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ON VOLTERRA TYPE SINGULAR INTEGRAL EQUATIONS

A. SAGINASHVILI

Abstract. Conditions for the boundedness are established, and the norms
of Volterra type one-dimensional integral operators with fixed singularities of
first order in the kernel are calculated in the space L2 with weight. Integral
equations of second order, containing the said operators, are investigated.
Conditions for the solvability and solution formulas are given.
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1. Introduction

It is the well-known fact that classical Volterra equations of second order with
continuous kernels or potential type kernels are uniquely solvable in Lebesgue
spaces. However, when the kernel has nonintegrable singularities, the Fredholm
properties of equations largely depend on the functional spaces in which they
are considered. The equations dealt with in this paper contain Volterra type
integral operators with fixed singularities of first order. It is proved that these
equations considered in the space L2 with power weight with exponent β are
uniquely solvable only when β > 1/2; for β < 1/2 they have negative indices,
while for β = 1/2 the normal solvability property does not hold.

Since the considered integral operators have homogeneous kernels of the or-
der −1, we can apply the Wiener–Hopf method and reduce the equations to
boundary value problems of analytic functions in the Hardy class H2. A more
extensive application of this method is described in the monograph [3]. Integral
equations with fixed singularities are treated in the monograph [2].

Boundedness and compactness criteria for a wide class of integral operators
(this class contains the operators considered in this paper) are given in [5].

Interest in the equations considered in this paper is due to their application
in the theory of computer-aided design of closed-circuit crushing and grinding
processes and processes of granulation (see [1], Ch. 3, §1).

2. Boundedness

Let Vα and Wα be the integral operators defined by the equalities

(Vαϕ)(x) =

a∫

x

xα−1

yα
ϕ(y) dy, x ∈ (0, 1), α ∈ R, (1)
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(Wαϕ)(x) =

a∫

x

(y − x)α−1

yα
ϕ(y) dy, x ∈ (0, 1), α > 0, (2)

where 0 < a < ∞.
Denote by L2,β, β ∈ R, the Banach space of measurable functions on the

interval (0, a) with the norm

‖ϕ‖2,β :=
( a∫

0

|xβϕ(x)|2 dx
)1/2

.

Lemma 1. For the operator Vα to be bounded in the space L2,β, it is neces-
sary and sufficient that the inequality α + β > 1/2 be fulfilled, and at that we
have

‖Vα‖2,β =
1

α + β − 1/2
. (3)

Proof. Necessity. Let χ be the characteristic function of the interval (a/2, a). It
is obvious that χ ∈ L2,β for all β ∈ R, while for α+β ≤ 1/2 we have Vαχ 6∈ L2,β.

Sufficiency. Let us introduce the operators

(Zϕ)(t) = (a · e−t)1/2+βϕ(a · e−t), t ∈ R+,

(Z−1ψ)(x) = x−(1/2+β)ψ
(
− ln

x

a

)
, x ∈ (0, a).

Here Z and Z−1 are the isometric inverse operators acting from the space L2,β

into the space L2(R+), and from the space L2(R+) into the space L2,β.
Let α + β > 1/2 and

Ṽα = ZVαZ−1. (4)

After some simple transformations we obtain

(Ṽαψ)(t) =

t∫

0

e(1/2−α−β)(t−τ)ψ(τ) dτ =
1√
2π

+∞∫

−∞
v(t− τ)ψ+(τ) dτ,

where

v(t) =





√
2πe(1/2−α−β)t for t > 0

0 for t ≤ 0
, ψ+(t) =





ψ(t) for t > 0

0 for t < 0
. (5)

The operator Ṽα is a convolution operator with kernel v ∈ L1(R), therefore
it is bounded in the space L2(R+) and

‖Ṽα‖2 = ‖Fv‖∞, (6)

where F is the Fourier transform

(Fv)(t) =
1√
2π

+∞∫

−∞
eitτv(τ) dτ =

i

t− i(1/2− α− β)
, (7)
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From equalities (4), (6) and (7) we obtain (3).

Lemma 2. For the operator Wα to be bounded in the space L2,β, it is neces-
sary and sufficient that β > −1/2, and at that we have

‖Wα‖2,β = B
(

1

2
+ β, α

)
, (8)

where B(·, ·) is a beta-function.

Proof. The necessity is proved like in the case of the operator Vα.
Sufficiency. Let β > −1/2,

W̃α = ZWαZ−1. (9)

Then

(W̃αψ)(t) =

t∫

0

e(1/2−α−β)(t−τ)(et−τ − 1)α−1ψ(τ) dτ

=
1√
2π

+∞∫

−∞
w(t− τ)ψ+(τ) dτ,

where

w(t) =





√
2πe(1/2−α−β)t(et − 1)α−1 for t > 0

0 for t ≤ 0
,

and from the condition α > 0, β > −1/2 we obtain w ∈ L1(R). Hence ‖W̃α‖2 =
‖Fw‖∞ ≤ 1√

2π
‖w‖1, but since w(t) ≥ 0, we have 1√

2π
‖w‖1 = (Fw)(0) ≤

‖Fw‖∞, Therefore

‖W̃α‖2 = (Fw)(0). (10)

On the other hand (see [4], p. 309, 3.251.(3)),

(Fw)(t) =

∞∫

0

e(1/2−α−β+it)τ (eτ − 1)α−1 dτ = B
(

1

2
+ β − it, α

)
, t ∈ R. (11)

Equality (8) is obtained from (9), (10), (11).

3. Equations

Let us consider the equation

ϕ(x)− α

a∫

x

(y − x)α−1

yα
ϕ(y) dy = f(x), 0 < x < a. (12)

Applying the operator Z to both sides of equation (12) we obtain an equiva-
lent equation in the space L2(R+)

ψ(x)− α(W̃αψ)(t) = g(t), t > 0, (13)
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where W̃α is defined by equality (9), ψ = Zϕ, g = Zf .
Equation (13) is a Wiener–Hopf equation. By extending its definition to a

convolution equation along the entire axis we obtain

ψ+(t)− α(W̃αψ+)(t) = g+(t), t ∈ R, (14)

where ψ+ and g+ are respectively the sought and the known functions which are

defined by rule (5) (here use has been made of the obvious equality (W̃αψ+)(t)=0
for t < 0).

Applying the Fourier transform to equation (14), we obtain an equivalent
equation in the Hardy class H2: s(x)Ψ+(t) = G+(t), t ∈ R, where Ψ+ and
G+ are the tranformed Fourier functions ψ+ and g+, respectively; s(t) = 1 −
α(Fw)(t) is a function from the class H∞. Thus, this equation has a unique
solution Ψ+(t) = s−1(t)G+(t) and, after restoring the solution of equation (12),
we obtain

ϕ = Z−1F−1s−1FZf. (15)

But for ϕ ∈ L2,β, it is necessary and sufficient that the function s−1FZf
belong to the Hardy class H2, which, in turn, depends on whether the function
s(z) has zeros at Im z ≥ 0.

Let β > 1/2. By (8)

‖Wα‖2,β = B
(

1

2
+ β, α

)
=

1∫

0

xβ−1/2(1− x)α−1 dx <

1∫

0

(1− x)α−1 dx =
1

α
,

i.e., ‖αWα‖2,β < 1.
Therefore the operator I − αWα is invertible in the space L2,β. By virtue of

the continuity, the solution will have the form of (15).
Let β < 1/2. Then by (11)

s
(
i
(

1

2
− β

))
= 1− α

1∫

0

(1− x)α−1 dx = 0

and for s−1FZf ∈ H2 it is necessary that (FZf)(i(1/2 − β)) = 0, which is
equivalent to condition

a∫

0

f(x) dx = 0, (16)

i.e., in this case the latter condition is the necessary one.
For β = 1/2, s(0) = 0 and, as is well-known, equation (12) will not be

normally solvable.
Thus we have proved

Theorem. Let β > −1/2. Then the integral equation (12):
(a) when β > 1/2, for any function f ∈ L2,β has a unique solution ϕ ∈ L2,β

calculated by formula (15);
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(b) for β < 1/2, to have a solution it is necessary that condition (16) be
fulfilled. The unique solution (if it exists) is calculated by formula (15);

(c) for β = 1/2 is not normally solvable.

Remark. For equation (12) to be solvable in the space L2,β for β < 1/2,
condition (16) is not sufficient for arbitrary α. One can prove that for sufficiently
large natural α, the equation s(z) = 0 has roots in the upper half-plane which
are different from z = i(1/2−β) (their number has order ln α). Thus, depending
on α, equation (12) may have an arbitrarily large negative index.

Example 1. Let us consider equation (12) in greater detail for the case
α = 2.

Then equation (12) takes the form

ϕ(x)− 2

a∫

x

y − x

y2
ϕ(y) dy = f(x), 0 < x < 1,

and we obtain

s(t) =
(t− i(1/2− β))(t + i(5

2
+ β))

(t + i(1/2 + β))(t + i(3
2

+ β))
, s−1(t) = 1 + s0(t).

For β > 1/2 we have

(F−1s0)(t) =





2
√

2π

3

(
e(1/2−β)t − e−( 5

2
+β)t

)
if t > 0

0 if t < 0
,

and from (15) it follows that

ϕ(x) = f(x) +
2

3x

a∫

x

f(y) dy − 2x2

3

a∫

x

f(y)

y3
dy.

If β < 1/2, then

(F−1s0)(t) =





−2
√

2π

3
e−( 5

2
+β)t if t > 0

−2
√

2π

3
e(1/2−β)t if t < 0

and we obtain

ϕ(x) = f(x)− 2

3x

x∫

0

f(y) dy − 2x2

3

a∫

x

f(y)

y3
dy.

Example 2. Let now α + β > 1/2. In the same space L2,β we consider the
equation

ϕ− αVαϕ = f, (17)

where Vα is the operator defined by (1).
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For the symbol of (17) (see (7)) we have

s(t) = 1− α(Fv)(t) =
t− i(1/2− β)

t− i(1/2− α− β)
.

After easy calculation from (15) we obtain a unique solution

ϕ(x) = f(x) +
α

x

a∫

x

f(y) dy, 0 < x < a.

Note that, when β < 1/2 for (17) to be solvable it is necessary and sufficient
that condition (16) be fulfilled.

Example 3. When designing granulation processes, one deals with the in-
tegral equations (see [1], p. 142)

ϕ(x)− α

x∫

0

(a− x)α−1

(a− y)α
ϕ(y) dy = f(x), 0 < x < a, α ∈ R, (18)

ϕ(x)− α

x∫

0

(x− y)α−1

(a− y)α
ϕ(y) dy = f(x), 0 < x < a, α > 0. (19)

As different from the above kernels which had integrable singularities at zero,
the considered kernels in have analogous singularities at a. Hence it is natural
to consider equation (18), (19) in the space L1

2,β = {ϕ| (a−x)βϕ(x) ∈ L2(0, a)}.
Applying a simple transformation (Cϕ)(x) = ϕ(a − x), equations (18), (19)

are reduced to the above-considered equations and therefore all the statements
proved in Sections 2 and 3 hold for them as well with the only difference that
the solution formulas have to be appropriately modified.
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