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DERIVATIVE UNIFORM SAMPLING VIA
WEIERSTRASS σ(z). TRUNCATION ERROR

ANALYSIS IN
[
2, πq

2s2

)

TIBOR K. POGÁNY

Abstract. In the entire functions space
[
2, πq

2s2

)
consisting of at most second

order functions such that their type is less than πq/(2s2) it is valid the q-
order derivative sampling series reconstruction procedure, reading at the von
Neumann lattice {s(m + ni)| (m,n) ∈ Z2} via the Weierstrass σ(·) as the
sampling function, s > 0. The uniform convergence of the sampling sums to
the initial function is proved by the circular truncation error upper bound,
especially derived for this reconstruction procedure. Finally, the explicit
second and third order sampling formulæ are given.
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1. Introduction and Preparation

The well-known sampling representation of some function f(z), z ∈ C, means
that f is completely reconstructed from the values f(sn) obtained by “sampling”
f at the points of the one-dimensional lattice sZ, s > 0. The reconstruction
formula (often called by the names of Whittaker, Kotel’nikov and Shannon) is

f(z) =
sin πz/s

π/s

∑

n∈Z
f(sn)

(−1)n

z − sn
. (1)

One of the most interesting extensions of (1) was done by J. M. Whittaker.
Namely, for f ∈ [2, π/2)1 for the two-dimensional so-called von Neumann lattice
{s(m + ni)| (m,n) ∈ Z2} one has

1The functions space [ρ, σ) is introduced as the space of all entire functions of the order
less than ρ; when it is equal to ρ, it possesses type less than σ, i.e.,

lim sup
r→∞

ln Mf (r)
rρ

< σ

(cf. [1, p. 18]). Here Mf (r) := sup|z|=r |f(z)| denotes the maximum modulus. Similarly,
[ρ, σ] denotes the functions spaces of order at most ρ, and the type less than or equal to σ.
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f(z) = σ(z)
∑

(m,n)∈Z2

(−1)m+n+mn f(m + ni)

z −m− ni
e−

π
2
(m2+n2), (2)

uniformly in all z ∈ C, and

σ(z) = z
∏

m,n∈Z

′
(

1− z

ζm,n

)
exp

(
z

ζmn

+
z2

2ζ2
mn

)
,

where the primed product means that the term ζm,n = 0 is omitted, see [2, pp.
72–73]. (Throughout we use the notation ζmn ≡ m + ni, (m, n) ∈ Z2.)

J. R. Higgins extended (2) in a derivative sampling manner, i.e., when the
reconstruction procedure involves not only the sampled values of the initial
function f , but also the sampled values of first q − 1 derivatives f (j)(z), j =
1, q − 1 of f . When f belongs to the Paley–Wiener type functions space (we
deal with the exponential type functions), then the role of the sine function is
crucial. But in that case the Weierstrass σ(z) replaces the sine in (1). We give

this result now. If f ∈
[
2, πq

2s2

)
for some positive real s we have

f(z) = σq(z/s)
∑

(m,n)∈Z2

q−1∑

j=0

q−1−j∑

k=0

f (q−1−j−k)(s(m + ni))

j!(q − 1− j − k)!

× Rq
mnj

(z − s(m + ni))k+1
, (3)

with

Rq
mnj = sq−j lim

w→ζmn

dj

dwj

(
w −m− ni

σ(w)

)q

,

uniformly on all compact z-sets from C [3, Ch. 5], [4]; here we follow the usual

convention f (j) = djf
dzj := f for j = 0.

Our main goal in this paper is the following. Let us introduce

Nδ(r) := {(m,n)| s|m + ni| < r; s(N + δ)
√

2 < r < s(N +
√

δ)
√

2; δ ∈ (0, 1)}.
The truncated to Nδ(r) variant of the sampling series (3) is

IN(z; f ; σ; q)

= σq(z/s)
∑

(m,n)∈Nδ(r)

q−1∑

j=0

q−1−j∑

k=0

f (q−1−j−k)(s(m + ni))Rq
mnj

j!(q − 1− j − k)!(z − s(m + ni))k+1
, (4)

and the so-called circular truncation error is

εN(f ; z) := f(z)− IN(z; f ; σ; q). (5)

To derive a uniform upper bound for |εN(f ; z)|, when f ∈
[
2, πq

2s2

)
we use the

contour integration method following the approach by Whittaker and Higgins.
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2. Derivation of an Upper Bound of the Truncation Error

The main tool in deriving upper bounds of the truncation error consists in
using the contour integral method in complex integration. Most authors used
positively oriented rectangles as an integration path like CM,N,R which surrounds
the set {z| −M − δ

2
< <{z} < N + δ

2
; |={z}| < R} for some positive integers

M,N, R (cf. [3, Ch. 5], [4, p. 215]). In the case of circular truncation there is
no need to take CM,N,R and therefore we choose a more suitable circular path
Γr, the circle of radius r with center at the origin. Another mathematical tool
is the use of the previous results in evaluating the growth of the Weierstrass
σ-function. Namely, we have

|σ(z)| ³ de
π
2
|z|2 , z ∈ C, (6)

where d = dist(z,Z) is the distance from z to the nearest point in the von
Neumann lattice Z2 (see [5, pp. 346–347]).

Theorem 1. Assume f ∈ [2, πq
2s2 θf ], where the parameter θf ∈ [0, 1) depends

of the function f . Then for all N ≥ (s
√

2)−1|max(<{z},={z})| and δ ∈ (0, 1)
we have

|εN(f ; z)| ≤ |σ(z/s)|q(N +
√

δ)

(C1d)q
(
N + δ − |z|

s
√

2

)e−πq(1−θf )N2

, (7)

where d = dist(z, sZ2) and the absolute constant C1 is defined by (6).

Proof. Let us estimate the truncation error of the nonharmonic Fourier series
expansion of the function f(z) with respect the complex variable z. By the
calculus of residues we find that

εN(f ; z) = f(z)− IN(z; f ; σ; q) =
σq(z/s)

2πi

∮

Γr

f(ζ)dζ

σq(ζ/s)(ζ − z)
.

The positively oriented circle Γr forms the integration contour containing and
bounding the square

−N − δ < <
{

z

s

}
,=

{
z

s

}
< N + δ, δ ∈ (0, 1)

and the set Nδ(r) so, that the radius r satisfies s(N +δ)
√

2 < r < s(N +
√

δ)
√

2.
Now it is clear that

|εN(f ; z)| ≤ |σ(z/s)|q
2π

∮

Γr

|f(ζ)||dζ|
|σ(ζ/s)|q|ζ − z|

≤ r|σ(z/s)|q
(C1d)q

e−[πq/(2s2)]r2

sup
ζ∈Γr

|f(ζ)| sup
ζ∈Γr

|ζ − z|−1

≤ r|σ(z/s)|q
(C1d)q|r − |z||exp

{
−πq(1− θf )

2s2
r2

}
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≤ |σ(z/s)|q(N +
√

δ)

(C1d)q
(
N + δ − |z|

s
√

2

)e−πq(1−θf )(N+δ)2 , (8)

where in (8) it is enough to use tha maximum modulus principle to take the
suprema on the countour Γr, bearing in mind the Hayman estimate (7). After
that straightforward transformations lead to the estimate (7).

Corrolary 1. Let the situation be the same as in the previous theorem. Then
the qth order derivative plane sampling reconstruction formula (3) holds true

for all f ∈
[
2, πq

2s2

)
, where, in (3) the convergence is uniform on compact sub-

sets of C. The uniform convergence rate of εN(f ; z) defined by (4) and (5) is

O
(
e−πq(1−θf )N2

)
.

Proof. Taking z fixed in the truncation error upper bound (7), we revisit the
Higgins extension (3) of the Whittaker result (2) in the uniform manner as
N → ∞. On the other hand, according to the assumptions of Theorem 1,
estimate (7) becomes

sup
z∈C

|εN(f ; z)| ≤ C2
|σ(z/s)|q(N +

√
δ)

N + δ − |z|
s
√

2

e−πq(1−θf )N2

= O
(
e−C3N2

)
,

for N large enough and C2, C3 ∈ R+. This means an exponential convergence
rate of the symmetric partial sums sequence IN(f ; z; σ; q) of the non-harmonic
Fourier series type derivative plane sampling reconstruction formula (3) as N →
∞.

3. Second and Third Order Derivative Sampling

In this section we give the exact derivative plane sampling reconstruction
formulae for q = 3, 4 (the case q = 2 was considered already by Higgins under
s =

√
2, see [3, Problem 9.4, p. 101]. Another reason, which restricts ourselves

to considereing these formulæ, is that the first four derivatives of the Weierstrass
σ(z) do not contain the invariants g2, g3 of the Weierstrass elliptic function ℘(·).
Indeed, since σ(z) is entire, we have the following straigthforward extension:

σ(z) = z − g2

240
z5 − g3

840
z7 +O(z9), (9)

where

g2 = 60
∑

(m,n)∈Z2

′ 1

(m + ni)4
; g3 = 140

∑

(m,n)∈Z2

′ 1

(m + ni)6
.

Consequently, having in mind the quasi-periodicity property

σ(z + m + ni) = (−1)m+n+mnσ(z)eπ(m−ni)z+π(m2+n2)/2,

we obtain by extension (9) the following results.
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Lemma 1.

σ(p)(m + ni) = (−1)m+n+mnp[π(m− ni)]p−1e−(π/2)(m2+n2), p = 1, 4, (10)

Rq
mnj = sq−j[−qπ(m− ni)]j(−1)q(m+n+mn)e−(πq/2)(m2+n2), j = 0, 3. (11)

For a detailed derivation of these relations consult [6, §4].
Now we are ready to formulate our results on the derivative plane sampling

reading on the von Neumann lattice s(Z)2 for q = 3, 4.

Corrolary 2. Let f ∈
[
2, 3π

2s2

)
. Then

f(z) = sσ3
(

z

s

) ∑

(m,n)∈Z2

(−1)m+n+mne−3π|ζmn|2/2

×
{[

s2

(z − sζmn)2
− 3πsζ∗mn

z − sζmn

+
(3πζ∗mn)2

2

]
f(sζmn)

z − sζmn

+

[
s

z − sζmn

− 3πζ∗mn

]
sf ′(sζmn)

z − sζmn

+
s2f ′′(sζmn)

2(z − sζmn)

}
, (12)

where the convergence is uniform in z, on all compact subsets of C; z∗ denotes
the complex conjugate of z.

Proof. Using formulæ (10), (11), the rearrangement of (3) for q = 3 gives us the
asserted display (12).

Corrolary 3. Let f ∈
[
2, 2π

s2

)
. Then

f(z) =
∑

(m,n)∈Z2

sσ4(z/s)

6(z − sζmn)

{[
6s3

(z − sζmn)3
− 24πs2ζ∗mn

(z − sζmn)2
+

3s(4πζ∗mn)2

z − sζmn

− (4πζ∗mn)3
]
f(sζmn) +

[
6s2

(z − sζmn)2
− 24πsζ∗mn

z − sζmn

+ 48(πζ∗mn)2

]
sf ′(sζmn)

+

[
3s

z − sζmn

− 12πζ∗mn

]
s2f ′′(sζmn) + s3f ′′′(sζmn)

}
e−2π|ζmn|2 ,

where the convergence is uniform in z, on all compact subsets of C.

4. Final Remarks

The presented method and the truncation error upper bound results have
their counterparts in the derivative plane sampling reconstruction of the so-
called Piranashvili α-processes defined on the probability space (Ω,F , P ), and
constituting the space

Lα(Ω) := {ξ(t)| ‖ξ‖α < ∞},
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such that is with the quasi norm ‖ · ‖α := (E|ξ(t)|α)1/α endoved, where α ∈
[0, 2] and E is the expectation operator. The spectral representation of such a
stochastic process ξ is given by

ξ(t) =
∫

Λ

f(t, λ)dZξ(λ),

where Λ is a linear Borel set, Zξ is the spectral measure of the process ξ and
f(z, λ) is in the entire functions space [1,∞), i.e., the kernel function f(z, λ) is
an exponentially bounded finite-type function, see [5] for appropriate definitions
and stochastic sampling results. Nevertheless, our reconstruction procedure is
applicable to such f , so we get a very powerful tool for the derivative plane
sampling reconstruction of the Piranashvili α-processes reading at the von Neu-
mann lattice sZ2. However it has to be pointed out that the stochastic process
results of [6] are not scaled (s ≡ 1), since the Weierstrass σ ∈ [2,∞). So there
is no need to introduce some scaling parameter s > 0 because the convergence
is controlled by the behaviour of σ(·) in sampling formulæ similar to (3).
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