in view of
the uniqueness theorem for the Fourier transform).

Equality (3.6) now follows from the definition of l and from the change of
variable formula.

The left inequalities in (3.7) and (3.8) are evident. The right inequality in
(3.7) follows from (3.6) and Theorem 3.1. Applying then (1.2), (3.7), (3.5)(for
p = 1) and (3.3), we get the relation

√
n δ(T ) = l(T ) ≤

√
π

2

∫

E

‖Tx‖dγE(x)

=

√
π

2
a1(γE)

∫

SE

‖Tx‖dsE(x) ≤
√

π

2

√
n

∫

SE

‖Tx‖dsE(x),

which gives the right inequality in (3.8).

Relation (3.8) shows that for a given operator T its MD-number δ(T ) and
its “Levy’s mean number”

∫
SE
‖Tx‖dsE(x) are equivalent quantities (the latter

quantity is used, e.g., in [45]).

Corollary 3.3. We have

‖Te‖ ≤ l(T ),
1√

dim E
‖Te‖ ≤ δ(T ) ∀e ∈ SE (3.9)

Moreover, the functionals l and δ are norms on L(E, Y ) with properties

‖T‖ ≤ l(T ) ≤
√

dim E ‖T‖, (3.10)

1√
dim E

‖T‖ ≤ δ(T ) ≤ ‖T‖. (3.11)

Proof. Let ek, k = 1, . . . , n be any orthonormal basis of E. Then via (3.6)

‖Te1‖ ≤ l(T ) ≤ ‖T‖

E

∥∥∥∥∥
n∑

k=1

gkek

∥∥∥∥∥
2

E




1
2

=
√

n‖T‖.

Since any element of SE can be taken as e1, this relation implies (3.10). Evi-
dently, (3.10) and (1.2) imply (3.11). It is clear that the functionals l and δ are
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seminorms on L(E, Y ). From (3.10) and (3.11) we get that they actually are
norms equivalent to the usual operator norm.

Corollary 3.4. Let M ⊂ E be a fixed non-zero vector subspace. Then:

l(T |M) ≤ l(T ), (3.12)

δ(T |M) ≤
√

dim E

dim M
δ(T ). (3.13)

Moreover, if M1,M2 ⊂ E are any (i.e., not necessarily algebraically com-
plementary to each other) vector subspaces with M1 + M2 = E, then we have
also

δ(T ) ≥ δ(T |M2)√
dim M1

dim M2
+ 1

, (3.14)

δ(T ) ≤
√

dim M1

dim M1 + dim M2

‖T‖+ δ(T |M2). (3.15)

Proof. Let dim M = m. We can suppose that the basis ek, k = 1, . . . , n is chosen
in such a way that ek, k = 1, . . . , m is an orthonormal basis of M . Now (3.12)
follows from (3.6) via the inequality


E

∥∥∥∥∥
m∑

k=1

gkTek

∥∥∥∥∥
2



1
2

≤

E

∥∥∥∥∥
n∑

k=1

gkTek

∥∥∥∥∥
2



1
2

,

which is in turn an easy consequence of the independence and symmetry of
gk, k = 1, . . . , n (see, e.g., [62, Lemma 5.3.4(a), p.281]).

Inequality (3.13) follows from (3.12) and (1.2).

Using (1.2) and (3.12) for M = M2, we can write δ(T ) ≥ `(T |M2
)√

dim E
. Since

dim E ≤ dim M1 + dim M2, from this we get (3.14).
The inequality (3.15) needs a little more work (and linear algebra). Denote

byM ′ the orthogonal complement of M2 into E and n′ = dim M ′. We can
suppose now that the basis ek, k = 1, . . . , n is chosen in such a way that ek, k =
1, . . . , n′ is an orthonormal basis of M ′. Then using the subadditivity of the
L2(Ω,A,P) norm and (3.6) we get

l(T ) ≤

E

∥∥∥∥∥∥

n′∑

k=1

gkTek

∥∥∥∥∥∥

2



1
2

+


E

∥∥∥∥∥∥

n∑

k=n′+1

gkTek

∥∥∥∥∥∥

2



1
2

= l(T |M ′) + l(T |M2).

This and (1.2) give

δ(T ) ≤
√

n′

n
δ(T |M ′) +

√
dim(M2)

n
δ(T |M2) ≤

√
n′

n
δ(T |M ′) + δ(T |M2).
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Since by (3.11) we have δ(T |M ′) ≤ ‖T |M ′‖ ≤ ‖T‖ and n′ ≤ dim(M1) (as
n′ + dim(M2) = dim(M) ≤ dim(M1) + dim(M2), hence n′ ≤ dim(M1)), we get

δ(T ) ≤
√

n′

n′ + dim M2

‖T‖+ δ(T |M2) ≤
√√√√ dim(M1)

dim(M1) + dim(M2)
‖T‖+ δ(T |M2),

i.e., (3.15) holds.

The next statement deals with the ideal properties of the norms l and δ.

Proposition 3.5. Let E be a finite-dimensional Hilbert space with dim E ≥
1, Y be a normed space and T ∈ L(E, Y ). Suppose further that E1 is another
finite-dimensional Hilbert space with dim E1 ≥ 1, Y1 another normed space,
u ∈ L(E1, E) and v ∈ L(Y, Y1). Then:

l(vT ) ≤ ‖v‖l(T ), δ(vT ) ≤ ‖v‖δ(T ), (3.16)

l(Tu) ≤ ‖u‖l(T ) (3.17)

and

δ(Tu) ≤
√

dim E

dim E1

δ(T )‖u‖. (3.18)

Proof. The inequality l(vT ) ≤ ‖v‖l(T ) is evident. The inequality l(Tu) ≤
l(T )‖u‖ can be shown as follows. Let n := dim E and n1 := dim E1. We have

ux =
n1∑

k=1

λk(x|e′k)ek, x ∈ E1,

where e′k, k = 1, . . . , n1 is an orthonormal basis of E1, ek, k = 1, . . . , n1 is a finite
sequence in E whose non-zero members are orthonormal and λk, k = 1, . . . , n1

are non-negative numbers such that ‖u‖ = λ1 ≥ λ2 ≥ · · · ≥ λn1 . Then

Tux =
n1∑

k=1

λk(x|e′k)Tek, ∀x ∈ H1.

Using this equality, (3.6) and the contraction principle (see [62, Lemma 5.4.1(c),
p.298]), we get

l(Tu) =


E

∥∥∥∥∥
n1∑

k=1

gkλkTek

∥∥∥∥∥
2



1
2

≤ ( max
1≤k≤n1

λk)


E

∥∥∥∥∥
n1∑

k=1

gkTek

∥∥∥∥∥
2



1
2

≤ l(T )‖u‖.

(3.18) follows from (3.17) and (1.2).
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3.2. Inequalities involving medians. Let µ be a probability measure given
on a σ-algebra A of subsets of a set Ω and f : Ω → R be a A-measurable
function. There exists at least one t ∈ R such that

µ{ω ∈ Ω : f(ω) ≥ t} ≥ 1

2
≤ µ{ω ∈ Ω : f(ω) ≤ t}. (3.19)

The set Mf,µ of all t ∈ R for which (3.19) holds either consists of one single
point or is a nondegenerate closed segment. Any member of Mf,µ is called a
median of f with respect to µ.

Lemma 3.6. Let (Ω,A, µ) be probability space and f : Ω → R be a A-
measurable function.

(a) If f ≥ 0 µ-a.e., f ∈ L2(Ω,A, µ), ‖f‖2 > 0 and α := ‖f‖1
‖f‖2 , then

(α−
√

1− α2)‖f‖2 ≤ t ≤
√

2‖f‖2 ∀t ∈ Mf,µ. (3.20)

Moreover, if B ⊂ Ω is a measurable set such that µ(B) = 1
2

and f := 1B, then
Medµ(f) = [0, 1] and in (3.20) we have equalities for some medians.

(b) If Ω is a connected topological space, µ is a Borel probability measure,
which is strictly positive on any non-void open subset of Ω and f is continuous,
then the median of f is unique.

Proof. (a) Fix t ∈ Mf,µ. An application of the (Markov) inequality

µ{ω ∈ Ω : f(ω) ≥ r} ≤ r−2‖f‖2, r > 0,

for r =
√

2‖f‖2 gives: µ{ω ∈ Ω : f(ω) ≥ √
2‖f‖2} ≤ 1

2
. Hence t ≤ √

2‖f‖2.
The left estimation in (3.20) is derived from the following remarkable known

property of a median:

‖f − t‖1 ≤ ‖f − x‖1, ∀ x ∈ R.

For x = ‖f‖1 this inequality gives: t ≥ ‖f‖1 − ‖f − ‖f‖1‖1. Since

‖f − ‖f‖1‖1 ≤ ‖f − ‖f‖1‖2 =
√
‖f‖2

2 − ‖f‖2
1,

we get

t ≥ ‖f‖1 − ‖f − ‖f‖1‖1 ≥ ‖f‖1 −
√
‖f‖2

2 − ‖f‖2
1 = (α−

√
1− α2)‖f‖2.

The rest is evident.
(b) Suppose that there are t1, t2∈Mf,µ such that t1 <t2. Then µ (f−1]t1, t2[)=

0. Since t1, t2 are medians of f , we can find real numbers r1, r2 ∈ f(Ω) such
that r1 ≤ t1 and r2 ≥ t2. Since Ω is connected and f is continuous, f(Ω) is
a connected subset of R. Hence f(Ω) is convex and then [r1, r2] ⊂ f(Ω). In
particular, [t1, t2] ⊂ f(Ω). This implies that f−1(]t1, t2[) is a non-void open
set and because of the required property of µ, it must have a strictly positive
measure. A contradiction.
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Let T ∈ L(E, Y ). Consider the function fT : E → R+ defined by the equality
fT (x) = ‖Tx‖, x ∈ E. By Lemma 3.6(b) the function fT |SE

has a unique
median with respect to the uniform distribution s = sE, which we denote by
Meds(T ) and call the median of T with respect to s. Analogously, fT has a
unique median with respect to the standard Gaussian measure γE, which we
denote by Medγ(T ) and call it the median of T with respect to γ.

Proposition 3.7. Let E be a finite-dimensional Hilbert space with dim E =
n ≥ 1, Y be a normed space and T ∈ L(E, Y ). Then we have

1

3
√

π
δ(T ) ≤

√
2−√π − 2√

π
δ(T ) ≤ Meds(T ) ≤

√
2 δ(T ) (3.21)

and

1

3
√

π
l(T ) ≤

√
2−√π − 2√

π
l(T ) ≤ Medγ(T ) ≤

∫

E

‖Tx‖ d γE(x) ≤ l(T ). (3.22)

Proof. Inequalities (3.21) and the left-hand side of (3.21) follow from Lemma
3.6 applied to f = fT |SE

in the first case and to f = fT in the second case and
taking into account that in either cases, according to Lemma 3.2 we have the

inequality α = ‖f‖1
‖f‖2 ≥

√
2
π
. The inequality

Medγ(T ) ≤
∫

E

‖Tx‖ d γE(x)

is a particular case of a general result of [34], which states that the same is true
for any Gaussian measure and any convex functional.

Remark 3.8. (1) This proposition shows that for a given operator T the me-
dian Meds(T ) and the MD-number δ(T ) are equivalent quantities.

(2) Proposition 3.7 for Meds(T ) coincides with [61, p. 26, Lemma 7.2], where
it is proved in a different way for some numerical constant in place of 1

3
√

π
(of

course, without having the exact estimate (3.8)).
The next assertion demonstrates that the evident inequalities m(T ) ≤ δ(T )

and δ(T ) ≤ ‖T‖ can be inverted. The proof involves in fact the Isoperimetric
Inequality.

Proposition 3.9. There exists universal constant C such that the following
is true:

Let E be a finite-dimensional Hilbert space with dim E ≥ 1, Y be a normed
space, T ∈ L(E, Y ) and τ ∈ [‖T‖,∞[. Then for each ε ∈]0, τ

2
[ there exists a

vector subspace F ⊂ E with

dim(F ) ≥ C
ε2 dim(E)

| log ε
τ
|τ 2

, (3.23)

such that

δ(T ) ≤ 3
√

π (m(T |F ) + ε) (3.24)



250 A. CASTEJÓN, E. CORBACHO, AND V. TARIELADZE

and
√

2(‖T |F‖ − ε) ≤ δ(T ). (3.25)

Proof. Let f(x) = ‖Tx‖, x ∈ SE. Then f is a τ -Lipschitz function on SE

with respect to the Euclidean norm and its median coincides with Meds(T ).
An application of fundamental Proposition 12.3 from [2, p. 284] to f gives the
existence of F satisfying (3.23) and having the property

Meds(T ) + ε ≥ ‖Tx‖ = f(x) ≥ Meds(T )− ε, ∀x ∈ SF .

Hence

m(T |F ) := inf{‖Tx‖ : x ∈ SF} ≥ Meds(T )− ε (3.26)

and

Meds(T ) + ε ≥ sup{‖Tx‖ : x ∈ SF} := ‖T |F‖. (3.27)

Now, (3.26) and Proposition 3.7 imply (3.24); analogously, (3.27) and Propo-
sition 3.7 imply (3.25).

3.3. Inequalities related with type and cotype 2. In Section 2 we have
already used the notions of Rademacher type 2 and Rademacher cotype 2 Ba-
nach spaces. In what follows it would be more convenient to deal with the
“Gaussian” versions of these notions.

A non-trivial normed space Y is called:

• of Gaussian type 2 if there is a constant c > 0 such that for each n ∈ N
and y1, y2, . . . , yn ∈ Y,

(
E‖

n∑

k=1

gkyk‖2

) 1
2

≤ c

(
n∑

k=1

‖yk‖2

) 1
2

. (3.28)

If Y is of Gaussian type 2, then the best possible constant c for which
(3.28) holds is called the Gaussian type 2 constant of Y.

• of Gaussian cotype 2 if there is a constant c > 0 such that for each n ∈ N
and y1, y2, . . . , yn ∈ Y,

c

(
E‖

n∑

k=1

gkyk‖2

) 1
2

≥
(

n∑

k=1

‖yk‖2

) 1
2

. (3.29)

If Y is of Gaussian cotype 2, then the best possible constant c for which
(3.28) holds is called the Gaussian cotype 2 constant of Y.

It is known and it is not hard to show that the Gaussian type 2 and Rade-
macher type 2 are equivalent notions (see, e.g.,[18, Theorem 12.26]). It is
also known and it is a highly delicate result that the Gaussian cotype 2 and
Rademacher cotype 2 are equivalent notions (see, [18, Corollary 12.28] and the
text following it). If Y is an inner-product space, then Y is both of type 2 and
of cotype 2 with constant one (this is easy to see). The converse is also true



AMD-NUMBERS 251

[33]: if a normed space Y is simultaneously of type 2 and cotype 2, then Y is
isomorphic to an inner-product space.

Remark 3.10. Let Y be a non-trivial normed space.
(a) Y is of Gaussian type 2, if and only if there is a constant c > 0 such that

for any finite-dimensional Hilbert space E, n := dim E ≥ 1, any orthonormal
basis e1, . . . , en and any T ∈ L(E, Y ) we have the inequality

l(T ) ≤ c

(
n∑

k=1

‖Tek‖2

)1/2

. (3.30)

(b) Y is of Gaussian cotype 2, if and only if there is a constant c > 0 such
that for any finite-dimensional Hilbert space E, n := dim(M), any orthonormal
basis e1, . . . , en and any T ∈ L(E, Y ) we have the inequality

l(T ) ≥ c−1

(
n∑

k=1

‖Tek‖2

)1/2

. (3.31)

(c) It is worthwhile to note that without any further supposition about Y ,
the following is true: for any finite-dimensional Hilbert space E, n := dim E,
any T ∈ L(E, Y ) there are orthonormal bases e′1, . . . , e

′
n and e′′1, . . . , e

′′
n of E such

that we have the inequality
(

n∑

k=1

‖Te′k‖2

)1/2

≤ l(T ) ≤
(

n∑

k=1

‖Te′′k‖2

)1/2

.

This fact we shall not use in what follows, its proof in fact is given in [35].
From Remark 3.10(a), (b) we get the following statement.

Lemma 3.11. Let E be a finite-dimensional Hilbert space with dim E = n ≥
1, Y a normed space, T ∈ L(E, Y ) and (e1, . . . , en) any fixed orthonormal basis
of E. Then:

(a) If Y is of Gaussian cotype 2, then

δ(T ) ≥ c−1 min
k≤n

‖Tek‖, (3.32)

where c is the cotype 2 constant of Y .
(b) If Y is of Gaussian type 2, then

δ(T ) ≤ c max
k≤n

‖Tek‖, (3.33)

where c is the type 2 constant of Y .

Proof. (a) Taking into account (1.2), (3.6) and (3.29), we get

√
nδ(T ) = l(T ) =


E

∥∥∥∥∥
n∑

k=1

gkTek

∥∥∥∥∥
2



1
2

≥ c−1

(
n∑

k=1

‖Tek‖2

)1/2

≥ c−1
√

n min
k≤n

‖Tek‖.
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(b) follows in a similar way from (1.2), (3.6) and (3.28).

4. General Properties of AMD-Numbers

4.1. Continuity properties of AMD-numbers. Let now H be an infinite
dimensional Hilbert space and Y be a normed space. In this case for a given

operator T ∈ L(H, Y ) we have already defined its upper AMD-number δ(T ),
the lower AMD-number δ(T ) and the notion of an AMD-regular operator in the
Introduction.

It is possible to rewrite these definitions in a more direct form without using
upper and lower limits. For this fix an M ∈ FD(H) and put

βM(T ) := sup{δ(T |N) : N ⊃ M, N ∈ FD(H)}
and

αM(T ) := inf{δ(T |N) : N ⊃ M, N ∈ FD(H)}.
Using these notations we get:

δ(T ) = inf
M∈FD(H)

βM(T ) (4.1)

and

δ(T ) = sup
M∈FD(H)

αM(T ). (4.2)

If δ(T ) = δ(T ), then T is named AMD-regular. Clearly, for an AMD-regular T

the net (δ(T |M))M∈FD is convergent and δ(T ) := lim
M∈FD

δ(T |M). Let us denote

by AMDR(H, Y ) the subset of all AMD-regular operators from L(H,Y ). This is
a proper subset of L(H, Y ) (provided H and Y are infinite-dimensional Hilbert
spaces, see Remark 4.5).

The next assertion collects the continuity properties of asymptotic mean di-
latation numbers.

Proposition 4.1. Let Y be a normed space. Then:

(a) T → δ(T ) is a continuous seminorm on the normed space L(H,Y ) with

property δ(T ) ≤ ‖T‖, ∀ T ∈ L(H,Y ).

In particular, ker(δ) := {T ∈ L(H,Y ) : δ(T ) = 0} is a closed vector subspace
of L(H, Y ).

(a′) If Y1 is a normed space, then

δ(vT ) ≤ ‖v‖δ(T ) ∀ T ∈ L(H,Y ) ∀ v ∈ L(Y, Y1). (4.3)

In particular, ker(δ) is a left ideal.
(b) δ has property

|δ(T1)− δ(T2)| ≤ ‖T1 − T2‖ ∀ T1, T2 ∈ L(H, Y ).

In particular, δ is continuous on L(H, Y ) and ker(δ) is a closed subset of
L(H, Y ) (which is not a vector subspace when Y = H, see Remark 4.5).
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(c) AMDR(H,Y ) is a closed subset in L(H, Y ) (AMDR(H, H) is not a vector
subspace of L(H,H), see Remark 4.5) and δ̄ is a continuous functional on it.

Proof. (a) follows easily from the fact that for any fixed M ∈ FD the functional
δ is a norm on L(M,Y ) and from the evident inequality δ(T |M) ≤ ‖T |M‖ ≤ ‖T‖.

(b) Fix T1, T2 ∈ L(H, Y ) and a finite dimensional M ⊂ H. We can write

δ(T2|M) ≤ δ((T2 − T1)|M) + δ(T1|M) ≤ ‖T2 − T1‖+ δ(T1|M).

This inequality implies at once δ
1
(T2) ≤ ‖T2 − T1‖ + δ

1
(T1). Consequently,

δ
1
(T2) − δ

1
(T1) ≤ ‖T2 − T1‖. Similarly, we have δ

1
(T1) − δ

2
(T1) ≤ ‖T2 − T1‖.

Hence we have (b).
(c) follows from (a) and (b).

The next statement provides, in particular, a “sequential” way for computa-
tion of AMD-mumbers.

Proposition 4.2. Let Y be a normed space and T ∈ L(H, Y ).
(a) We have:

δ(T ) = sup
(En)

lim sup
n

δ(T |En) (4.4)

and

δ(T ) = inf
(En)

lim inf
n

δ(T |En), (4.5)

where supremum in (4.4), resp., infimum in (4.5) is taken with respect to all
sequences (En)n∈N of non-trivial finite-dimensional subspaces of H such that
lim

n
dim En = ∞.

(b) If T is AMD-regular and (En)n∈N an arbitrary sequence of non-trivial
finite-dimensional subspaces of H such that lim

n
dim En = ∞, then lim

n
δ(T |En)

exists and δ(T ) = lim
n

δ(T |En).

Proof. Let (En)n∈N be any sequence of non-trivial finite-dimensional subspaces
of H such that lim

n
dim En = ∞.

(a) (1) Let us verify that

δ(T ) ≥ lim sup
n

δ(T |En). (4.6)

Let M0 be any finite-dimensional subspace of H. Fix a natural n and put
Mn = M0 + En. We can write using (3.14) (for E = Mn,M2 = En,M0 = M1)

βM0(T ) ≥ δ(T |Mn) ≥ δ(T |En√
dim M0

dim En
+ 1

. (4.7)

Since n is arbitrary, this inequality implies βM0(T )≥ lim supn δ(T |En). Since M0

is also arbitrary, we get (4.6). The inequality δ(T )≤ sup(En) lim supn δ(T |En) is

a direct consequence of the definition of δ(T ).
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(2) Let us verify now that

δ(T ) ≤ lim inf
n

δ(T |En). (4.8)

Let M0 be any finite-dimensional subspace of H. Fix a natural n and put
Mn = M0 + En. We can write using (3.15):

αM0(T ) ≤ δ(T |Mn) ≤
√

dim M0

dim M0 + dim En

‖T |Mn‖+ δ(T |En)

≤
√

dim M0

dim M0 + dim En

‖T |‖+ δ(T |En).

Since n is arbitrary, from this inequality we obtain αM0(T ) ≤ lim infn δ(T |En).
Since M0 is also arbitrary, we get (4.8). The inequality

δ(T ) ≥ inf
(En)

lim inf
n

δ(T |En)

is a direct consequence of the definition of δ(T ).
(b) follows from (a).

Remark 4.3. Let H be a separable Hilbert space, (en) be an orthonormal ba-
sis of H and for a fixed n, En be the vector subspace generated by {e1, . . . , en}.
One can expect that in this case for any T ∈ L(H) the equality δ(T ) =
lim supn δ(T |En) should be true. But this is not so. Using Proposition 4.7(a) it
is easy to see that for the positive diagonal operator T from Remark 4.5(1) we
have

δ(T ) = 1 >
1√
2

= lim sup
n

δ(T |En).

It is not clear whether there exists a “universal” sequence (En) which could be

used for the exact computation of δ(T ) for all possible operators T .

4.2. Orthonormal sequences and AMD-number. In this subsection we
show that in certain cases AMD-numbers control and are controlled by the
behaviour of an operator on orthonormal sequences.

Proposition 4.4. Let Y be a normed space, T ∈ L(H,Y ) and (en) any
infinite orthonormal sequence in H. The following assertions are valid:

(a) If Y is of cotype 2, then

δ(T ) ≥ 1

c
lim sup

n
‖Ten‖,

where c is the cotype-2 constant of Y .
(b) If Y is of type 2, then

δ(T ) ≤ c lim inf
n

‖Ten‖,
where c is the type-2 constant of Y .

(c) If Y is an inner-product space and T is AMD-regular, then lim
n
‖Ten‖

exists and δ(T ) = lim
n
‖Ten‖.
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Proof. (a) Put lim supn ‖Ten‖ = λ. We can assume λ > 0. There is a subse-
quence (‖Tekn‖) such that

lim
n
‖Tekn‖ = λ.

Fix ε, 0 < ε < λ. Then there is jε ∈ N such that

‖Tekj
‖ > λ− ε ∀j > jε.

Fix now n ∈ N arbitrarily and consider the vector subspace En of H generated
by {ekjε+1

, . . . , ekjε+n
}. Since Y is of cotype 2, we can apply (3.32) for E = En

and T |En and write

δ(T |En) ≥ c−1 min
jε<j≤n

‖Tekj
‖ > c−1(λ− ε).

Since n is arbitrary, this inequality together with Proposition 4.2(a) implies

δ(T ) ≥ c−1(λ− ε). But ε > 0 is arbitrary. Consequently, δ(T ) ≥ 1
c
λ and (a) is

proved.
(b) Put lim infn ‖Ten‖ = λ. There is a subsequence (‖Tekn‖) such that

lim
n
‖Tekn‖ = λ.

Fix ε, 0 < ε. Then there is jε ∈ N such that

‖Tekj
‖ < λ + ε ∀j > jε.

Fix now n ∈ N arbitrarily and consider the vector subspace En of H generated
by {ekjε+1

, . . . , ekjε+n
}. Since Y is of type 2, we can apply (3.33) for E = En

and T |En and write

δ(T |En) ≤ c max
jε<j≤n

‖Tekj
‖ < c(λ + ε).

Since n is arbitrary, this inequality together with Proposition 4.2(a) implies
δ(T ) ≤ c(λ + ε). But ε > 0 is arbitrary. Consequently δ(T ) ≤ cλ and (b) is
proved.

(c) follows from (a) and (b) since any inner-product space is both of type 2
and of cotype 2 with constant 1.

Remark 4.5. Using Proposition 4.4 it is easy to provide several examples.
(1)An example of an operator T which is not AMD-regular. Let H be an

infinite-dimensional separable Hilbert space with orthonormal basis {en : n ∈
N}, consider the operator T : H → H defined: Te1 = e1; Te2 = 0; Te3 =

e3; Te4 = 0 . . . . Then for such an operator δ(T ) = 1 (by Proposition 4.4(a) and
δ(T ) = 0 (by Proposition 4.4(b)). Hence T is not AMD-regular.

(2) AMDR (H,H) is not a vector space. Evidently, for any isometric operator
T : H → H we have δ(T ) = 1. However there are two unitary operators T1 and
T2 such that δ(T1 + T2) does not exist. To provide an example, take T1 = I
identity operator, and define T2 by the relations T2(e2n) = e2n and T2(e2n−1) =
−e2n−1 ∀n. Clearly, T2 is a unitary operator but (T1 + T2)(e2n) = 2e2n and
(T1 + T2)(e2n−1) = 0 for all n. According to Proposition 4.4(a,b), we have

δ(T1 + T2) = 2 and δ(T1 + T2) = 0.
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(3) ker(δ) is not a vector space. The same idea as in (2).

The next assertion will allow us to compute exactly AMD-numbers for the
diagonalizable operators.

Proposition 4.6. Let Y be a Banach space, T ∈ L(H, Y ) be a non-zero
operator and (ej)j∈J an orthonormal basis in H. Put J+ := {j ∈ J : ‖Tej‖ >
0}.

(a) If ( Tej

‖Tej‖)j∈J+ is a Hilbertian family in Y with a constant c, then

δ(T ) ≤ c u-lim sup
j∈J

‖Tej‖.

(b) If ( Tej

‖Tej‖)j∈J+ is a Besselian family in Y with a constant c , then

δ(T ) ≥ c−1 u-lim inf
j∈J

‖Tej‖.

Proof. (a) Since u-lim supj∈J ‖Tej‖ = u-lim supj∈J+
‖Tej‖, we can suppose that

J = J+. Fix a finite ∆ ⊂ J and consider the vector subspace M∆ generated by
{ej : j ∈ ∆}.

Since ( Tej

‖Tej‖)j∈J is a Hilbertian family in Y with the constant c, we have

‖Th‖ ≤ c sup
j /∈∆

‖Tej‖, ∀h ∈ SH , h orthogonal to M∆. (4.9)

Take now any finite-dimensional M ⊃ M∆. We have M = M∆ + M2, where
M2 is the orthogonal complement of M∆ in M ; then applying (3.15) and (4.9)
to T |M , we get

δ(T |M) ≤
√

dim M∆

dim M
‖T‖+ c sup

j /∈∆
‖Tej‖. (4.10)

Fix ε > 0, take a finite-dimensional Mε ⊃ M∆ in such a way that
√

dim M∆

dim Mε

‖T‖ < ε

From (4.10), according to the choice of Mε, we obtain:

δ(T |M) ≤
√

dim M∆

dim Mε

‖T‖+ c sup
j /∈∆

‖Tej‖

< ε + c sup
j /∈∆

‖Tej‖ ∀M ∈ FD(H), M ⊃ Mε.

Consequently, βMε(T ) ≤ ε + c supj /∈∆ ‖Tej‖. Therefore

δ(T ) ≤ βMε(T ) ≤ ε + c sup
j /∈∆

‖Tej‖.



AMD-NUMBERS 257

So δ(T ) ≤ ε + c supj /∈∆ ‖Tej‖. Since the latter inequality holds for all finite
subsets ∆ ⊂ J , it implies

δ(T ) ≤ ε + c inf
∆⊂J, card∆<∞

sup
j /∈∆

‖Tej‖ = ε + c u-lim sup
j∈J

‖Tej‖.

Since ε is arbitrary, we obtain the required inequality.
The proof of (b) is similar.

Proposition 4.7. Let Y be a Hilbert space and T ∈ L(H, Y ) be an ortho-
diagonalizable operator with diagonal (λj)j∈J . Then:

(a) δ(T ) = u-lim supj∈J |λj|.
(b) δ(T ) = u-lim infj∈J |λj|.
(c) The operator T is AMD-regular if and only if u-lim

j∈J
|λj| exists and, in case

of AMD-regularity, the equality

δ(T ) = u-lim
j∈J

|λj|

holds.

Proof. (a) T is ortho-diagonalizable with diagonal (λj)j∈J means that there are
an orthonormal basis (ej)j∈J in H and an orthonormal basis (yj)j∈J in Y such

that Tej = λjyj, ∀j ∈ J. The inequality δ(T ) ≥ lim supj |λj| follows from
Proposition 4.4(a) and Lemma 2.1, since Y is of type 2 with constant one.

The inequality δ(T ) ≤ lim supj |λj| follows from Proposition 4.6(a) since any
orthonormal family in a Hilbert space is Hilbertian with constant one.

The proof of (b) is similar, (c) follows from (a) and (b).

Remark 4.8. (1) Evidently, if T : H → Y is a linear isometry, then δ(T ) = 1.
From Proposition 4.7 we get that the converse is not true. Indeed, let H be
separable and λn = 1− 1

n+1
, n = 1, 2, . . . , then we have ‖T‖ = 1, δ(T ) = 1, but

T is not an isometry, even more, if x ∈ H and x 6= 0, then ‖T (x)‖ < ‖x‖.
(2) Proposition 4.6(a,b) can give some information also in the case where Y

is not necessarily a Hilbert space, e.g., if Y = lp, 2 < p < ∞ and T : l2 → lp is
a diagonal operator with the diagonal (λn) with respect to natural bases, and

since the natural basis of lp is Hilbertian, we get δ(T ) ≤ lim supj |λj|. This

estimate is slightly better than the trivial one: δ(T ) ≤ ‖T‖.
4.3. AMD-numbers and compactness-like properties of operators. In
this subsection we show that the AMD-numbers can be used as tools for the
study of compactness-like properties of the operators acting from a Hilbert
space. We begin with a proposition.

Proposition 4.9. Let Y be a Banach space.

(a) Always K(H, Y ) ⊂ {T ∈ L(H, Y ) : δ(T ) = 0}.14

14 This follows also from more delicate Theorem 4.11(b).
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(b) If Y is of cotype 2, then K(H,Y ) = {T ∈ L(H, Y ) : δ(T ) = 0} (the

inclusion {T ∈ L(H, Y ) : δ(T ) = 0} ⊂ K(H,Y ) is not true in general, see
Remark 4.13).

Proof. (a) Let T ∈ K(H,Y ). It is clear that if T is a finite-rank operator, then

δ(T ) = 0. If T is arbitrary, then (by Corollary 2.7) T is the norm limit of a

sequence of finite-rank operators. This and the continuity of δ imply δ(T ) = 0.

(b) Let T ∈ L(H,Y ) and δ(T ) = 0. Since Y is of cotype 2, by Proposition
4.4(a), we have that lim

n
‖Ten‖ = 0 for any infinite orthonormal sequence (en)

in H. Hence, by Corollary 2.7, T ∈ K(H,Y ).

The next quantitative version of this proposition will be used in the last
section.

Theorem 4.10. Let T ∈ L(H,Y ). The following statements are valid:

(a) δ(T ) ≤ d(T,K(H, Y )).
(b) If Y is of cotype 2, then

δ(T ) ≥ 1

c
d(T, K(H,Y )),

where c is the cotype 2 constant of Y .

(c) If Y is a Hilbert space, then δ(T ) = d(T, K(H, Y )).

Proof. (a) Fix any T0 in K(H,Y ). By Proposition 4.9(a) δ(T0) = 0. Hence

δ(T ) = δ(T − T0 + T0) ≤ δ(T − T0) + δ(T0) = δ(T − T0) ≤ ‖T − T0‖.
Since T0 is arbitrary, this inequality implies (a).

(b) According to Proposition 4.4(a) and Corollary 2.8(c) we have

cδ(T ) ≥ sup
(en)∈O(H)

lim sup
n

‖Ten‖ ≥ d(T, K(H,Y )).

(c) follows from (a) and (b).

The next theorem implies, in particular, that the condition δ(T ) = 0 is sat-
isfied if and only if T is a superstrictly singular operator.

Theorem 4.11. Let Y be a Banach space and T ∈ L(H, Y ).
(a) We have:

lim
n

bn(T ) ≤ δ(T ) ≤ 3
√

π lim
n

bn(T ).

(b) δ(T ) = 0 if and only if T is superstrictly singular.
(c) If the restriction of T on some infinite-dimensional closed vector subspace

of H is strictly singular, then δ(T ) = 0.
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Proof. (a) Let us show first that δ(T ) ≥ lim
n

bn(T ). Assume that lim
n

bn(T ) >

r > 0. Fix a natural n. Then there is En ∈ FD(X), dim En = n such that
m(T |En) > r. Take now any non-zero finite-dimensional M0 ⊂ H. An applica-
tion of inequality (3.14) to M := M0 + En, M1 = M0 and M2 = En gives

βM0(T ) ≥ δ(T |M0+En) ≥ δ(T |En)√
dim M0

dim En
+ 1

≥ m(T |En)√
dim M0

n
+ 1

>
r√

dim M0

n
+ 1

.

Since n is arbitrary, this inequality implies δ(T ) ≥ r. As r is arbitrary, we get
the needed inequality.

Let us show now δ(T ) ≤ 3
√

π lim
n

bn(T ). For this we use Proposition 3.9.

We can suppose that ‖T‖ = 1. Fix ε ∈]0, 1/2[ and a sequence (En) of finite-
dimensional vector subspaces of H such that lim

n
dim(En) = ∞. Let also C be

the universal constant from Proposition 3.9. Fix then a natural n. Then by
means of Proposition 3.9, applied to E = En, T |En and τ = 1, we can find and
fix a vector subspace Fn ⊂ En with

dim(Fn) ≥ C
ε2 dim(En)

| log ε| (4.11)

such that

m(T |Fn) ≥ 1

3
√

π
δ(T |En)− ε. (4.12)

In this way we obtain a sequence (Fn) of finite-dimensional subspaces of H,
which depends on T and on ε. Put kn := dim(Fn), n = 1, 2, . . . Clearly, (4.12)
implies

bkn(T ) ≥ 1

3
√

π
δ(T |En)− ε, n = 1, 2, . . . . (4.13)

Since lim
n

dim(En) = ∞, from (4.11) we conclude that lim kn = ∞. This and

(4.13) imply

lim
n

bn(T ) = lim
n

bkn(T ) ≥ 1

3
√

π
lim sup

n
δ(T |En)− ε, n = 1, 2, . . . . (4.14)

From (4.14), since (En) is arbitrary, according to Proposition 4.2, we obtain

lim
n

bn(T ) ≥ 1
3
√

π
δ(T )−ε. Since ε is also arbitrary, we get δ(T ) ≤ 3

√
π lim

n
bn(T ).

(b) follows from (a).
(c) Fix a finite-dimensional vector subspace M0 ⊂ H and a number ε > 0.
Let X ⊂ H be a closed vector subspace such that T |X : X → Y is strictly

singular. Then, by [52, (1.9.1)], we can find and fix an infinite-dimensional
closed vector subspace H0 ⊂ X such that ‖T |H0‖ < ε. Take now an infinite
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sequence (Mn) of finite-dimensional subspaces of H0 such that dim Mn = n, n =
1, 2, . . . . According to (3.15), for any fixed n we can write

δ(T |M0+Mn) ≤
√

dim M0

dim M0 + dim Mn

‖T |M0‖+ δ(T |M0)

≤
√

dim M0

dim M0 + n
‖T‖+ ‖T |Mn‖ <

√
dim M0

dim M0 + n
‖T‖+ ε.

From this we get

αM0(T ) ≤ δ(T |M0+Mn) <

√
dim M0

dim M0 + n
‖T‖+ ε, n = 1, 2, . . . .

Hence αM0(T ) ≤ ε and, since M0 is arbitrary, δ(T ) ≤ ε. As ε is also arbitrary,
we get δ(T ) = 0.

The next “AMD-free” statement of independent interest is not a consequence
of Theorem 2.18 because it does not require the existence of an unconditional
basis.

Theorem 4.12. Let H be a Hilbert space and Y be any Banach space of
cotype 2. Then SSS(H,Y ) = K(H, Y ).

Proof. This follows from Theorem 4.11(b) and Proposition 4.9.

Remark 4.13. (1) Let 2 < p < ∞ and let T2,p : `2 → `p be the natural
embedding. Then by Proposition 2.10(d) we have that T2,p is a SSS-operator

and therefore, by Theorem 4.11, δ(T2,p) = 015. Since T2,p is not compact, it
turns out that Proposition 4.9, as well as Theorem 4.12, may not be true when
Y is not of cotype 2. However, in general, for a Banach space Y the validity
even of the inclusion SS(`2, Y ) ⊂ K(`2, Y ) may not imply that Y is of cotype
2 (see Remark 2.19(5)).

(2) Let us say for a moment that a Banach space Y is a SSSC-space if
SSS(`2, Y ) ⊂ K(`2, Y ). By Theorem 4.12 any cotype 2 Banach space is a SSSC-
space. Evidently, any Banach space with the Schur property is a SSSC-space
too. It would be interesting to find an internal characterization of SSSC-spaces.

5. AMD-Numbers and Bounds of the Essential Spectrum

5.1. Spectrum and spectral radius. Let A be a Banach algebra over K
with unit e. The spectrum σ(a) of an element a ∈ A is defined as the set of
all λ ∈ K such that the element a− λe is not invertible in A. For an arbitrary
element a, σ(a) is a compact subset of K which is non-empty when K = C (by
Gelfand’s theorem), but which may be empty when K = R.

15 The equality δ(T2,p) = 0 can also be proved directly, namely it can be shown that for
any vector subspace E ⊂ `2 with dim E = n one has δ(T2,p|E) ≤ ap(γK)(dim E)1/p−1/2.
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For an element a ∈ A with non-empty spectrum, its spectral radius r(a) is
defined by the equality

r(a) = sup{|λ| : λ ∈ σ(a)}.
Notice that r(a) ≤ ‖a‖ for any a ∈ A. Clearly, if for a given a ∈ A we have
σ(a) 6= ∅ and σ(a) ⊂ R, then σ(a) ⊂ [min(σ(a)), max(σ(a))].

The following assertions are easy to prove:
(Spec1) If a ∈ A is such that σ(a) 6= ∅ and λ ∈ K, then σ(a − λe) =

σ(a)− λ(:= {λ′ − λ : λ′ ∈ σ(a)}).
(Spec2) If a ∈ A is such that σ(a) 6= ∅ and a is invertible, then 0 /∈ σ(a)

and σ(a−1) = (σ(a))−1(:= {λ−1 : λ ∈ σ(a)}).
(Spec3) If a ∈ A is such that σ(a) 6= ∅ and λ /∈ σ(a), then σ((a−λe)−1) 6= ∅

and hence r((a− λe)−1) is defined.

Taking into account (Spec3) let us say that an element a ∈ A is normal-like
if σ(a) 6= ∅ and r((a− λe)−1) = ‖(a− λe)−1‖ ∀λ ∈ K \ σ(a).

Proposition 5.1. Let A be a real or complex Banach algebra with unit, (an)
be a sequence of elements of A such that σ(an) 6= ∅ ∀ n, a ∈ A and an → a in
A. Then:

(a) If (λn)n∈N is a sequence of scalars such that λn ∈ σ(an) for all n, then
(λn) is a bounded sequence and its cluster points belong to σ(a). In particular,
σ(a) 6= ∅.

(b) lim supn r(an) ≤ r(a). Moreover, if σ(a) ⊂ R and σ(an) ⊂ R for all
n ∈ N, then

lim sup
n

(max(σ(an))) ≤ max(σ(a)),

and

lim inf
n

(min(σ(an))) ≥ min(σ(a)).

(c) If the elements an, n = 1, 2, . . . are normal-like, then for any λ ∈ σ(a)
we have lim

n
d(λ, σ(an)) = 0.

(d) If the assumptions of (c) are satisfied then r(a) = lim
n

r(an). Moreover, if

σ(a) ⊂ R and σ(an) ⊂ R for all n ∈ N, then

lim
n

max(σ(an)) = max(σ(a))

and

lim
n

min σ(an) = min σ(a).

Proof. (a) Evidently, |λn| ≤ ‖an‖ ≤ supn ‖an‖ < ∞ for all n ∈ N. Hence (λn)
is a bounded sequence. Now it is easy to prove that any cluster point of (λn)
belongs to σ(a).

(b) follows easily from (a).
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(c) Suppose λ ∈ σ(a), but lim
n

d(λ, σ(an)) 6= 0. Then there exists a strictly

positive number ε such that d(λ, σ(an)) ≥ ε for infinitely many values of n.
There is no loss in simplifying the notation and assuming that

d(λ, σ(an)) ≥ ε, n = 1, 2, . . . .

Hence

λ /∈ σ(an)), n = 1, 2, . . . .

From this, via (Spec2) and according to the definition of the spectral radius,
we get

r((an − λe)−1) ≤ ε−1, n = 1, 2, . . . .

The latter relation, together with the supposition that the considered elements
are normal-like, gives

‖(an − λe)−1‖ ≤ ε−1, n = 1, 2, . . . . (5.1)

Put bn = an − λe, n = 1, 2, . . . . Using the relation

b−1
n − b−1

m = b−1
m (am − an)b−1

n , , n,m = 1, 2, . . . ,

and (5.1), we obtain

‖b−1
n − b−1

m ‖ ≤ ‖b−1
m ‖ · ‖am − an‖ · ‖b−1

n ‖ ≤ ε−2‖am − an‖, n, m = 1, 2, . . . ,

and since an → a, it follows that the squence (b−1
n ) converges to some element

b. Then

(a− λe)b = lim
n

(an − λe) lim
n

b−1
n = lim

n
(an − λe)(an − λe)−1 = e

and, similarly, b(a − λe) = e. This a − λe is invertible and λ /∈ σ(a). A
contradiction.

(d) follows in a standard way from (c) and (b).

Remark 5.2. The reader familiar with the notion of convergence of sets in
Kuratowski’s sense (see [32, p. 335–340]) can observe easily that Proposition
5.1(a) is a direct formulation of the well-known fact: the set-valued function
σ is upper semicontinuous on A. Similarly, Proposition 5.1(c) together with
Proposition 5.1(a) implies that this function is continuous on the (closed) set
A0 consisting of normal-like elements of A. Our proof is taken from [25] (see the
solution of problem 105) where the statement is proved for normal operators in
a complex Hilbert space. We see that the proof works for normal-like elements
in real algebra too.
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5.2. Essential spectrum. Let H be an infinite-dimensional real or complex
Hilbert space, then L(H) is a Banach algebra with unit. It follows that when
H is a complex Hilbert space, any T ∈ L(H) has a non-empty spectrum. It
is well-known that when T is any self-adjoint operator in a real or complex
Hilbert space, the fact that σ(T ) is non-empty can be proved easily without
any reference to Gelfand’s theorem. Also the following facts have direct and
easy proofs.

Let H be a Hilbert space over K, T ∈ L(H) and T ∗ = T . Then:

• (Tx|x) ∈ R ∀x ∈ H and σ(T ) ⊂ R.
• σ(|T |) = {|λ| : λ ∈ σ(T )} and r(T ) = ‖T‖.
• sup{(Tx|x) : x ∈ SH} = max σ(T ) and inf{(Tx|x) : x ∈ SH} =

min σ(T ).

The set K(H) is a closed two-sided ideal of L(H). Let π :L(H)→L(H)/K(H)
be the canonical map. Then it is known that L(H)/K(H) too is a Banach
algebra with unit π(I) and with respect to the quotient norm

‖π(T )‖ = d(T, K(H)), T ∈ L(H),

which is called the Calkin algebra. For a given T ∈ L(H) the essential spectrum
σe(T ) is by definition the spectrum σ(π(T )) of its canonical image π(T ) in the
Calkin algebra ([16, p. 358]).

Notice that for any T ∈ L(H) we have σe(T ) ⊂ σ(T ). If H is a complex
Hilbert space, then for any T ∈ L(H) the essential spectrum is non-empty
(this is so because in any complex Banach algebra with unit any element has a
non-empty spectrum). In what follows, we need the fact that any self-adjoint
operator in a real Hilbert space also has a non-empty essential spectrum. We
shall derive this from the corresponding fact for strictly diagonalizable operators
via the following lemma which asserts that such operators are sufficiently many.

Lemma 5.3. Let H be a real or complex infinite-dimensional Hilbert space.
The following assertions hold:

(a) Let S ∈ L(H) be any self-adjoint operator. Then there is a sequence
Dn : H → H, n ∈ N of self-adjoint strictly ortho-diagonalizable operators such
that lim

n
‖Dn − S‖ = 0.

(b) If Y is another Hilbert space, then the set of all ortho-diagonalizable
operators is norm dense in L(H, Y ).

Proof. (a) Fix S. According to the spectral representation theorem which holds
in the case of real Hilbert space too [63, Theorem 7.17, p.191], there exists a
resolution of identity E on Borel subsets of Λ := σ(S) such that

S =
∫

Λ

λE(dλ).

Notice that this integral can be computed as follows: fix a sequence fn : Λ → Λ,
n ∈ N, of simple measurable functions such that sup{|fn(λ) − λ|, λ ∈ Λ} → 0
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when n →∞; put

Dn =
∫

Λ

fn(λ) dE(λ), n ∈ N, (5.2)

then Dn : H → H, n ∈ N are self-adjoint linear operators and lim
n
‖S−Dn‖=0.

The properties of the resolution of identity easily imply that each of the
operators Dn, n ∈ N, is strictly ortho-diagonalizable. Therefore (Dn) is the
required sequence for S.

(b) Fix T ∈ L(H, Y ). Let H1 be the closure of |T |(H), where |T | = (T ∗T )
1
2 .

There is an isometry U : H1 → Y such that U |T |h = Th ∀h ∈ H. The
restriction S of |T | on H1 is a self-adjoint positive linear operator acting in
the Hilbert space H1. Since H = ker |T | + H1, we have T = USP1, where
P1 : H → H1 is an orthogonal projection. Let now Dn, n ∈ N, be the ortho-
diagonalizable operators constructed for S according to (a). Now it is easy to
check that the operators UDnP1, n ∈ N, are ortho-diagonalizable and lim

n
‖T −

UDnP1‖ = 0.16

Lemma 5.4. Let H be a real or complex Hilbert space and let T ∈ L(H) be
a strictly ortho-diagonalizable operator with the diagonal (λj)j∈J . The following
assertions are valid:

(a) 0 /∈σe(T ) if and only if u-lim infj∈J |λj| > 0. Moreover, if 0 /∈σe(T ), then
(π(T ))−1 = π(B), where B ∈ L(H) is a strictly diagonalizable operator with
respect to the same orthonormal basis as T .

(b) σe(T ) coincides with the set of numbers λ which have the form λ =
lim λjn where (jn) is a sequence of distinct elements of J such that lim

n
λjn exists.

Equivalently, if λ is a number, then λ ∈ σe(T ) if and only if u- lim infj∈J |λj −
λ| = 0. In particular, σe(T ) 6= ∅.

(c) σe(|T |) = {|λ| : λ ∈ σe(T )} and r(π(T )) = ‖π(T )‖.
(d) If 0 /∈ σe(T ) then r((π(T ))−1) = ‖(π(T ))−1‖.
(d′) The element π(T ) is normal-like in the Calkin algebra L(H)/K(H).
(e) If A ∈ L(H) is any self-adjoint operator, then σe(A) 6= ∅.

Proof. (a) We can suppose that T is a diagonal operator in an orthonormal basis
(ej)j∈J of H. Then the first part of (a) can be proved as a similar assertion in
[16] (see the proof of the equivalence (a)⇔(e) of Theorem 2.3 on pp. 350-351);
we note only that in our case of a diagonal operator the proof is easier and it
works also in the case of a real Hilbert space. Let now 0 /∈ σe(T ), then according
to the first part we have lim infj∈J |λj| > 0. This implies that infj /∈∆ |λj| > 0
for some finite subset ∆ ⊂ J . Define now B ∈ L(H) in the following way:
B(ej) = 0 if j ∈ ∆ and B(ej) = 1

λj
ej if j /∈ ∆. Then B is a diagonal operator

and it is easy to see that π(B) is the inverse of π(T ) in the Calkin algebra.

16 We are indebted to Professor S. Kwapień who communicated to us the idea of deriving
this lemma from the spectral theorem. We do not know whether there exists a proof which
avoids spectral integrals.
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(b) The first part of (b) follows directly from the first part of (a). From the
first part of (b) it is clear also that the essential spectrum of T is not empty.

(c) Since |T | is a strictly diagonalizable operator with diagonal (|λj|), accord-
ing to (b) we have the first equality from (c). Now again from (b) and from the
definition of lim supj |λj| it follows that r(π(T )) = sup σe(|T |) = lim supj |λj|.
This and equality (2.6) of Corollary 2.21 imply r(π(T )) = ‖π(T )‖.

(d) The inequality r((π(T ))−1) ≤ ‖(π(T ))−1‖ is valid for general reasons.
The inverse inequality will be proved if we can find λ in σ((π(T ))−1) such that
|λ| = ‖(π(T ))−1‖. Take B from (a). If we apply now the second equality
of (c) to the operator B, we can find λ ∈ σ(π(B)) = σ((π(T ))−1) such that
|λ| = ‖π(B)‖ = ‖(π(T ))−1‖ and (d) is proved.

(d′) Let λ ∈ K \ σe(T ). Put Tλ = T − λ I. Then Tλ is strictly ortho-diago-
nalizable and 0 /∈ σe(Tλ). Then, by (d), applied to Tλ, we get: r((π(Tλ))

−1) =
‖(π(Tλ))

−1‖. Hence π(T ) is normal-like.
(e) Via Lemma 5.3(a) we can find a sequence (Tn) of strictly ortho-diagona-

lizable operators in H such that lim
n
‖Tn−A‖ = 0. It follows that lim

n
‖π(Tn)−

π(A)‖ = 0. Now an application of (b) and Proposition 5.1(a) to the Calkin
algebra A = L(H)/K(H) gives that σe(A) := σ(π(A)) 6= ∅.

5.3. Bounds of the essential spectrum. We begin with an assertion which
shows that the mean dilatation numbers in the case of Hilbert spaces depend
only on the modulus of operators.

Lemma 5.5. Let Y be a Hilbert space and T ∈ L(H,Y ). Then δ(T ) =

δ(|T |), δ(T ) = δ(|T |). Consequently, T is AMD-regular if and only if |T | is

such and, in the case of AMD-regularity, we have δ(T ) = δ(|T |).
Proof. This follows easily from the definitions and from the observation that
the equality ‖Tx‖ = ‖|T |(x)‖ holds for all x ∈ H.

The next assertion, which is the main result of this section, shows that by
using mean dilatation numbers it is possible to describe the bounds of the
essential spectrum.

Theorem 5.6. Let H, Y be infinite-dimensional Hilbert spaces, T ∈ L(H, Y )
be an arbitrary operator. Then

δ(T ) = max σe(|T |), δ(T ) = min σe(|T |).
Consequently, T is AMD-regular if and only if σe(|T |) consists of one point λ0,
and, in such a case, δ(T ) = λ0.

Proof. Suppose first that T is an ortho-diagonalizable operator with diagonal
(λj). Then |T | is a strictly ortho-diagonalizable operator with diagonal (|λj|).
Hence by Lemma 5.4, Lemma 2.1 and Corollary 2.21 (through equality (2.6))
we can write the equalities:

max σe(|T |) = u-lim sup
j

|λj| = δ(T ), min σe(|T |) = u-lim inf
j

|λj| = δ(T ).
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Therefore the assertion is true in this case.
Let now T be an arbitrary operator. By Lemma 5.3(b), there is a sequence

(Tn) of ortho-diagonalizable operators, Tn ∈ L(H,Y ), such that lim
n
‖T −Tn‖ =

0. It follows that lim
n
‖|T | − |Tn|‖ = 0. This implies lim

n
‖π(|T |)− π(|Tn|)‖ = 0.

Notice now that according to Lemma 5.4(d′) the elements π(|Tn|), n = 1, 2, . . . ,
are normal-like in the Calkin algebra L(H)/K(H). So we can apply Proposi-
tion 5.1(d) for the elements π(|T |), π(|Tn|), n ∈ N, and write max σe(|Tn|) →
max σe(|T |) and min σe(|Tn|) → min σe(|T |) (let us emphasize that this is the
crucial point of the proof, only here the delicate Proposition 5.1(d) is used).

Now, using this, Lemma 5.5 and the continuity of functionals δ and δ (see
Proposition 4.1), we obtain:

δ(T ) = δ(|T |) = lim
n

δ(|Tn|) =

= lim
n

max σe(|Tn|) = max σe(|T |).
Similarly,

δ(T ) = δ(|T |) = lim
n

δ(|Tn|) =

= lim
n

min σe(|Tn|) = min σe(|T |).

The assertion about δ is now immediate.

Remark 5.7. The exact bounds of the essential spectrum for an operator in
a complex Hilbert space had been studied earlier in several papers, see, e.g.,
[6], [41], [65]. For the case of a complex Hilbert space H and the description of
the essential spectrum by means of Weyl’s criterion [57, p.237, Theorem VII.12]
together with the observation that for any T ∈ L(H) one has ‖π(T )‖ ∈ σe(|T |)
(which follows from the general result concerning the spectrum of an element
in a C∗-algebra), we get

δ(T ) = max σe(|T |).
As the reader can see, our proof avoids the usage of the rather delicate fact that
the Calkin algebra is a C∗-algebra.
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mann, Paris, 1971.

8. N. Bourbaki, Espaces vectoriels topologiques. Masson, Paris, 1981.
9. J. Bourgain and J. Diestel, Limited operators and strict cosingularity. Math. Nachr.

119(1984), 55–58.
10. P. Casazza and N. Nielsen, A Gaussian average property of Banach spaces. Illinois J.

Math. 41(1997), No. 4, 559–576.
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