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We dedicate our work to the 70th birthday of Professor Vakhania whose fruit-
ful research over the last 40 years has considerably influenced the theory of
infinite dimensional probability distributions and whose classical books on the
subject have become an important source of reference and inspiration.

Abstract. We study topological spaces with the strong Skorokhod property,
i.e., spaces on which all Radon probability measures can be simultaneously
represented as images of Lebesgue measure on the unit interval under certain
Borel mappings so that weakly convergent sequences of measures correspond
to almost everywhere convergent sequences of mappings. We construct non-
metrizable spaces with such a property and investigate the relations between
the Skorokhod and Prokhorov properties. It is also shown that a dyadic
compact has the strong Skorokhod property precisely when it is metrizable.
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Introduction

According to a celebrated result of A. V. Skorokhod [28], for every sequence
of Borel probability measures µn on a complete separable metric space X that
is weakly convergent to a Borel probability measure µ0, one can find Borel map-
pings ξn : [0, 1] → X, n = 0, 1, . . . , such that lim

n→∞ ξn(t) = ξ0(t) for almost all

t ∈ [0, 1] and the image of Lebesgue measure λ under ξn is µn for every n ≥ 0.
Various extensions of this result have been found since then (see, e.g., [3], [5],
[6], [10], [13], [18], [26], and the references therein). The most important for
us is the extension discovered independently by Blackwell and Dubbins [3] and
Fernique [13], according to which all Borel probability measures on X can be pa-
rameterized simultaneously by the mappings from [0, 1] with the preservation of
the above correspondence. More precisely, with every Borel probability measure
µ on X one can associate a Borel mapping ξµ : [0, 1] → X such that the image
under ξµ of Lebesgue measure equals µ, and if measures µn converge weakly to
µ, then lim

n→∞ ξµn(t) = ξµ(t) for almost all t ∈ [0, 1]. It has been recently shown

in [5] that this result can be derived from its simple one-dimensional case and
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certain deep topological selection theorems. In addition, it has been shown in
[5] that there are other interesting links between the Skorokhod parameteriza-
tion of probability measures on topological spaces and topological properties of
those spaces. The principal concept in this paper is a space with the strong
Skorokhod property for Radon measures defined as a space on which all Radon
probability measures admit a simultaneous parameterization µ 7→ ξµ by Borel
mappings from [0, 1] endowed with Lebesgue measure such that one obtains the
above mentioned correspondence between weak convergence of measures and
almost everywhere convergence of mappings.

In this work, we study the strong Skorokhod property in the nonmetrizable
case. In particular, we construct a countable nonmetrizable topological space
with the strong Skorokhod property (under the continuum hypothesis, we find
even a countable topological group with this property) and prove a theorem
which enables one to construct broad classes of spaces with the strong Skorokhod
property. A new class of spaces, called almost metrizable, is introduced, and
it is shown that an almost metrizable space has the strong Skorokhod property
precisely when it is sequentially Prokhorov. Some examples of nonmetrizable
compact spaces with or without the strong Skorokhod property are considered,
and it is shown that a dyadic compact space with the strong Skorokhod property
is metrizable. A large number of open problems are posed.

1. Notation and Terminology

We assume throughout the paper that X is a Tychonoff (i.e., completely
regular) topological space. Let Cb(X) be the space of all bounded continuous
functions on X and let B(X) be the Borel σ-field of X. The symbol P(X)
denotes the space of all Borel probability measures on X. Let P0(X) and Pr(X)
denote, respectively, the spaces of all Baire and Radon (i.e., inner compact
regular) probability measures on X. A probability measure µ on a space X is
called discrete if µ(X \ C) = 0 for some countable subset C ⊂ X. The Dirac
measure at x is denoted by δx.

The weak topology on P(X), Pr(X) or P0(X) is the restriction of the weak
topology on the linear space of all bounded Borel (or Baire) measures that is
generated by the seminorms

pf (µ) =

∣∣∣∣∣
∫

X

f(x) µ(dx)

∣∣∣∣∣, f ∈ Cb(X).

Thus, a sequence of measures µn converges weakly to a measure µ precisely
when

lim
n→∞

∫

X

f(x) µn(dx) =
∫

X

f(x) µ(dx), ∀ f ∈ Cb(X).

It is well known that the weak topology is generated by the base of sets
W (µ, U, a) := {ν ∈ Pr(X) : ν(U) > µ(U) − a}, where U is open in X and
a > 0. Weak convergence is denoted by µn ⇒ µ. Recall that the weak topology
is Hausdorff on P0(X) and Pr(X) and that P(X) = P0(X) = Pr(X) for any
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completely regular Souslin space X. See [2] and [30] for additional information
about weak convergence of probability measures.

If (X,A) and (Y,B) are measurable spaces and f : X → Y is a measurable
mapping, then the image of a measure µ on X under the mapping f is denoted
by µ ◦ f−1 and defined by the formula

µ ◦ f−1(B) = µ
(
f−1(B)

)
, B ∈ B.

We recall that a family M of nonnegative Borel measures on a topological
space X is called uniformly tight if, for every ε > 0, there exists a compact set
Kε ⊂ X such that µ(X\Kε) < ε for all µ ∈M.

We shall call a topological space X sequentially Prokhorov if every sequence
of Radon probability measures on X that converges weakly to a Radon measure
is uniformly tight.

Let us denote by R∞0 the space of all real sequences of the form (x1, x2, . . . , xn,
0, 0, . . . ).

Definition 1.1. (i) We shall say that a family M of Borel probability mea-
sures on a topological space X has the strong Skorokhod property if, with
every measure µ ∈ M, one can associate a Borel mapping ξµ : [0, 1] → X with
λ ◦ ξ−1

µ = µ, where λ is Lebesgue measure, such that if a sequence of measures
µn ∈M converges weakly to a measure µ ∈M, then

lim
n→∞ ξµn(t) = ξµ(t) for almost all t ∈ [0, 1]. (1.1)

If (1.1) holds under the additional assumption that {µn} is uniformly tight,
then M is said to have the uniformly tight strong Skorokhod property.

(ii) We shall say that a topological space X has the strong Skorokhod property
for Radon measures if the family Pr(X) of all Radon measures has that property.
If the family of all discrete probability measures on X has the strong Skorokhod
property, then X is said to have that property for discrete measures.

The uniformly tight Skorokhod property for X is defined analogously. In a
similar manner we define also the strong and uniformly tight strong Skorokhod
properties for probability measures with finite supports and two-point supports.

We shall use the terms Skorokhod parameterization and Skorokhod represen-
tation for mappings µ 7→ ξµ of the type described in this definition.

It is clear that a sequentially Prokhorov space has the strong Skorokhod
property for Radon measures if and only if it has the uniformly tight strong
Skorokhod property for Radon measures.

An advantage of dealing with Radon measures is that the strong Skorokhod
property for them is inherited by arbitrary subspaces (see [5, Lemma 3.1]).

It has been proved in [5] that every metrizable space has the strong Sko-
rokhod property for Radon measures. On the other hand, there exist non-
metrizable Souslin spaces that fail to have the strong Skorokhod property for
Radon measures. In particular, according to [5], the space R∞0 of all finite real
sequences with its natural topology of the inductive limit of the spaces Rn does
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not even the uniformly tight strong Skorokhod property; moreover, one can find
a weakly convergent uniformly tight sequence of probability measures on R∞0
that does not admit a Skorokhod parameterization by mappings. It is worth
noting that R∞0 has the weak Skorokhod property, i.e., admits a parameteriza-
tion of all probability measures such that every weakly convergent uniformly
tight sequence has a subsequence satisfying (1.1). This kind of Skorokhod’s
property motivated by [18] has been considered in [5] and will be the subject of
a separate paper of the authors.

2. The strong Skorokhod Property of Almost Metrizable Spaces

It has been proved in [5] that the class of topological spaces with the strong
Skorokhod property for Radon measures includes all metrizable spaces. In this
section, we show that this class is even wider and includes all almost metri-
zable sequentially Prokhorov spaces. In particular, we construct a class of
nonmetrizable topological spaces with the strong Skorokhod property for Radon
measures. Our simplest example is a countable set which is the set of natural
numbers with an extra point from its Stone–Čech compactification.

First we show that the uniformly tight strong Skorokhod property for Radon
measures is preserved by bijective continuous proper mappings. In particular,
the strong Skorokhod property for Radon measures is preserved by bijective
continuous proper mappings onto sequentially Prokhorov spaces. We recall that
a mapping f : X → Y between topological spaces is called proper if f−1(K) is
compact for every compact subspace K ⊂ Y .

Theorem 2.1. Let X and Y be two topological spaces such that there exists
a bijective continuous proper mapping F : X → Y . Assume that X has the uni-
formly tight strong Skorokhod property for Radon measures. Then Y possesses
this property as well. In particular, if Y is sequentially Prokhorov, then Y has
the strong Skorokhod property for Radon measures.

Proof. Since F is proper and continuous, for every Radon probability measure
µ on Y there exists a unique Radon probability measure µ̂ on X such that
µ̂ ◦ F−1 = µ (see, e.g., [4, §6.1]). Let us take a Skorokhod parameterization
ν 7→ ξν of Radon probability measures on X by Borel mappings from [0, 1],
which exists by our hypothesis. Then µ 7→ F ◦ξµ̂ is the desired parameterization
on Y . Indeed, assume that Radon probability measures µn converge weakly to
a Radon measure µ on Y and that the sequence {µn} is uniformly tight. Since
F is proper, the sequence of measures µ̂n is uniformly tight as well. In addition,
for every compact set Q ⊂ X, one has

lim sup
n→∞

µ̂n(Q) = lim sup
n→∞

µn

(
F (Q)

)
≤ µ

(
F (Q)

)
= µ̂(Q).

Together with the uniform tightness this yields that lim sup
n→∞

µ̂n(Z) ≤ µ̂(Z) for

every closed set Z ⊂ X, which shows that µ̂n ⇒ µ̂. Therefore, ξµ̂n
(t) → ξµ̂(t)

for almost every t ∈ [0, 1]. For such t, we also have ξµn(t) → ξµ(t) by the
continuity of F .
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Remark 2.2. It follows from the above proof that for a bijective continuous
proper mapping f : X → Y and a uniformly tight weakly convergent sequence
µn ⇒ µ of probability Radon measures on Y , the sequence of measures µn ◦f−1

on X is weakly convergent to µ ◦ f−1.

We define a topological space X to be almost metrizable if there exists a
bijective continuous proper mapping f : M → X from a metrizable space M .
If M is discrete, then X is called almost discrete.

One can easily show by examples that an almost metrizable space may not
be metrizable (such examples are given below). On the other hand, each almost
metrizable k-space is metrizable. We recall that a topological space X is a k-
space if a subset U ⊂ X is open in X precisely when U ∩K is open in K for
every compact subset K ⊂ X (see [11]).

One can readily show that almost metrizable spaces and almost discrete
spaces have the following properties.

Proposition 2.3. (i) Any subspace of an almost metrizable space is almost
metrizable.

(ii) A topological space is metrizable if and only if it is an almost metrizable
k-space.

(iii) A topological space X is almost metrizable if and only if the strongest
topology inducing the original topology on each compact subset of X is metriz-
able.

(iv) A topological space is almost discrete if and only if it contains no infinite
compact subspaces.

(v) A countable product of almost metrizable spaces is almost metrizable.
(vi) The classes of almost metrizable and almost discrete spaces are stable

under formation of arbitrary topological sums.
(vii) The images of almost metrizable and almost discrete spaces under con-

tinuous bijective proper mappings belong to the respective classes.

The following theorem characterizes almost metrizable spaces possessing the
strong Skorokhod property for Radon measures.

Theorem 2.4. Any almost metrizable space has the uniformly tight strong
Skorokhod property for Radon measures. Moreover, an almost metrizable space
has the strong Skorokhod property for Radon measures if and only if it is se-
quentially Prokhorov.

Proof. If a space X is almost metrizable and sequentially Prokhorov, then it has
the strong Skorokhod property by Theorem 2.1. The same reasoning proves also
the first claim. Suppose now that X is almost metrizable and has the strong
Skorokhod property. Let Radon probability measures µn converge weakly to
a Radon measure µ on X. We take Borel mappings ξµn : [0, 1] → X which
converge almost everywhere to a Borel mapping ξµ : [0, 1] → X such that they
transform Lebesgue measure λ on [0, 1] to the measures µn and µ, respectively.
Then we fix a metric space M that admits a proper bijective continuous mapping
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F onto X. As noted in the proof of Theorem 2.1, there exist unique Radon
probability measures µ̂n and µ̂ whose images under F are µn and µ, respectively.
Since the preimages under F of all compact sets in X are compact in M , it is
readily seen that Gn(t) := F−1ξµn(t) → G(t) := F−1ξµ(t) in M for every point
t at which ξµn(t) → ξµ(t). We observe that µ̂n = λ◦G−1

n and µ̂ = λ◦G−1, since
(λ ◦ G−1

n ) ◦ F−1 = µn, (λ ◦ G−1) ◦ F−1 = µ and the measures µn and µ have
unique preimages under F . This shows that µ̂n ⇒ µ̂. Taking into account that
all the measures in question are Radon and M is metrizable, we obtain by the
Le Cam theorem (see, e.g., [2]) that the sequence µ̂n is uniformly tight, hence
{µn} is also.

Since the countable product of sequentially Prokhorov spaces is also sequen-
tially Prokhorov (see, e.g., [4, §8.3]), we arrive at the following statement.

Corollary 2.5. The countable product of almost metrizable spaces with the
strong Skorokhod property has the strong Skorokhod property.

For almost discrete spaces we have even stronger results. We recall that a
topological space X is called sequentially compact if each sequence in X contains
a convergent subsequence, see [11, §3.10].

Theorem 2.6. For a topological space X the following conditions are equiv-
alent:

(i) X is an almost discrete space.
(ii) Each compact subset of X is sequentially compact and each uniformly

tight weakly convergent sequence µn ⇒ µ of Radon probability measures on X
converges in the variation norm (equivalently, one has the convergence µn(x) →
µ(x) for each x ∈ X).

Proof. The implications (i) ⇒ (ii) follows from Remark 2.2, since every weakly
convergent sequence of Radon measures on a discrete space converges in vari-
ation. To prove the reverse implication, assume that the space X satisfies
condition (ii). It suffices to prove that each compact subset K of X is finite.
Suppose not. By the sequential compactness of K, find a nontrivial convergent
sequence xn → x0 in K. Then the sequence of Dirac’s measures δxn at the
points xn is uniformly tight and converges weakly to Dirac’s measure δx0 . By
our hypothesis, δxn(x0) → δx0(x0) = 1. Then xn = x0 for all but finitely many
numbers n.

Corollary 2.7. Let X be an almost discrete sequentially Prokhorov space, let
E be a completely regular space, and let a sequence of Radon probability measures
µn on X×E converge weakly to a Radon probability measure µ. Then, for each
x ∈ X, the restrictions of the measures µn to the set x× E converge weakly to
the restriction of µ, i.e., one has µn|x×E ⇒ µ|x×E.

Proof. The projections ηn of the measures µn to X converge weakly to the
projection η of µ. By Theorem 2.6, ηn(x) → η(x) and thus µn(x×E) → µ(x×E)
for each x ∈ X. Since every set x×E is closed in X ×E, one has by the weak



TOPOLOGICAL SPACES WITH THE STRONG SKOROKHOD PROPERTY 207

convergence on X ×E that lim sup
n→∞

µn(Z) ≤ µ(Z) for every closed subset of the

space x× E. Hence we obtain the desired weak convergence.

Almost metrizable spaces need not be metrizable (we shall encounter below
even countable almost metrizable nonmetrizable spaces). A somewhat unex-
pected example is the Banach space l1 endowed with the weak topology. The
space l1 is known to have the Shur property. We recall that a Banach space X
has the Shur property if each weakly convergent sequence in X is norm conver-
gent.

Theorem 2.8. Let X be a Banach space with the Shur property and let τ be
an intermediate topology between the norm and weak topologies on X. Then the
space (X, τ) is almost metrizable and has the uniformly tight strong Skorokhod
for Radon measures.

Proof. According to Theorem 2.4 it suffices to prove that the identity map
X → (X, τ) is proper. To this end, let us fix a compact subset K ⊂ (X, τ). Then
K is weakly compact and by the Eberlein–Šmulyan theorem K is sequentially
compact in the weak topology. Assume that K is not norm compact. Then K
contains a sequence {xn}n∈N without norm convergent subsequences. Since K
is sequentially compact in the weak topology, the sequence contains a weakly
convergent subsequence, which contradicts the Shur property.

It should be noted that, as shown in [14, p. 127], the space l1 with the
weak topology (as well as any infinite dimensional Banach space with the weak
topology) is not sequentially Prokhorov.

We shall now construct an almost discrete space without the strong Sko-
rokhod property.

Example 2.9. Let Xn, n ∈ N, be pairwise disjoint finite sets in N with
Card (Xn) < Card (Xn+1) for each n. Fix any point ∞ /∈ ⋃

n∈NXn and define
a topology on the union X = {∞} ∪ ⋃∞

n=1 Xn as follows. All points except for
∞ are isolated and the neighborhood base of a unique nonisolated point ∞ is
formed by the sets X \ F , where F ⊂ ⋃

n∈NXn is a subset for which there is
m ∈ N such that Card (F ∩ Xn) ≤ m for every n. It can be shown that the
space X is almost discrete and fails to have the strong Skorokhod property. To
this end, it suffices to note that X has no nontrivial convergent sequences. On
the other hand, the sequence of measures µn, where each µn is concentrated
on Xn and assigns equal values [Card (Xn)]−1 to the points of Xn, converges
weakly to Dirac’s measure at ∞. Existence of a Skorokhod parameterization of
a subsequence of µn would give a nontrivial convergent sequence. For the same
reason, no subsequence in {µn} is uniformly tight (otherwise such a subsequence
would be Skorokhod parameterizable by Remark 2.2).

Finally, we shall show that nonmetrizable almost metrizable spaces with the
strong Skorokhod property do exist. Such spaces will be constructed as sub-
spaces of extremally disconnected spaces. We recall that a topological space X
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is said to be extremally disconnected if the closure U of any open subset U of X
is open, see, e.g. [11]. A standard example of an extremally disconnected space
is βN, the Stone–Čech compactification of N. More generally, the Stone–Čech
compactification βX of a Tychonoff space X is extremally disconnected if and
only if the space X is extremally disconnected [11, §6.2].

Theorem 2.10. Any countable subspace X of an extremally disconnected
Tychonoff space K is almost discrete and has the strong Skorokhod property for
Radon measures.

Proof. Without loss of generality we may assume that K is compact (otherwise
we replace K by its Stone–Čech compactification). Since extremally discon-
nected spaces contain no nontrivial convergent sequences, any countable sub-
space X ⊂ K is almost discrete. According to Theorem 2.4, to show the strong
Skorokhod property of the space X, it suffices to verify that X is sequentially
Prokhorov. So, suppose that a sequence of Radon probability measures µn on
X converges weakly to a Radon measure µ. We shall show in fact that the weak
convergence of countable sequences of probability measures on X is equivalent
to the convergence at every point of X = {xn}, hence by the Scheffé theorem, to
the convergence in the variation norm. So that instead of using Theorem 2.4 we
could refer to the fact that N has the strong Skorokhod property. The measures
µn regarded as measures on K converge weakly to the measure µ on K. By a
well known result of Grothendieck [15, Théorème 9], we have the convergence of
{µn} to µ in the weak topology of the Banach space M(K) of all Radon mea-
sures on K (where the norm is the variation norm). Therefore, the integrals of
every bounded Borel function f on K against the measures µn converge to the
integral of f against µ. This means that for every bounded real sequence {yj}
one has lim

n→∞
∞∑

j=1
yjµn(xj) =

∞∑
j=1

yjµ(xj). It is well known (see, e.g., [8, p. 85])

that the sequence of vectors vn :=
(
µn(xj)

)∞
j=1

is norm convergent to the vector

v =
(
µ(xj)

)∞
j=1

in the space l1, which completes the proof.

Corollary 2.11. For every p ∈ βN \ N, the space X = {p} ∪ N with the
induced topology is a nonmetrizable almost discrete space with the strong Sko-
rokhod property for Radon measures.

A closer look at the proof of Theorem 2.10 reveals that it holds true for
a wider class of spaces. We say that a Tychonoff space X is a Grothendieck
space if the space Cb(X) with the sup-norm is a Grothendieck Banach space.
We recall that a Banach space E is said to be a Grothendieck Banach space if
the ∗-weak convergence of countable sequences in E∗ is equivalent to the weak
convergence (i.e., the convergence in the topology σ(E∗, E∗∗)). According to
the above cited Grothendieck theorem, each extremally disconnected Tychonoff
space is Grothendieck (see also [9], [25], and [29] for a discussion and further
generalizations of the Grothendieck theorem).
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Theorem 2.12. Any countable subspace X of a Grothendieck space K is
almost discrete and has the strong Skorokhod property.

Proof. Since Grothendieck spaces contain no nontrivial convergent sequences,
any countable subspace X ⊂ K is almost discrete. According to Theorem 2.4,
in order to prove the strong Skorokhod property of the space X, it suffices to
verify that X is sequentially Prokhorov. Let a sequence of probability measures
µn converge weakly to a measure µ on X. The measures µn can be considered
as elements of the dual space C∗

b (K) to the Banach space Cb(K) and the con-
vergence of the sequence {µn} corresponds to the ∗-weak convergence in C∗

b (K).
Since Cb(K) is a Grothendieck Banach space, the sequence {µn} converges in
the weak topology of C∗

b (K). Let L be the closed subspace of C∗
b (K) generated

by Dirac’s measures δx for x ∈ X. It is readily verified that the space L is
(isometrically) isomorphic to the Banach space l1. Clearly, one has µn ∈ L for
all n ∈ N. By the above mentioned property of the weak convergence in l1, the
sequence {µn} converges in norm, which implies that it is uniformly tight.

Corollary 2.13. A subspace X of a Grothendieck space K is almost discrete
and has the strong Skorokhod property if and only if all compact subsets of X are
metrizable (equivalently, finite). In particular, this is true if K is an extremally
disconnected Tychonoff space.

The next result follows by Theorem 2.4 and Corollary 2.7.

Corollary 2.14. Let X be the same as in Theorem 2.12, let E be a com-
pletely regular space, and let a sequence of Radon probability measures µn on
X × E converge weakly to a Radon measure µ. Then, for each x ∈ X, the re-
strictions of the measures µn to the set x×E converge weakly to the restriction
of µ, i.e., µn|x×E ⇒ µ|x×E.

The space {p} ∪ N, p ∈ βN\N, is probably the simplest example of a non-
metrizable space with the strong Skorokhod property. The fact that it is not
metrizable is seen from the property that p belongs to the closure of N, but there
are no infinite convergent sequences with elements from N (if such a sequence
{ni} converges, then the function f(n2i) = 0, f(n2i+1) = 1 has no continuous
extensions to βN).

It should be noted that although the weak convergence of countable sequences
of probability measures on the space X in Corollary 2.11 is the same one that
corresponds to the discrete metric on X, the two weak topologies on the space
of probability measures are different (otherwise X would be metrizable in the
topology from βN).

Thus, in the class of countable spaces with a unique nonisolated point, there
are almost metrizable nonmetrizable spaces which have (or have not) the strong
Skorokhod property.

On the other hand, all countable spaces with a unique non-isolated point have
the strong Skorokhod property for uniformly tight families of Radon measures.
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Proposition 2.15. Any uniformly tight collection of probability measures on
a countable space with a unique nonisolated point has the strong Skorokhod prop-
erty.

Proof. Given a uniformly tight familyM of probability measures on a countable
space X with a unique nonisolated point x∞, find for every n ∈ N a compact
subset Kn ⊂ X such that µ(Kn) > 1−2−n, ∀µ ∈M. Without loss of generality
we may assume that x∞ ∈ Kn ⊂ Kn+1 for each n. The compact sets Kn, being
countable, are metrizable. Consequently, the topological sum Y = ⊕n∈NKn is
metrizable as well. Next, consider the projection Y → ⋃∞

n=1 Kn ⊂ X. Our
statement will be proved as soon as we show that the induced map Pr(Y ) →
Pr(X) between the spaces of measures has a continuous section M → Pr(Y ).
To this end, we shall decompose each measure µ ∈ M into a series

∑∞
n=1 µn,

where µn is a measure on Kn such that µn(Kn) = 2−n and the correspondence
µ 7→ µn is continuous in µ ∈M.

We proceed by induction. Write K1 \ {x∞} = {xi : 1 ≤ i < Card (K1)}.
Since X has a unique nonisolated point, any compact set is either finite or
has a unique nonisolated point x∞. Given a measure µ ∈ M, let N(µ) =

sup
{
m :

∑
i<m

µ(xi) < 1
2

}
and µ1 =

(
1
2
− ∑

i<N(µ)
µ(xi)

)
δxN(µ)

+
∑

i<N(µ)
µ(xi)δxi

.

It is readily verified that µ1 ≤ µ, µ1(K1) = 1/2 and the so defined measure
µ1 depends continuously on µ ∈ M. In order to show the continuity, let us
consider a sequence of measures µm ∈M weakly convergent to µ ∈M. Let us
fix a continuous function f on X with |f | ≤ 1 and ε > 0. We can assume that
K is infinite and then the sequence {xn} converges to x∞. Hence there is N
such that |f(xn)− f(x∞)| < ε for all n > N . Then we have

∣∣∣∣∣
∫

f dµ1 −
∫

f dµm
1

∣∣∣∣∣ ≤
∣∣∣∣∣

∫

{xn : n≤N}
f [dµ1 − dµm

1 ]

∣∣∣∣∣

+

∣∣∣∣∣
∫

{xn : n>N}∪{x∞}
[f − f(x∞)] [dµ1 − dµm

1 ]

∣∣∣∣∣+
∣∣∣∣∣

∫

{xn : n>N}∪{x∞}
f(x∞) [dµ1 − dµm

1 ]

∣∣∣∣∣

≤ ∑

n≤N

|µ1(xn)− µm
1 (xn)|+ ε +

∣∣∣∣
1

2
− ∑

n≤N

µ1(xn)−
(

1

2
− ∑

n≤N

µm
1 (xn)

)∣∣∣∣

≤ ε + 2
∑

n≤N

|µ1(xn)− µm
1 (xn)|.

It remains to note that the right-hand side tends to zero as m → ∞, since
µm(xn) → µ(xn) for every fixed n < ∞. Applying this procedure to the measure
µ−µ1, we find a measure µ2 ≤ µ−µ1 on K2 such that µ2(K2) = 1

4
. Proceeding

in this way we obtain the desired decomposition µ =
∑∞

n=1 µn.

Note that the nonmetrizable spaces with the strong Skorokhod property
which have been constructed so far are not topologically homogeneous. Let
us show that there exist also nonmetrizable topologically homogeneous spaces
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with the strong Skorokhod property for Radon measures. A topological space
X is called topologically homogeneous if for every pair of points x, y ∈ X, there
is a homeomorphism h : X → X such that h(x) = y. As a rule, pathologi-
cal examples of topologically homogeneous spaces are constructed by using the
technique of left topological groups. We recall that a left topological group is a
group (G, ∗) endowed with a left invariant topology, i.e., a topology τ such that
for each g ∈ G, the left shift lg : x 7→ g∗x is continuous on (G, τ). A rich theory
of left topological groups has been developed by I.V. Protasov, see [22], [23].
According to [23, Theorem 4.1], each infinite group G admits a nondiscrete regu-
lar extremally disconnected left invariant topology. The theorem cited together
with Theorem 2.12 implies the following assertion.

Corollary 2.16. Each countable group G admits a left invariant topology
τ such that (G, τ) is a nonmetrizable countable almost discrete topologically
homogeneous extremally disconnected space with the strong Skorokhod property
for Radon measures.

A countable nondiscrete extremally disconnected Boolean topological group
was constructed by S. Sirota [27] (see also [21]) under the continuum hypothesis
CH (we recall that a group G is Boolean if x2 = 0 for every x ∈ G). This fact
yields the following result.

Corollary 2.17. Under CH, there exists a countable nonmetrizable almost
discrete extremally disconnected topological Boolean group with the strong Sko-
rokhod property for Radon measures.

The following questions remain open.

Question 1. Is there an infinite extremally disconnected compact space
with the strong Skorokhod property for Radon measures? In particular, does
βN possess the strong Skorokhod property for Radon measures?

Since compact subsets of almost metrizable spaces are metrizable, we con-
clude that each Radon measure µ on an almost metrizable space X is concen-
trated on a σ-compact space C ⊂ X with a countable network in the sense
that µ(C) = 1. We recall that a space X has a countable network if there is a
countable family N of subsets of X such that, for every point x ∈ X and every
neighborhood U ⊂ X of x, there is an element N ∈ N with x ∈ N ⊂ U .

Question 2. Is it true that every Radon probability measure µ on a space
with the strong Skorokhod property for Radon measures is concentrated on a
subspace C ⊂ X with a countable network?

A topological space X is called sequential if for every nonclosed subset F ⊂ X,
there is a sequence {xn} ⊂ F converging to a point x0 /∈ F . It is clear that
each metrizable space is sequential and each almost metrizable sequential space
is metrizable. A topological space X is called a Fréchet–Urysohn space if, for
every subset A ⊂ X and every point x ∈ A \ A, there is a sequence {xn} ⊂ A
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convergent to the point x0. It is clear that each Fréchet–Urysohn space is
sequential.

A standard example of a nonmetrizable Urysohn space is the Fréchet–Urysohn
fan V . The Fréchet–Urysohn fan V is defined as follows (cf. [11, 1.6.18]):

V := {k + (n + 1)−1 : k, n ∈ N} ∪ {0}
is endowed with the following topology: every point k + (n + 1)−1 has its usual
neighborhoods from the space V \{0} and the point 0 has an open base formed
by all sets

Un1,...,nj ,... := {k + (n + 1)−1 : k ∈ N, n ≥ nk} ∪ {0},
where {nj} is a sequence of natural numbers.

There are also sequential spaces which are not Fréchet–Urysohn. The simplest
example is the Arens fan A2, i.e., the space A2 = {(0, 0), (1/i, 0), (1/i, 1/j) : 1 ≤
i ≤ j < ∞} endowed with the strongest topology inducing the original topology
on each compact Kn = {(0, 0), (1/k, 0), (1/i, 1/j) : k ∈ N, 1 ≤ i ≤ n, i ≤ j <
∞}.

A topological space X is called scattered if each subspace E of X has an
isolated point. It is well known that each Radon measure on a scattered space
is discrete, see [17, Lemma 294].

Question 3. Is it true that any scattered sequential (Fréchet–Urysohn)
countable space with the strong Skorokhod property is metrizable?

Question 4. Do the Fréchet–Urysohn and Arens fans have the strong Sko-
rokhod property?

Let us note that according to Proposition 2.15 the Fréchet–Urysohn fan has
the strong Skorokhod property for uniformly tight families of probability mea-
sures.

3. The strong Skorokhod Property of Spaces Whose Topology is
Generated by a Linear Order

Any linear order ≤ on a set X generates two natural topologies on X. The
usual interval topology is generated by the pre-basis consisting of the rays
(←, a) = {x ∈ X : x < a} and (a,→) = {x ∈ X : x > a}, where a ∈ X.
The Sorgenfrey topology on X is generated by the pre-basis consisting of the
rays (a,→) and (←, a] = {x ∈ X : x ≤ a}, where a ∈ X. The space X endowed

with the interval topology will be denoted by
(
X, (≤)

)
. The space X endowed

with the Sorgenfrey topology will be denoted by
(
X, (≤]

)
. According to [11,

2.7.5] the space
(
X, (≤)

)
is hereditarily normal, while the space

(
X, (≤]

)
is

Tychonoff and zero-dimensional.

Theorem 3.1. If ≤ is a linear order on a set X, then the spaces
(
X, (≤)

)

and
(
X, (≤]

)
have the strong Skorokhod property for discrete probability mea-

sures.
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Proof. Fix any point x0 ∈ X. Given a discrete probability measure µ on X,
consider the countable set S(µ) := {x ∈ X : µ({x}) > 0} and to each point

x ∈ S(µ) assign the open interval Ix =
(
µ(←, x), µ(←, x]

)
⊂ [0, 1]. It is clear

that for distinct x, y ∈ S(µ), the intervals Ix and Iy are disjoint and Lebesgue
measure of the union I(µ) =

⋃
x∈S(µ) Ix is 1. Let ξµ : [0, 1] → X be the Borel

function defined by

ξµ(t) =

{
x if t ∈ Ix for some x ∈ S(µ),
x0 otherwise.

Since λ(Ix) = µ({x}), we get µ = λ ◦ ξ−1
µ where λ stands for the standard

Lebesgue measure on [0, 1]. Our crucial observation is that for each t ∈ I(µ) we
have

µ
(
←, ξµ(t)

)
= µ(←, x) < t < µ(←, x] = µ

(
←, ξµ(t)

]
,

where x ∈ S(µ) is such that t ∈ Ix.

Now let us show that the family {ξµ} turns the spaces
(
X, (≤)

)
and

(
X, (≤]

)

into spaces with the strong Skorokhod property for discrete probability mea-
sures. Assume that µn ⇒ µ0 is a weakly convergent sequence of discrete prob-

ability measures on
(
X, (≤)

)
such that µ0 is discrete. We shall show that for

each t ∈ ⋂∞
n=0 I(µn) the sequence {ξµn(t)} converges to ξµ0(t). It suffices to

verify that for each pre-basic neighborhood W of ξµ0(t), all but finitely many
points ξµn(t) lie in W .

If W = (a,→) 3 ξµ0(t) for some a ∈ X, then µ0(←, a] ≤ µ0

(
←, ξµ0(t)

)
< t.

Since the ray (←, a] is closed in the space
(
X, (≤)

)
, from the weak convergence

of {µn} to µ0 we obtain that µn(←, a] < t for almost all n. Then µn(←, a] <

t < µn

(
←, ξµn(t)

)
and a < ξµn(t) for all but finitely many n. Hence ξµn(t) ∈ W

for all but finitely many n.
Next, assume that W = (←, a) for some a ∈ X. Then ξµ0(t) < a and

t < µ0(←, ξµ0(t)] ≤ µ0(←, a). Since the ray (←, a) is open in the space
(
X,

(≤)
)
, we get µn(←, a) > t for all but finitely many n. Then µn(←, a) > t >

µn(←, ξµn(t)) and hence a > ξµn(t) for all but finitely many n.
Now assume that the sequence {µn} converges weakly to µ0 in the space(

X, (≤]
)
, where all the measures in question are discrete. In order to show

that the sequence {ξµn(t)} converges to ξµ0(t) for each t ∈ ⋂
n≥0 I(µn), fix any

pre-basic neighborhood W of the point ξµ0(t) in
(
X, (≤]

)
. If W = (a,→) for

some a ∈ X, then repeating the above argument we prove that ξµn(t) ∈ W for
all but finitely many n. So assume that W = (←, a] for some a ∈ X. Then
ξµ0(t) ≤ a and t < µ0(←, ξµ0(t)] ≤ µ0(←, a]. Since the sets (←, a] are open in(
X, (≤]

)
and µn ⇒ µ0, we obtain µn(←, a] > t for all but finitely many n. Since

µn

(
←, ξµn(t)

)
< t < µn(←, a], we conclude that ξµn(t) ≤ a and ξµn(t) ∈ W for

all but finitely many n.
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A topological space X is called linearly ordered if it carries the interval topol-
ogy generated by some liner order on X. Standard examples of linearly ordered
spaces are the real line and segments of ordinals.

Corollary 3.2. If each Radon probability measure on a linearly ordered topo-
logical space X is discrete, then the space X has the strong Skorokhod property
for Radon measures.

Corollary 3.3. Each scattered linearly ordered space has the strong Sko-
rokhod property.

Corollary 3.4. For every ordinal α, the segment [0, α] endowed with the
usual order topology has the strong Skorokhod property for Radon measures.

Corollary 3.5. For any linear order ≤ on a set X, the space
(
X, (≤]

)
has

the strong Skorokhod property for Radon measures.

Proof. According to Theorem 3.1, it suffices to show that each Radon proba-

bility measure on
(
X, (≤]

)
is discrete. It suffices to verify that each compact

subspace of
(
X, (≤]

)
is scattered. If it were not the case, we could find a compact

subspace K of
(
X, (≤]

)
without isolated points. Clearly, the set K has a min-

imal element min K (otherwise the family {(a,→) : a ∈ K} would be an open
cover of K without a finite subcover). Then the set {min K} = K ∩ (←, min K]
is open in K and thus min K is an isolated point of K, which is a contradic-
tion.

Corollary 3.6. The Sorgenfrey line
(
R, (≤]

)
has the strong Skorokhod prop-

erty for Radon measures.

Question 5. Does the product [0, 1] × [0, ω1] have the strong Skorokhod
property for Radon measures or for discrete probability measures?

Question 6. Does every linearly ordered compact space have the strong
Skorokhod property for Radon measures? In particular, does the Souslin line
have the strong Skorokhod property for Radon measures?

We recall that a Souslin line is a linearly ordered nonseparable compact space
with countable cellularity, see [11, 2.7.9]. It is known that the existence of a
Souslin line is independent of the ZFC axioms.

It is worth noting that the Sorgenfrey line can be topologically embedded into
the product A = [0, 1] × {0, 1} endowed with the interval topology generated
by the lexicographic order ≤: (x, t) ≤ (y, τ) if and only if x < y or x = y and
t ≤ τ . The space A (called two arrows of Alexandroff) is well known as an
example of a nonmetrizable separable first countable compact space.

Theorem 3.1 implies the following assertion.

Corollary 3.7. The Alexandroff two arrows space A has the strong Sko-
rokhod property for discrete probability measures.
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Since the space A admits a surjective continuous map onto the interval [0, 1], it
admits a nondiscrete probability measure µ, namely, a measure whose projection
is the standard Lebesgue measure on [0, 1].

Question 7. Is it true that the Alexandroff two arrows space A possess the
strong Skorokhod property for Radon measures?

Finally, let us consider yet another interesting space whose topology is gen-
erated by a partial order. Let T be the standard binary tree, i.e., the set
T =

⋃
0≤n≤ω{0, 1}n of all binary sequences (finite and infinite) with the nat-

ural partial order ≤: (xi)i≤n ≤ (yi)i≤m if and only if n ≤ m and xi = yi

for all i ≤ n. The topology of the space T is generated by the half-intervals
(a, b] = {x ∈ T : a < x ≤ b} where a < b are points of T . The space T en-
dowed with this topology is scattered, separable, locally metrizable, and locally
compact but not metrizable (since it contains the discrete subspace {0, 1}ω). In
fact, the space T is known as an example of a nonmetrizable Moore space. We
recall (see [11], [16]) that a topological space X is a Moore space if it admits
a sequence {Un} of open covers such that for every point x ∈ X the family{ ⋃

x∈Un∈U U
}

n∈N forms a neighborhood base at x. By the Bing metrization

criterion [11, 5.4.1], a Moore space is metrizable if and only if it is collectively
normal.

Question 8. Is every Moore space with the strong Skorokhod property
metrizable? In particular, does the Moore space T have the strong Skorokhod
property for Radon measures?

4. The strong Skorokhod Property of Compact Spaces

In this section, we study the strong Skorokhod property in nonmetrizable
compact topological spaces. Probably, the simplest example of such a space
is the Alexandroff supersequence, which is the one-point compactification αℵ1

of a discrete space of the smallest uncountable size. We shall show that the
Alexandroff supersequence does not have the strong Skorokhod property for
Radon measures. To this end, we need one combinatorial lemma. Let ∞ denote
the unique nonisolated point of αℵ1 and let ∆ be the diagonal of the square
(αℵ1)

2 of αℵ1.

Lemma 4.1. There is no continuous mapping f : (αℵ1)
2 \ ∆ → M into a

metric space (M,d) such that d
(
f(∞, a), f(a,∞)

)
≥ 1 for every a ∈ ℵ1.

Proof. Assume that such a mapping f exists. By the continuity of f outside ∆,
for every a ∈ ℵ1, we find a finite set F (a) ⊂ ℵ1 such that a ∈ F (a) and

max
{
d
(
f(a,∞), f(a, b)

)
, d

(
f(∞, a), f(b, a)

)}
< 1/6

for every b ∈ ℵ1 \ F (a). By the ∆-System Lemma in [19, 16.1], there exist an
uncountable subset A ⊂ ℵ1 and a finite set F ⊂ ℵ1 such that F (a) ∩ F (a′) =
F for any distinct a, a′ ∈ A. By transfinite induction, we may construct an
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uncountable subset B ⊂ A \ F such that b /∈ F (a) for any distinct a, b ∈ B.

Then, for any distinct points a, b ∈ B, we have d
(
f(a,∞), f(a, b)

)
< 1/6 and

d
(
f(∞, b), f(a, b)

)
< 1/6. Now fix any three different points a, b, c ∈ B and

observe that the following estimates are true:

d
(
f(a,∞), f(∞, a)

)
≤ d

(
f(a,∞), f(b,∞)

)
+ d

(
f(b,∞), f(∞, a)

)

≤ d
(
f(a,∞), f(a, c)

)
+ d

(
f(a, c), f(∞, c)

)
+ d

(
f(∞, c), f(b, c)

)

+ d
(
f(b, c), f(b,∞)

)
+ d

(
f(b,∞), f(b, a)

)
+ d

(
f(b, a), f(∞, a)

)
< 6 · 1

6
= 1,

which is a contradiction.

Theorem 4.2. The Alexandroff supersequence αℵ1 fails to have the strong
Skorokhod property even for probability measures with two-point supports.

Proof. Let M denote the space of all measurable subsets A ⊂ [0, 1] with
Lebesgue measure λ(A) = 1/2, endowed with the standard metric d(A,B) =
λ(A∆B) (to be more precise, we deal with the corresponding equivalence
classes). Observe that d(A,B) = 1 for any sets A,B ∈ M such that λ(A ∩
B) = 0. Assume that the Alexandroff supersequence αℵ1 has the strong
Skorokhod property for probability measures with two-point supports and let
ξµ : [0, 1] → X be a Skorokhod parameterization of probability measures on X
with two-point supports. Next, define a function f : (αℵ1)

2\∆ → M letting
f(a, b) = ξ−1

1
2
δa+ 1

2
δb

(a) for any distinct a, b ∈ αℵ1. It can be shown that the map f

is continuous and d
(
f(a,∞), f(∞, a)

)
= 1 for every a ∈ αℵ1, which contradicts

Lemma 4.1.

Corollary 4.3. A topological space containing a copy of the Alexandroff su-
persequence αℵ1 fails to have the strong Skorokhod property for probability mea-
sures with two-point supports.

Since the Alexandroff supersequence is a scattered compact, Theorem 4.2
shows that there exist scattered compacta without the strong Skorokhod prop-
erty for probability measures with two-point supports. On the other hand,
by Corollary 3.4, the segment [0, ω1] is an example of a nonmetrizable scat-
tered compact with the strong Skorokhod property. We shall show that any
nonmetrizable scattered compact with the strong Skorokhod property in some
sense resembles the space [0, ω1]. Namely, it has infinite Cantor–Bendixson rank
which is defined as follows.

Given a topological space X let X(1) denote the set of all nonisolated points of
X. By transfinite induction, for every ordinal α define the α-th derived set X(α)

of X letting X(0) = X and X(α) =
⋂

β<α(X(β))(1). Thus, we get a decreasing

transfinite sequence (X(α))α of subsets of X. The smallest ordinal α0 such that
X(α0) = X(α) for any α ≥ α0 is called the Cantor–Bendixson rank of X. It is
clear that a space X is scattered if and only if X(α) = ∅ for some α.
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It is well known that the Cantor–Bendixson rank of [0, ω1] is equal to ω1, while
the Cantor–Bendixson rank of the Alexandroff supersequence αℵ1 is equal to 2.

Theorem 4.4. Each nonmetrizable scattered compact space with the strong
Skorokhod property for probability measures with two-point supports has infinite
Cantor–Bendixson rank.

Proof. It can be proved by induction that each nonmetrizable scattered compact
space with finite Cantor–Bendixson rank contains a copy of the Alexandroff
supersequence αℵ1.

Question 9. Is it true that any scattered compact space with the strong
Skorokhod property for probability measures with two-point supports has un-
countable Cantor–Bendixson rank?

We shall now show that in the class of dyadic compacta only metrizable ones
enjoy the strong Skorokhod property.

Theorem 4.5. Each dyadic compact with the strong Skorokhod property for
probability measures with two-point supports is metrizable. In particular, if
a dyadic compact has the strong Skorokhod property for probability measures
with two-point supports, then it has the strong Skorokhod property for Radon
measures.

Proof. Our claim follows from Corollary 4.3 and the known fact that any non-
metrizable dyadic compact contains a copy of the Alexandroff supersequence,
see [11, 3.12.12].

Besides the class of dyadic compact spaces, there are many interesting classes
of compact spaces for which their relation to the class of spaces with the strong
Skorokhod property has not yet been clarified. In this respect, it would be in-
teresting to investigate the classes of Eberlein, Corson, and Rosenthal compacta
(see, e.g., [1], [12]). We recall that a compact space K is defined to be
• an Eberlein compact if K is homeomorphic to a compact subset of the Σ∗-

product Σ∗(τ) =
{
(xi)i∈τ ∈ Rτ : ∀ε > 0 the set {i ∈ τ : |xi| > ε} is finite

}
⊂ Rτ

for some cardinal τ ;
• a Corson compact if K is homeomorphic to a compact subset of the Σ-

product Σ(τ) =
{
(xi)i∈τ ∈ Rτ : the set {i ∈ τ : xi 6= 0} is countable

}
⊂ Rτ for

some cardinal τ ;
• a Rosenthal compact if K is homeomorphic to a compact subset of the space

B1(P ) ⊂ RP of all functions of the first Baire class on a Polish space P .

It is clear that any Eberlein compact is Corson. It is known that each separa-
ble Corson compact as well as each Eberlein compact with countable cellularity
is metrizable. The Alexandroff two arrows space is a standard example of a
Rosenthal compact which is not a Corson compact. The Alexandroff superse-
quence is both an Eberlein and Rosenthal compact. Thus, there exist Eberlein
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and Rosenthal compacta without the strong Skorokhod property. The space
[0, ω1] is neither Corson nor Rosenthal, see [7, pp. 256, 259].

Other examples of nonmetrizable compacta which are both Eberlein and
Rosenthal are supplied by the construction of the Alexandroff doubling. Given
a topological space X, let f : X → Y be a bijective map onto a set Y disjoint
with X. On the union D(X) = X ∪ Y introduce the topology consisting of the

sets of the form A∪U ∪
(
f(U)\F

)
, where U ⊂ X is open in X, A is a subset of

Y , and F is a finite subset of Y . The obtained topological space D(X) is called
the Alexandroff doubling of the space X. It is known that for each metrizable
compact space K, its Alexandroff doubling D(K) is a first countable Eberlein
Rosenthal compact (observe that D(K) is homeomorphic to a subspace of the
product K×α|K|, where α|K| is the one-point compactification of K endowed
with the discrete topology).

Question 10. Is every Eberlein (Corson, Rosenthal) compact with the strong
Skorokhod property metrizable? In particular, does the Alexandroff doubling
D([0, 1]) of the segment have the strong Skorokhod property (or the strong
Skorokhod property for probability measures with two-point supports)?

It is worth noting that each countable family M of probability measures on
an Eberlein compact E does admit a Skorokhod representation. Indeed, each
compact subset of E is metrizable provided it has countable cellularity, which
implies the existence of a metrizable compact subset K ⊂ E with µ(K) = 1 for
all µ ∈M.

The Alexandroff doubling of a metrizable compact as well as the Alexandroff
two arrows space are examples of nonmetrizable spaces admitting a continuous
finite-to-one map onto a metrizable compact.

Question 11. Suppose a compact K has the strong Skorokhod property
and admits a continuous finite-to-one map onto a metrizable compact. Is K
metrizable?

We recall that the strong Skorokhod property for Radon measures is inherited
by arbitrary subspaces, which enables one to construct more examples of spaces
with this property on the basis of the examples above.

Now several remarks on open problems are in order.

Question 12. Stability of the class of spaces with the strong Skorokhod
property (or with the other related properties mentioned above) with respect
to formation of finite and countable products.

Question 13. In particular, it would be interesting to investigate whether
the product X×Y , where X has the strong property and Y is separable metric
(say, Y = NN), retains the same Skorokhod property. We do not know the
answer even for finite or countable Y (in particular, we do not know whether
the topological sum of two spaces with the strong Skorokhod property has that
property).
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Question 14. Preservation of the strong Skorokhod property (or the other
related properties mentioned above) by continuous mappings (with certain ad-
ditional properties).

Some positive results concerning continuous images have been proved above
and in [5]. The example of the space R∞0 shows that some additional assump-
tions are needed in order to guarantee that the image space has the strong Sko-
rokhod property. However, the assumptions imposed in [5] seem to be rather
restrictive.

It might be also reasonable to look at weaker Skorokhod-type properties in-
herited by the continuous images of spaces with stronger properties (as is the
case for the space R∞0 ).
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17. P. Habala, P. Hájek, and V. Zizler, Introduction to Banach spaces. Matfyzpress,
Praha, 1996.

18. A. Jakubowski, The almost sure Skorokhod representation for subsequences in non-
metric spaces. (Russian) Teor. Veroyatn. i Primenen. 42(1997), No. 1, 209–217; English
translation: Theory Probab. Appl. 42(1997), No. 1, 167–174.

19. W. Just and M. Weese, Discovering modern set theory. II: Set theoretic tools for every
mathematician. Graduate Studies in Mathematics. 18. Amer. Math. Soc., Providence,
Rhode Island, 1997.

20. A. S. Kechris, Classical descriptive set theory. Springer-Verlag, Berlin – New York,
1995.

21. V. I. Malyhin, Extremally disconnected and similar groups. (Russian) Dokl. Akad. Nauk
SSSR 220(1975), No. 1, 27–30; English translation: Soviet Math. Dokl. 16(1975), 21–25.

22. I. V. Protasov, Maximal topologies on groups. (Russian) Sibirsk. Mat. Zh. 39(1998),
15–28; English translation: Siberian Math. J. 39(1998), No. 6, 1184–1194.

23. I. V. Protasov, Extremal topologies on groups. Matem. Studii (to appear).
24. A. P. Robertson and W. Robertson, Topological vector spaces. Cambridge University

Press, Cambridge etc., 1966.
25. H. P. Rosenthal, On relatively disjoint families of measures, with some applications

to Banach space theory. Studia Math. 37(1970), 13–36.
26. A. Schief, Almost surely convergent random variables with given laws. Probab. Theory

Relat. Fields 81(1989), 559–567.
27. S. Sirota, Products of topological groups and extremal disconnectedness. Mat. Sbornik

79(1969), No. 2, 79–192.
28. A. V. Skorohod, Limit theorems for stochastic processes. (Russian) Teor. Veroyatn. i

Primenen. 1(1956), No. 3, 289–319; English translation: Theor. Probab. Appl. 1(1956),
No. 3, 261–290.

29. G. L. Seever, Measures on F -spaces. Trans. Amer. Math. Soc. 133(1968), 267–280.
30. N. N. Vakhania, V. I. Tarieladze, and S. A. Chobanyan, Probability distributions

in Banach spaces. (Russian) Nauka, Moscow, 1984; English translation: Kluwer Academic
Publishers, 1991.

(Received 8.03.2001)

Authors’ addresses:

T. O. Banakh
Dept. of Mathematics
Lviv National University
Universitetska 1, 79000, Lviv
Ukraine
E-mail: topos@franko.lviv.ua

V. I. Bogachev and A. V. Kolesnikov
Dept. of Mechanics and Mathematics
Moscow State University
119899, Moscow
Russia
E-mail: vbogach@mech.math.msu.su

viktork@online.ru


