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STRONG INNOVATION AND ITS APPLICATIONS TO
INFORMATION DIFFUSION MODELLING IN FINANCE

T. TORONJADZE

Abstract. We consider the mean-variance hedging and utility maximization
problems under partial information for diffusion models of the stock price
process. The special feature of this paper is that we construct a strong
innovation process for the stock price process which allows us to reduce the
partial information case to the full information one.
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1. Introduction

We consider two important issues of financial modelling: the mean-variance
hedging and utility maximization problems under partial information assuming
that only the prices of risky assets (stocks) are observable.

We focus on the diffusion models. The mean-variance hedging problem under
partial information was studied in several recent papers: Di Masi, Platen and
Runggaldier [4] studied the case, where stock prices are observed at discrete
time moments, Schweizer [25], Lasry and Lions [16], and Frey and Runggaldier
[6] extended the problem for more general restricted information. In these
papers the stock price process is assumed to be martingale under the objective
probability, and hence does not include the case, where drift coefficient of the
stock price process is not observable. Pham [21] extends the general approach
developed by Gourieroux, Laurent and Pham [9] and Rheinländer and Schweizer
[24] in full information context to partial information. In particular, Pham’s
approach includes the case of a nonobservable drift coefficient in the diffusion
model. The utility maximization problem under partial information in the
complete market framework studied in Detemple [3], Genotte [7], Dothan and
Feldman [5] (linear Gaussian models, dynamic programming method), Lakner
[14], [15] (diffusion model, martingale approach), Karatzas and Xue [12], and
Karatzas and Zhao [13] (the Bayesian case).

Pham and Quenez [22] consider an incomplete market, in particular a stochas-
tic volatility model and combine the stochastic filtering technique and the mar-
tingale duality approach to characterize the value function and the optimal
portfolio.
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Our approach is based on the following observation: two main tools are used
one after the other to solve the mean-variance hedging or portfolio optimization
problems in the partial information framework filtering (essentially, the notion
of innovation process) and control. But there exist two notions of innovation
process: the weak and strong innovations (see Theorem 2.1 below). Weak in-
novation exists under mild conditions (see, e.g., Meyer [20]). But when this
process is used in filtering the solution of the remaining control problems re-
quires considerable effort: e.g., the papers of Pham [21] and Pham and Quenez
[22] are essentially devoted to the study of these remaining problems.

The construction of strong innovation is much more difficult. But in situations
in which such a process exists and is used in filtering, the remaining control
problems for partially observable models become almost trivial, because they
are reduced to the corresponding problems whith full information and, hence,
with already known solutions. Namely, the mean-variance hedging problem for
partial information is reduced to the methodology of Gourieroux, Laurent and
Pham [9] and Rheinländer and Schweizer [24] while the utility maximization
problem to the methodology of Karatzas, Lehoczky, Shreve and Xu [11] under
full information.

Originally, the innovation process was introduced by Shiryaev [26] and Clark
[2] and subsequently was studied by many authors in different schemes, see,
e.g., the review in [27].

In Section 2 we introduce a strong innovation process for the so called partially
observable diffusion scheme and give the conditions under which this process
exists.

In Section 3 we consider the mean-variance hadging and the utility maxi-
mization problems in different schemes for the stock price process and show
how models with partial information can be reduced to models with full infor-
mation.

In the Appendix we give the proof of Theorem 2.1 and its corollaries.

2. Construction of a strong innovation process for a component
of a partially observable diffusion type process

Fix the real number T > 0, and integers d1 ≥ 1, d2 ≥ 1, d = d1 + d2.
Denote by (C l

[0,T ],Bl
[0,T ]), l = d1 or d2, the measurable spaces of continuous

l-dimensional functions with the usual uniform metric.
Consider the functionals A = (Ai(t, x, y)), i = 1, d1, a = (ai(t, x, y)), i = 1, d2,

B = ‖Bij(t, x)‖, i = 1, d1, j = 1, d, b = ‖bij(t, x, y)‖, i = 1, d2, j = 1, d,

where (t, x, y) ∈ [0, T ] × Cd1

[0,T ] × Cd2

[0,T ]. Let for each N = 1, 2, . . . and for each

x1, x2 ∈ Cd1

[0,T ]

τN(x1, x2) := inf
{
t : t > 0, sup

0≤s≤t
max(|x1(s)|2, |x2(s)|2) > N

}
,

where inf{∅} = +∞ and | · | is the norm in Rd1 .
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Further, for each N = 1, 2, . . . introduce the set

DN = {(t, x1, x2) ∈ [0, T ]× Cd1

[0,T ] × Cd1

[0,T ] : 0 < t ≤ τN(x1, x2)}.
Denote by g = (g(t, x, y)) any of the objects Ai, ai, Bij and bij.
Suppose
(1) g = (g(t, x, y)) is a non-anticipative nonrandom bounded functional:

|g(t, x, y)| ≤ const, ∀(t, x, y) ∈ [0, T ]× Cd1

[0,T ] × Cd2

[0,T ];

(2) the functional g = (g(t, x, y)) satisfies Lipschitz condition locally in vari-
able x and globally in variable y: for each N , one can find a constant denoted
by constN such that for each t ∈ [0, T ], x1, x2 ∈ Cd1

[0,T ] and y1, y2 ∈ Cd2

[0,T ],

|g(t, x1, y1)− g(t, x2, y2)|2 ≤ constN(|x1(t)− x2(t)|2 + |y1(t)− y2(t)|2

+

t∫

0

(
|x1(s)− x2(s)|2 + |y1(s)− y2(s)|2

)
ds

on the set DN , where | · | is the norm in the corresponding Euclidean space.
Let a d-dimensional Brownian motion w = (w, F ) = (w(t),Ft, 0 ≤ t ≤ T ) be

given on a filtered complete probability space (Ω,F , F = (Ft), 0 ≤ t ≤ T, P ).
Consider the following system of stochastic differential equations (SDEs):

dη(t) = a(t, ξ, η)dt + b(t, ξ, η)dw(t),

dξ(t) = A(t, ξ, η)dt + B(t, ξ)dw(t), (2.1)

η(0) = η0 ∈ Rd2 , ξ(0) = ξ0 ∈ Rd1 .

Remark 2.1. System (2.1) can be rewritten in triangle form (see, Liptser and
Shiryaev [18], Lemma 10.4, Theorem 10.3)

dη(t) =a(t, ξ, η)dt + b(t, ξ, η)dv(t) + c(t, ξ, η)dw(t),

dξ(t) =A(t, ξ, η)dt + B(t, ξ)dw(t), (2.2)

η(0) = η0, ξ(0) = ξ0,

where w and v are independent (w ⊥ v) d1- and d2-dimensional Brownian
motions, respectively, b, c and B are d2 × d2-, d2 × d1- and d1 × d1-matrices,
respectively. All coefficients satisfy conditions (1) and (2).

It is well-known that under these conditions there exists a pathwise unique
strong (i.e., Fw-adapted) solution (η, ξ) of system (2.1) (or (2.2)).

Introduce the matrix B2(t, x) := B(t, x)B
∗
(t, x) (the superscript ∗ means

transposition) and suppose
(3) there exists a constant λ > 0, such that

d1∑

i,j=1

B2
ijuiuj ≥ λ|u|2

for each (t, x) ∈ [0, T ]× Cd1

[0,T ] and u = (u1, . . . , ud1) ∈ Rd1 .
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Denote by B the symmetric positive square root of the matrix B2. (Note that
this matrix participates in the second equation of (2.2).) Then from condition
(3) it follows that there exists the inverse matrix B−1(t, x) of the matrix B,
which is a bounded functional of the variables (t, x). Let

m =
(
m(t, x), 0 ≤ t ≤ T, x ∈ Cd1

[0,T ]

)

be a d1-dimensional non-anticipative functional with the property: P -a.s., for
almost all t, 0 ≤ t ≤ T ,

m(t, ξ) = E(A(t, ξ, η)|F ξ
t ) (2.3)

(such a functional exists, see [18], Lemma 4.9), where F ξ = (F ξ
t ), 0 ≤ t ≤ T , is

the P -augmentation of the filtration generated by ξ, E(·|F ξ
t ) = E(·|F ξ

t )(t, ω) is
a (t, ω)-measurable modification of conditional expectation.

Define the process w by the relation

w(t) =

t∫

0

B−1(s, ξ)(dξ(s)−m(s, ξ)ds), 0 ≤ t ≤ T, (2.4)

and denote by Fw = (Fw
t ), 0 ≤ t ≤ T , the P -augmentation of the filtration

generated by w.

Theorem 2.1. In scheme (2.1), under conditions (1), (2) and (3), there
exists a strong innovation process w for the process ξ. That is:

(a) the process w = (w,F ξ) is a (F ξ, P )-Brownian motion,
(b) Fw = F ξ(mod P ).
The process w is given by (2.4).

Let the process ξ = (ξ(t), 0 ≤ t ≤ T ) satisfy the SDE

dξ(t) = A(t, ξ, α)dt + B(t, ξ)dw(t), ξ(0) = ξ0 ∈ Rd1 , (2.5)

where α = (α, F ) = (α(t),Ft, 0 ≤ t ≤ T ) is a d2-dimensional F -adapted process
independent of w (α ⊥ w) with values in some measurable space (A,BA).

Let the coefficient B satisfy conditions (1)–(3), and the coefficient A =
(A(t, x, a), (t, x, a) ∈ [0, T ] × Cd1

[0,T ] × A) satisfy condition (1) and the local
Lipschitz condition in the variable x, for each fixed a ∈ A, with constN which
does not depend on the variable a.

Corollary 2.1. In scheme (2.5) there exists a strong innovation process w

for the process ξ, with m(t, ξ) = E(A(t, ξ, α)|F ξ
t ), 0 ≤ t ≤ T .

Finally, consider the scheme

dξ(t) = µ(t)dt + B(t, ξ)dw(t), ξ(0) = ξ0 ∈ Rd1 , (2.6)

where µ = (µ(t), 0 ≤ t ≤ T ) is a F -adapted , bounded d1-dimensional process,
independent of w (µ ⊥ w), and B satisfies conditions (1)–(3).
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Corollary 2.2. In scheme (2.6) there exists a strong innovation process w

for the process ξ, with m(t, ξ) = E(µ(t)|F ξ
t ), 0 ≤ t ≤ T .

Remark 2.2. Suppose in scheme (2.1), η0 and ξ0 are random variables inde-
pendent of the process w, with E(|ξ0|21 + |η0|22) < ∞, where | · |i is the norm in
Rdi

, i = 1, 2.

Then under the conditions of Theorem 2.1 a strong innovation process w
exists in the sense that

Fw,ξ0

= F ξ (mod P ).

The same holds true for schemes (2.5) and (2.6).

3. Partial information diffusion modelling in Finance

We consider diffusion models. Usual settings of the mean-variance hedging
and utility maximization problems under full and partial information are as
follows.

a. Full information. Let (Ω,F , P ) be a complete probability space, w =
(w1, . . . , wN)∗ be a N -dimensional Brownian motion defined on it, N ≥ 1 be
an integer. Denote by F = (Ft, 0 ≤ t ≤ T ) the P -augmentation of filtration
generated by w. Consider a financial market which consists of one risk-free asset,
whose price process is assumed, for simplicity, to be equal to 1 at each date,
and n risky assets (stocks) with n-dimensional price process S = (S1, . . . , Sn)∗,
whose dynamics is governed by the equation

dS(t) = diag S(t)(µ(t)dt + σ(t)dw(t)), S(0) = S0 ∈ R+
n , (3.1)

where µ and σ are F -predictable n and n×N -dimensional processes of appre-
ciation rate and volatility, respectively. It is assumed that n ≤ N , the matrix
σ has a full rank, and µ and σ satisfy some type of boundedness (integrabil-
ity) conditions. If n = N the market is complete; if n < N , (3.1) models an
incomplete market.

Along with model (3.1), consider the popular model of an incomplete market,
the so-called stochastic volatility model

dS(t) = diag S(t)(µ(t)dt + σ(t, S(t), Y (t))dw1(t),

dY (t) = δ(t)dt + ρ(t, S(t), Y (t))dw1(t) + γ(t, S(t), Y (t))dw2(t),

S(0) = S0 ∈ R+
n , Y (0) = Y 0 ∈ RN−n,

(3.2)

where n < N , the Brownian motion w = (w, F ) = ((w1, w2), F ), with w1 =
(w1, . . . , wn)∗ and w2 =(wn+1, . . . , wN)∗, µ and δ are F -predictable n- and (N−
n)-dimensional vector-valued processes, σ, ρ and γ are n×n-, n× (N −n)- and
(N − n)× (N − n)-matrices of functions, defined on [0, T ]×Rn ×R(N−n).

(i) Mean-variance hedging problem. The space of admissible trading
strategies Θ(F ) consists of all Rn-valued F -predictable processes θ, which are
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S-integrable, such that
∫ T
0 θ(t)dS(t) ∈ L2(P,FT ) and the stochastic integral∫

θ dS is a Q-martingale under any Q ∈ P(F ).

Here P(F ) = {Q v P on (Ω,FT ) : dQ
dP

∣∣∣FT

∈ L2(P,FT ) and S is a Q-local

martingale}.
It is assumed that there is no arbitrage, i.e., P(F ) 6= ∅. The process

θ = (θ(t)) represents the number of shares of stocks held at time t, based
on information Ft. For a given initial investment x ∈ R+

1 and trading strategy
θ ∈ Θ(F ), the self-financed wealth process is defined as V x,θ

t = x+
∫ t
0 θ(u)dS(u),

0 ≤ t ≤ T . The FT -measurable random variable H ∈ L2(P,FT ) models the
payoff from financial product at maturity time T . If a hedger starts with the
initial investment x and uses the trading strategy θ, the mean-variance hedging
problem means to find a trading strategy θ∗,F (x) solution of

JF (x) = min
θ∈Θ(F )

E(H − V x,θ
T )2. (3.3)

Note that for complete markets the solution of (3.3) is almost trivial.
The mean-variance hedging problem has been solved by Gourieroux, Laurent

and Pham [8] and Laurent and Pham [17] for the model (3.1), and by the authors
of [8] in [9] and Rheinländer and Schweizer [24] in a general semimartingale
setting.

For model (3.2), in the case where µ(t) = µ(t, S(t), Y (t)), δ(t) = δ(t, Y (t)),
ρ = 0, γ(t) = γ(t, Y (t)), under some regularity conditions Laurent and Pham
[17] get the explicit expressions for the main objects of the approach of [9],
that is for the hedging numeriare and the variance-optimal matringale measure.
The variance-optimal martingale measure by means of Bellman equation was
studied by Mania and Tevzadze in [19].

(ii) Utility maximization problem. Let the stock price process follow
(3.1) (or (3.2)). A portfolio process θ = (θ(t), 0 ≤ t ≤ T ) is a F -predictable
n-dimensional vector valued process with

∫ T
0 |σ∗(t)θ(t)|2dt < ∞, P -a.s. θi(t) is

interpreted as proportion of wealth invested into stock i at time t, based on
information Ft. Given an initial wealth (nonrandom) x > 0 the wealth process
corresponding to a portfolio θ is defined by Xx,θ(0) = x and

dXx,θ(t) = Xx,θ(t)θ∗(t)µ(t)dt + Xx,θ(t)θ∗(t)σ(t)dw(t).

A function U : (0,∞) → R1 will be called a utility function if it is strictly con-
cave, strictly increasing, of the class C1, and satisfies U ′(0+) := limx↓0 U ′(x) =
+∞, U ′(∞) := limx→∞ U ′(x) = 0.

The problem is to maximize the expected utility from the terminal wealth
EU(Xx,θ(T )) over the class A(x, F ) of portfolio processes θ that satisfy
EU−[(Xx,θ(T ))] < ∞. The value function of this problem is

v(x) = sup
θ∈A(x,F )

EU(Xx,θ(T )), x > 0. (3.4)

This problem for both complete and incomplete markets has been solved by
Karatzas, Lohoczky, Shreve and Xu [11].
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b) Partial information. Consider an investor who can observe neither the
Brownian motion nor drift, but only the stock price process S. This situation
is referred to as partial information.

Denote F S = (FS
t , 0 ≤ t ≤ T )-the P -augmentation of filtration generated

by the stock price process S. The mean-variance hedging and the utility max-
imization problems under partial information means that the hedging strategy
and the portfolio must be F S-predictable processes.

(i′) Mean-variance hedging problem under partial information.
Let H ∈ L2(F, P ). Denote HF S := E(H|FS

T ). Then

JF S(x) = E(H −HF S)2 + min
θ∈Θ(F S)

E(HF S − V x,θ
T )2, (3.5)

and hence the problem is to minimize the expression E(HF S − V x,θ
T )2 over the

admissible strategies θ ∈ Θ(F S).
Now we consider some models of the stock price process with partial infor-

mation and by reducing them to models (3.1) (or (3.2)) with full information
we solve problem (3.5) under partial information.

1) Let the d1-dimensional stock price process S = (S1, . . . , Sd1)
∗ follow the

process

dS(t) = diag S(t)(µ(t, S, η)dt + σ(t, S)dw(t)), S(0) = S0 ∈ R+
d1

, (3.6)

where the appreciation rate µ of this stock is influenced by d2 stochastic factors
η = (η1, . . . , ηd2)

∗ whose dynamics is governed by

dη(t) = ã(t, S, η)dt + b̃(t, S, η)dw(t), η(0) = η0 ∈ Rd2 . (3.7)

Here µ and ã are d1 and d2-dimensional vectors, σ and b̃ are d1×d and d2×d
matrices of non-anticipative functionals defined on [0, T ]×Cd1

[0,T ]×Cd2

[0,T ], respec-

tively, w = (w1, . . . , wd) is a d-dimensional (F, P )-Brownian motion defined on
a complete filtered probability space (Ω,F , F = (Ft), 0 ≤ t ≤ T, P ) and d1 ≥ 1,
d2 ≥ 1, d1 + d2 = d are fixed integers.

Suppose that the coefficients of system (3.6), (3.7) satisfy conditions (1), (2)
and (3) of Theorem 2.1.

If we introduce the process ξ(t) = ln S(t) (which is well defined since under
conditions (1)–(3) inf0≤t≤T S(t) > 0, P -a.s.) and use the Itô formula we easily
arrive at scheme (2.1) with

A(t, x, y) = µ(t, ex, y)− 1

2
~dg(σ σ∗)(t, ex), a(t, x, y) = ã(t, ex, y),

B(t, x) = σ(t, ex), b(t, x, y) = b̃(t, ex, y),
(3.8)

where ~dgΓ is the vector (γ11, . . . , γd1d1) of diagonal elements of the matrix Γ =
‖γij‖, i, j = 1, d1.

Note now that using the inequality |ex − ey| ≤ ex+ey

2
|x − y|, x, y ∈ R1, and

the Lipschitz condition we easily get that the new coefficients A, a, b and B
satisfy the local Lipschitz condition in variable x and the global one in variable
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y. Trivially, these coefficients are bounded and B satisfies condition (3) of
Theorem 2.1.

Hence by Theorem 2.1 there exists a strong innovation process w for the
process ξ given by (2.4), with Fw = F ξ. But evidently F ξ = F S. If we use now
the inverse change of variable S(t) = eξ(t) and denote σ = (σ σ∗)1/2, we easily
get

w(t) =

t∫

0

σ−1(u, S)(diag S(u))−1(dS(u)− diag S(u)m(u, S)du), (3.9)

with m(t, S) = E(µ(t, S, η)|FS
t ).

Hence

dS(t) = diag S(t)(m(t, S)dt + σ(t, S)dw(t)), S(0) = S0 ∈ R+
d1

, (3.10)

with F S = Fw, i.e., we construct a strong innovation process w for the process
S given by (3.9).

Thus we reduced the partial information case (scheme (3.6), (3.7) with given
information flow F S) to the usual complete market model (3.10) with full in-
formation. Indeed, recall that w = (w, F S) = (w,Fw), and m and σ are
F S = Fw-adapted (recall scheme (3.1) with n = N = d1). Hence to solve the
mean-variance hedging problem (3.5) we can use the well-known results (see the
references in Subsection a). For example, we immediately get that the whole
hedging risk under partial information is given by the expression

E(H −HF S)2 +
(EP S

HF S − x)2

E(ξT )2
, (see (3.5)),

where P S is a unique martingale measure with dP S

dP
|FS

T
= ξT ,

ξT = exp
(
−

T∫

0

λ∗(u)dw(u)− 1

2

t∫

0

|λ(u)|2du
)
, λ(t) = σ−1(t, S)m(t, S).

Consider the particular schemes of model (3.6), (3.7):

2) dS(t) = diag S(t)(µ(t, S, α)dt + σ(t, S)dw(t)), S(0) = S0 ∈ R+
d1

, (3.11)

where α = (α1, . . . , αd2)
∗, α ⊥ w is an arbitrary-valued F -adapted process

(stochastic factor influenced on µ), and

3) dS(t) = diag S(t)(µ(t)dt + σ(t, S)dw(t)), S(0) = S0 ∈ R+
d1

, (3.12)

where the process µ = (µ1, . . . , µd1) is independent of w (µ ⊥ w), F -adapted
and bounded.

Under the conditions of Corollaries 2.1 and 2.2 in both cases there exists a
strong innovation process w defined by (3.9). Hence the conclusions concerning
the mean-variance hedging problem are the same as in 1).

Remark 3.1. The assumption µ ⊥ w in case 3 is the limitation of approach.
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4) Consider the following stochastic volatility model:

dS(t)=diag S(t)(µ(t, S, Z, η)dt+σ1(t, S(t), Z(t))dw(t)), S(0)=S0 ∈ R+
n ,

dZ(t)=δ(t, S, Z, η)dt+σ2(t, S(t), Z(t))dw(t)), Z(0)=Z0 ∈ Rm, (3.13)

where the process η = (η1, . . . , ηd2)
∗ follows (3.7). Here µ = (µ(t, s, z, y)) and

δ = (δ(t, s, z, y)) are non-anticipative functionals defined on [0, T ] × Cn
[0,T ] ×

Cm
[0,T ] × Cd2

[0,T ], n ≥ 1, m ≥ 1, n + m = d1, d1 + d2 = d, µ = (µ1, . . . , µn)∗,
δ = (δ1, . . . , δm)∗. Further σ1 = (σ1(t, s, z)) and σ2 = (σ2(t, s, z)), (t, s, z) ∈
[0, T ]×Rn×Rm are n×d and m×d matrices, respectively, and w = (w1, . . . , wd)

∗

is a (F, P )-Brownian motion defined on the filtered complete probability space
(Ω,F , F = (Ft), 0 ≤ t ≤ T, P ).

Suppose the coefficients of equations (3.13) and (3.7) satisfy the conditions
of Theorem 2.1. Then there exists a unique strong solution (S,Z, η) of system
(3.13), (3.7). Introduce the process ξ = (ξ1, ξ2)∗ := (ln S, Z)∗. Then, using the
Itô formula, we easily get that the process (ξ, η) satisfies system (2.1) with

A(t, x, y) =


µ(t, ex1

, z, y)− 1

2
~dg(σ1σ

∗
1)(t, e

x1

, z, y)

δ(t, ex1
, z, y)


 ,

B(t, x) =


σ1(t, e

x1
, z, y)

σ2(t, e
x1

, z, y)


 ,

a(t, x, y) = ã(t, xx1

, z, y), b(t, x, y) = b̃(t, ex1

, z, y),

where x = (x1, z)∗, x1 is an n-dimensional and z is an m-dimensional vector.
Such a type of change of variables has been used by Mania and Tevzadze [19].

Then using Theorem 2.1 as in 1) we easily get that there exists a strong
innovation process w for the process (S, Z)∗ defined as follows.

Let
(
σ1

σ2

)
:=

((
σ1

σ2

) (
σ1

σ2

)∗) 1
2

,

where σ1 and σ2 are n× d1 and m× d1 matrices. Let further,

diag

(
S(t)
1

)
:=




S1(t) . . .
Sn(t) 0

0 1
. . .

1




be a d1 × d1 - matrix, and suppose m := (m1,m2)
∗, where m1(t, S, Z) :=

E(µ(t, S, Z, η)|FS,Z
t ) and m2(t, S, Z) := E(δ(t, S, Z, η)|FS,Z

t ) are an n- and an
m-dimensional vectors, respectively.
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Then the (n + m)-dimensional innovation process w = (w, F S,Z) for the pro-
cess (S, Z)∗ is given by

w(t) =

t∫

0

(
σ1

σ2

)−1

(u, S(u), Z(u))

(
diag

(
S(u)

1

))−1 (
d

(
S(u)
Z(u)

)

− diag

(
S(u)

1

) (
m1

m2

)
(u, S, Z)du

)
.

Hence

dS(t) = diag S(t)(m1(t, S, Z)dt + σ1(t, S(t), Z(t))dw(t)), S(0) = S0,

dZ(t) = m2(t, S, Z)dt + σ2(t, S(t), Z(t))dw(t)), Z(0) = Z0.

Rewrite the last system in triangle form. We get

dS(t)=diag S(t)(m1(t, S, Z)dt+σ(t, S(t), Z(t))dN(t)), S(0)=S0,

dZ(t)=m2(t, S, Z)dt+ρ(t, S(t), Z(t))dN(t)

+ γ(t, S(t), Z(t)))dM(t), Z(0) = Z0,

(3.14)

where N and M are independent n and m-dimensional (F S,Z , P )-Brownian mo-
tions.

Further, by the property of a strong innovation process

F S,Z = Fw(= FN,M). (3.15)

Assume (in addition to the conditions of Theorem 2.1) that σσ∗ is continuous
in (t, s, z) and for all (t, s) the function σσ∗(t, s, ·) is one-to-one from Rm into a
subset Σ of the set of n× n positive definite matrices, and its inverse function
denoted by L(t, s, ·) is continuous in (t, s, z) ∈ [0, T ]× Rn × Σ. Here we follow
Renault and Touzi [23] or Pham and Quenez [22].

Under these conditions Z(t) = L(t, S, σσ∗(t, S(t), Z(t)) and < S, S∗ >t=∫ t
0 σσ∗(u, S(u)Z(u))du. From this easily it follows that FZ ⊆ F S, and conse-

quently F S,Z = F S. Hence from (3.15) we get

F S = FN,M ,

and we reduced again the case of partial information to the usual incomplete
market model of stochastic volatility with full information (see model (3.2)),
and to solve problem (3.5) the well-known arguments of [8], [9], or [24] or [17]
can be used.

As above, we can easily consider the particular schemes of (3.13), (3.7) (see
(3.11) and (3.12)). We do not stop on this.

(ii′) Utility maximization problem under partial information.
We consider the same models 1)–4) for the stock price process as in previous

case.
After reducing them to the usual full information form by means of a strong

innovation process, to solve the utility maximization problem under partial
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information we need only to refer to the paper of Karatzas, Lehoczky, Shreve
an Xu [11] for both complete and incomplete market models.

Collect all above results in the following

Theorem 3.1. If a stock price process S follows the models described in
cases 1)–4), then under the conditions given in these models a strong innovation
process w exists for process S, and both the mean-variance hedging and the
utility maximization problems under partial information are reduced to the full
information one with well-known solutions.

Remark 3.2. The approach summarized in Theorem 3.1 is useful for every
problem in finance with partial information, when the stock price process is
modelled by 1)–4) and the solution of the considered problem in the full in-
formation case is already known (example of such problem see the paper by
Cvitanic̆, Lazrak, Quenez and Zapatero [1]).

Remark 3.3. Consider the situation described in Remark 2.2. In this case
models 1)–4) under partial information cannot be reduced by means of a strong
innovation to the usual full information models. Hence additional effects may
arise (in general) under partial information. This fact is mentioned in [15], [13],
and [22] in a Bayesian setting for the utility maximization problem.

4. Appendix

Proof of Theorem 2.1. Assertion (a) is a well-known fact. We prove assertion
(b).

For simplicity, the proof will be given for d1 = d2 = 1. In the multidimensional
case the proof is completely analogous, the only difference is the cumbersome
expressions.

Rewrite (2.1) in the form of (2.2). Let (η, ξ) be a unique strong solution of
(2.2). From (2.4) and the second equation of (2.2)

dw(t) = dw(t) + (B(t, ξ))−1(m(t, ξ)− A(t, ξ, η))dt.

Substituting the last expression into the first equation of (2.2) we get

dη(t) = a(t, ξ, η)dt + b(t, ξ, η)dv(t) + c(t, ξ, η)dw(t) + (B(t, ξ))−1c(t, ξ, η)

× (m(t, ξ)− A(t, ξ, η))dt, η(0) = η0. (4.1)

Fix the first space variable ξ = x, x ∈ C[0,T ], in the coefficients of SDE (4.1). It is
easy to see that all coefficients are bounded and Lipschitz in the second variable.
Hence the solution of (4.1) is pathwise unique for each ξ = x. The solution can
be constructed by the standard successive approximation method. Thus for
each ξ = x, we can construct a non-anticipative functional (see, e.g., [10], Ch.
IV, Theorem 1.1) F (t, x, u, v, p) : [0, T ] × C[0,T ] × C[0,T ] × C[0,T ] × R1 → R1,
such that the process η = (η(t)) with η(t) = F (t, ξ, w, v, η0) would be a unique
strong solution of (4.1) with given ξ. But Fw ⊆ F ξ by the construction, see
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(2.4). Hence w(t)=ψ(t, ξ), where the functional ψ(t, x) : [0, T ]× C[0,T ]→R1 is
non-anticipative. Consequently for each t

η(t) = F (t, ξ, ϕ(t, ξ), v, η0). (4.2)

Finally, if we denote a :=(v, p) ∈ C[0,T ] ×R1 and define the functional

ϕ(t, x, a) :=A(t, x, F (t, x, ψ(t, x), v, p)),

we easily see that this functional is non-anticipative (as the superposition of
such functionals) with the property: for each t, P -a.s.

ϕ(t, ξ, (v, η0)) = A(t, ξ, η). (4.3)

Everywhere below to simplify expressions we omit the fixed number η0.
From (4.3), (2.4) and (4.1) we have that the process ξ satisfies the following

SDEs:

dξ(t)=ϕ(t, ξ, v)dt + B(t, ξ)dw(t), (=m(t, ξ)dt+B(t, ξ)dw(t)), ξ(0)=ξ0. (4.4)

Consider the second equation of (4.4). It is easy to see that this equation has a

unique in distribution weak solution: if ξ̃ = (ξ̃(t)) is any weak solution of (4.4),
then

µ
ξ̃
(A) = µξ(A), ∀A ∈ B[0,T ], (4.5)

where µ
ξ̃
and µξ are the distributions of ξ̃ and ξ, respectively, on the measurable

space (C[0,T ],B[0,T ]). This fact easily follows from the form of densities of these
processes (see [18], Theorem 7.19).

Further, we already know that the equation

dξ(t) = m(t, ξ)dt + B(t, ξ)dw(t), ξ(0) = ξ0, (4.6)

has a weak solution (this fact follows from the construction of the process w, see
(2.4) and assertion (a) of Theorem 2.1), and Fw ⊂ F ξ. Hence we have to prove
that F ξ ⊂ Fw. For this it is sufficient to show that (4.6) has a pathwise unique
strong solution. By the Yamada–Watanabe theorem (see, e.g., [10]) under the
assumption that SDE (4.6) has a weak solution, it is sufficient to prove the
pathwise uniqueness of the solution of (4.6). Thus, we have to prove that if ξ1

and ξ2 are two solutions of (4.6) defined on the same probability space, with
the same initial condition ξ1(0) = ξ2(0) = ξ0, then

P
{

sup
0≤t≤T

|ξ1(t)− ξ2(t)| = 0
}

= 1. (4.7)

Denote by µv the distribution of the process v on the measurable space
(C[0,T ],B[0,T ]). It is easy to see that all conditions of Theorem 7.23 of [18] are
satisfied (recall that v and w are independent processes, the process ξ satisfies
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the first equation of (4.4) and has the property F ξ ⊂ F v,w). Hence by the Bayes
formula we have: for each t, P -a.s.

m(t, ξ) = E(ϕ(t, ξ, v)|F ξ
t ) =

∫

C[0,T ]

ϕ(t, ξ, a)ρ(t, ξ, a)µv(da), (4.8)

where

ρ(t, ξ, v) := exp(f(t, ξ, v)), (4.9)

with

f(t, ξ, v) : =

t∫

0

(B(s, ξ))−1(ϕ(s, ξ, v)−m(s, ξ))dw(s)

− 1

2

t∫

0

(B(s, ξ))−2(ϕ(s, ξ, v)−m(t, ξ))2ds. (4.10)

Fix the variable t and introduce the notation:

ρl(t) = ρ(t, ξl, v), ml(t) = m(t, ξl), ϕl(t) = ϕ(t, ξl, v), f l(t) = f(t, ξl, v),

al(t) = a(t, ξl, ηl), bl(t) = b(t, ξl, ηl), cl(t) = c(t, ξl, ηl),

Bl(t) = B(t, ξl), Al(t) = A(l, ξl, ηl),

ηl(t) = F (t, ξl, ψ(t, ξl), v), G(t) =
1

2
(ρ1(t) + ρ2(t)),

where ξl, l = 1, 2 are two solutions of SDE (4.6) defined on the initial probability
space (for simplicity) with ξl(0)=ξ0, l = 1, 2. Finally, denote by Eµ the operator
of integration w.r.t. measure µv.

Note first that P -a.s.

EµG(t) = 1. (4.11)

Indeed, let ξ̃ be some weak solution of SDE (4.6). Then (1−Eµρ(t, ξ̃, v))2 =

0 ⇔ E(1− Eµρ(t, ξ̃, v))2 = 0. But the last expectation is equal to
∫

C[0,T ]

(1− Eµρ(t, x, v))2µ
ξ̃
(dx) =

∫

C[0,T ]

(1− Eµρ(t, x, v))2µξ(dx) = 0,

by (4.5) and (4.8).
Fix an integer N . Denote the F -stopping time τN by the relation τN =inf{t :

t > 0, sup0≤s≤t max(|ξ1(s)|2, |ξ2(s)|2) > N}, with inf(∅) = +∞, and introduce
the process χN = (χN(t)) by the formula χN(t, ω) = I]0,τN ](t, ω), where ]·] is a
stochastic interval. It is easy to see that if s ≤ t, then χN(t) = χN(t) · χN(s),
and hence

{ω : χN(t)=1}⊆{ω : χN(s) = 1},
{ω : χN(s)=0}⊆{ω : χN(t) = 0}. (4.12)
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Below, to simplify the expressions, we omit the index N in χN(t) and constN

(the Lipschitz constant, see condition (2)). Recall that we have fixed the variable
t.

From (4.6) we have

E(ξ1(t)− ξ2(t))2χ(t) ≤ const
[ t∫

0

Eχ(s)(m1(s)−m2(s))2ds

+

t∫

0

Eχ(s)(ξ1(s)− ξ2(s))2ds
]
, (4.13)

where we have used the inequality (a+b)2 ≤ 2(a2 +b2), (4.12) and the Lipschitz
condition.

Introduce the function z = (z(t)) by the relation

z(t) =

t∫

0

Eχ(s)(m1(s)−m2(s))2ds. (4.14)

This function is non-negative and nondecreasing. Hence if f = (f(t)) is some
non-negative function with

∫ T
0 f(t)dt < ∞, then

t∫

0

f(s)z(s)ds ≤
t∫

0

f(s)z(t)ds ≤ const ·z(t), 0 ≤ t ≤ T. (4.15)

Denote u(t) = Eχ(t)(ξ1(t)− ξ2(t))2. Then (4.13) gives u(t) ≤ const ·
(
z(t) +

∫ t
0 u(s)ds

)
. Solving this inequality and using (4.15), we easily get u(t) ≤

const ·z(t). Hence if we prove that

z(t) = 0, 0 ≤ t ≤ T, (4.16)

then we get u(t) = Eχ(t)(ξ1(t)−ξ2(t))2 = 0, 0 ≤ t ≤ T . From this the desirable
relation (4.7) easily follows:

P{ξ1(t) 6= ξ2(t)} ≤ P{τN ≤ t} → 0,

as N →∞, since τN ↑ ∞, as N →∞.
Thus we have to prove (4.16).
From (4.8) we write

m1(t)−m2(t) = Eµ
[
ϕ1(t)ρ1(t)− ϕ2(t)ρ2(t)

]
= Eµ

[
(ϕ1(t)− ϕ2(t))G(t)

]

+ Eµ
[
(ρ1(t)− ρ2(t))

1

2
(ϕ1(t) + ϕ2(t))

]
. (4.17)

From the elementary inequality |ex − ey| ≤ 1
2
(ex + ey)|x − y| it follows that

|ρ1(t) − ρ2(t)| ≤ G(t)|f 1(t) − f 2(t)|. By condition (1) we have |ϕl(t)| ≤ const,
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l = 1, 2. Hence from (4.17) we get

m1(t)−m2(t) ≤ const
{
Eµ

[
|ϕ1(t)− ϕ2(t)|

√
G(t) ·

√
G(t)

]

+ Eµ
[
|f 1(t)− f 2(t)|

√
G(t) ·

√
G(t)

]
. (4.18)

Multiplying both sides of (4.18) by χ(t), squaring each parts, applying the
inequality (a + b)2 ≤ 2(a2 + b2), the Schwartz inequality and (4.11), and after
that averaging w.r.t. measure P (dω), we get

Ep(m1(t)−m2(t))2χ(t) ≤ const
{
EpEµ[χ(t)(ϕ1(t)− ϕ2(t))2G(t)]

+EpEµ[χ(t)(f 1(t)− f 2(t))2G(t)]
}
. (4.19)

If we show that each summand of (4.19) is less than or equal to the const z(t),
then from (4.19) we get (if we integrate the resulting inequality w.r.t. measure
dt) that z(t) ≤ const

∫ t
0 z(s)ds, and (4.16) follows from the Gronwall–Bellman

lemma.
Thus the theorem will be proved if we show that

EpEµ
[
χ(t)(ϕ1(t)− ϕ2(t))2G(t)

]
≤ const ·z(t),

EpEµ
[
χ(t)(f 1(t)− f 2(t))2G(t)

]
≤ const ·z(t).

(4.20)

Show that the first inequality of (4.20) is satisfied. It is easy to see that
(condition (2))

EpEµ
[
χ(t)(ϕ1(t)− ϕ2(t))2G(t)

]
= EpEµ

[
χ(t)(A(t, ξ1, η1)− A(t, ξ2, η2))2G(t)

]

≤ const EpEµ

[
χ(t)(ξ1(t)− ξ2(t))2G(t) + χ(t)(η1(t)− η2(t))2G(t)

+

t∫

0

χ(s)(ξ1(s)−ξ2(s))2ds ·G(t)+

t∫

0

χ(s)(η1(s)−η2(s))2ds ·G(t)

]
. (4.21)

Denote

p1(t) = χ(t)(ξ1(t)− ξ2(t))2G(t), p2(t) = χ(t)(η1(t)− η2(t))2G(t),

p3(t) =

t∫

0

χ(s)(ξ1(s)− ξ2(s))2ds ·G(t),

p4(t) =

t∫

0

χ(s)(η1(s)− η2(s))2ds ·G(t),

p5(t) =

t∫

0

χ(s)(m1(s)−m2(s))2ds ·G(t),
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p6(t) =
( t∫

0

χ(s)(b1(s)− b2(s))dv(s)
)2

·G(t),

p7(t) =
( t∫

0

χ(s)(c1(s)− c2(s))dw(s)
)2

·G(t),

and rewrite (4.21)

EpEµ
[
χ(t)(ϕ1(t)− ϕ2(t))2G(t)

]
≤ const EpEµ

( 4∑

i=1

pi(t)
)
. (4.22)

Using (4.11) and (4.15) we get

EpEµp1(t) = Epχ(t)(ξ1(t)− ξ2(t))2EµG(t)

= Epχ(t)(ξ1(t)− ξ2(t))2 ≤ const z(t). (4.23)

Further, from (4.1) we write (using conditions (1)–(3))

p2(t) ≤ const ·
( 7∑

i=3

pi(t)
)
. (4.24)

As in (4.23) we easily have

EpEµp3(t) ≤ const

t∫

0

z(s)ds · EµG(t) ≤ const ·z(t) (4.25)

and (see (4.14))

EpEµp5(t) = z(t). (4.26)

Now using the Itô formula for pl(t), l = 4, 6, 7, denoting the martingale parts
by symbol “mart” we can write

p4(t) = mart +

t∫

0

p2(s)ds; (4.27)

Recall that

w(t) = w(t)−
t∫

0

(B(s, ξ))−1(m(s, ξ)− A(s, ξ, η))ds,

and w and v are independent, hence < w, v >P,F = 0. Using this fact we get

p6(t) = mart +

t∫

0

χ(s)(b1(s)− b2(s))2G(s)ds

≤ mart + const ·
( 4∑

i=1

t∫

0

pi(s)ds
)
. (4.28)
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The Itô formula applied to p7(t) gives

p7(t) = mart +

t∫

0

χ(s)(c1(s)− c2(s))2G(s)ds

+

t∫

0

s∫

0

χ(u)(c1(u)− c2(u))dw(u)χ(s)(c1(s)− c2(s))

×
[
(ϕ1(s)− ϕ2(s))ρ1(s) + (ϕ1(s)− ϕ2(s))ρ2(s)

]
ds. (4.29)

It is easy to see that

t∫

0

χ(s)(c1(s)− c2(s))2G(s)ds ≤ const ·
( 4∑

i=1

t∫

0

pi(s)ds
)
.

Since ϕl and ml, l = 1, 2, are bounded, we have

2∑

i=1

|ψl(t)−ml(t)|ρl(t) ≤ const ·G(t).

Using the inequality |ab| ≤ 1
2
(a2 + b2), we write

∣∣∣∣
s∫

0

χ(s)(c1(u)− c2(u))dw(u)
∣∣∣∣

∣∣∣χ(s)(c1(s)− c2(s))
∣∣∣

≤ 1

2

[( s∫

0

χ(u)(c1(u)− c2(u))dw(u)
)2

+ χ(s)(c1(s)− c2(s))2
]
.

Collecting the above inequalities and using the Lipschitz condition, from
(4.29) we have

p7(t) ≤ mart + const
[ 4∑

i=1

t∫

0

pi(s)ds +

t∫

0

p7(s)ds
]
. (4.30)

From (4.24), substituting all above estimates, we easily get

p2(t) ≤ mart + const
[
p3(t) +

4∑

i=1

t∫

0

pi(s)ds + p5(t) +

t∫

0

p7(s)ds
]
. (4.31)

Now we need the following simple fact.
Consider the product space (Ω,F , F, P )× (C[0,T ],B[0,T ],B, µ) and let the pro-

cess X = (X(t)) = (X(t, ω, a), 0 ≤ t ≤ T , ω ∈ Ω, a ∈ C[0,T ]) be the Itô process,
with

X(t, ω, a) =

t∫

0

p(s, ω, a)ds +

t∫

0

y1(t, ω, a)dw(t) +

t∫

0

y2(t, ω, a)dv(t),
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where w(t) = w(t, ω, a) = w(t, ω) and v(t) = v(t, ω, a) = v(t, a) are independent
Brownian motions. Suppose that p(t) = p(t, ω, a) ≥ 0 and

T∫

0

EpEµy2
1(t)dt +

T∫

0

EpEµy2
2(t)dt < ∞,

i.e., the martingale part of the process X is square integrable.
Then

EpEµX(t) =

t∫

0

EpEµp(s)ds.

Note now that from the boundedness of coefficients it follows that we are in the
framework of last statement. Hence averaging w.r.t. EpEµ (4.30) and (4.31),
and then adding them, we write

EpEµ(p2(t) + p7(t)) ≤ const
[ t∫

0

EpEµ(p2(s) + p7(s))ds + z(t)
]

(here we used (4.23), (4.24), (4.25), (4.26) and (4.27)).
Solving this inequality we get EpEµ(p2(t)+p7(t)) ≤ const z(t). But p7(t) ≥ 0.

Hence

EpEµp2(t) ≤ EpEµ(p2(t) + p7(t)) ≤ const z(t). (4.32)

Now the desirable inequality (4.20) (the first one) follows from (4.22), (4.23),
(4.32), (4.27) and (4.25).

The verification of the second inequality (4.20) is much simpler. Indeed, using
explicit formula (4.10) for f l, l = 1, 2, the boundedness of ϕl, ml and (Bl)−1,
l = 1, 2, we easily reduce the desirable inequality to such inequalities, where the
differences of type m1 −m2 or ϕ1 − ϕ2 participate. If we recall the definition
of the function z (see (4.14)) and the just verified inequality (4.20), we easily
conclude that the desirable inequality holds true as well. We do not stop on the
details. The theorem is proved.

Proof of Corollary 2.1. If in the scheme (2.2) we take a = c = 0, b =Id and
instead of v consider the process α, α ⊥ w, we get η(t) = η0 + α(t) and the
proof follows from the previous one.

Proof of Corollary 2.2. Put in Corollary 2.1 ϕ(t, x, α) ≡ ϕ(t, α) := µ(t).

Acknowledgements

The author would like to thank Prof. M. Jeanblank and Prof. W. Rung-
galdier for useful discussions which took place during the European Meeting of
Statisticians 2001 on Madeira.

This work was supported by INTAS Grant No. 99-00559.



STRONG INNOVATION AND APPLICATIONS 401

References
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