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ON BOUNDED SOLUTIONS OF SYSTEMS OF LINEAR
FUNCTIONAL DIFFERENTIAL EQUATIONS

R. HAKL

Abstract. Sufficient conditions of the existence and uniqueness of
bounded on real axis solutions of systems of linear functional differ-
ential equations are established.

1. Formulations of the Main Results

Let R be the set of real numbers, Cloc(R, R) be the space of continuous
functions u : R → R with the topology of uniform convergence on every
compact interval and Lloc(R,R) be the space of locally summable functions
u : R → R with the topology of convergence in the mean on every compact
interval. Consider the system of functional differential equations

x′i(t) =
n

∑

k=1

lik(xk)(t) + qi(t) (i = 1, . . . , n), (1.1)

where lik : Cloc(R,R) → Lloc(R, R) (i, k = 1, . . . , n) are linear continuous
operators and qi ∈ Lloc(R, R) (i = 1, . . . , n). Moreover, there exist linear
positive operators lik : Cloc(R,R) → Lloc(R,R) (i, k = 1, . . . , n) such that
for any u ∈ Cloc(R,R) the inequalities

|lik(u)(t)| ≤ lik(|u|)(t) (i, k = 1, . . . , n) (1.2)

are fulfilled almost everywhere on R.
A simple but important particular case of (1.1) is the linear differential

system with deviated arguments

x′i(t) =
n

∑

k=1

pik(t)xk(τik(t)) + qi(t) (i = 1, . . . , n), (1.3)
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where pik ∈ Lloc(R, R), qi ∈ Lloc(R,R) (i, k = 1, . . . , n) and τik : R → R
(i, k = 1, . . . , n) are locally measurable functions.

A locally absolutely continuous vector function (xi)n
i=1 : R → R is called

a bounded solution of system (1.1) if it satisfies this system almost every-
where on R and

sup
{ n

∑

i=1

|xi(t)| : t ∈ R
}

< +∞.

I. Kiguradze [1, 2] has established optimal in some sense sufficient condi-
tions of the existence and uniqueness of a bounded solution of the differential
system

dxi(t)
dt

=
n

∑

k=1

pik(t)xk(t) + qi(t) (i = 1, . . . , n).

In the present paper these results are generalized for systems (1.1) and (1.3).
Before formulating the main results we want to introduce some notation.
δik is Kronecker’s symbol, i.e., δii = 1 and δik = 0 for i 6= k.
A = (aik)n

i,k=1 is a n× n matrix with components aik (i, k = 1, . . . , n).
r(A) is the spectral radius of the matrix A.
If ti ∈ R ∪ {−∞, +∞} (i = 1, . . . , n), then

N0(t1, . . . , tn) = {i : ti ∈ R}.

If u ∈ Lloc(R, R), then

η(u)(s, t) =

s
∫

t

u(ξ) dξ for t and s ∈ R. (1.4)

Theorem 1.1. Let there exist ti ∈ R ∪ {−∞, +∞} (i = 1, . . . , n), a
nonnegative constant matrix A = (aik)n

i,k=1 and a nonnegative number a
such that

r(A) < 1, (1.5)
∣

∣

∣

∣

t
∫

ti

exp
(

t
∫

s

lii(1)(ξ)dξ
)

[

lii(|η(lik(1))(·, s)|)(s) + (1− δik)|lik(1)(s)|
]

ds
∣

∣

∣

∣

≤

≤ aik for t ∈ R (i, k = 1, . . . , n), (1.6)

n
∑

i=1

∣

∣

∣

∣

t
∫

ti

exp
(

t
∫

s

lii(1)(ξ)dξ
)

[

lii(|η(|qi|)(·, s)|)(s) + |qi(s)|
]

ds
∣

∣

∣

∣

≤

≤ a for t ∈ R (1.7)
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and

sup
{

t
∫

ti

lii(1)(s)ds : t ∈ R
}

< +∞ for i ∈ N0(t1, . . . , tn). (1.8)

Then for any ci ∈ R (i ∈ N0(t1, . . . , tn)) system (1.1) has at least one
bounded solution satisfying the conditions

xi(ti) = ci for i ∈ N0(t1, . . . , tn). (1.9)

Theorem 1.2. Let all the conditions of Theorem 1.1 be fulfilled and

lim inf
t→ti

0
∫

t

lii(1)(s)ds = −∞ for i ∈ {1, . . . , n} \ N0(t1, . . . , tn). (1.10)

Then for any ci ∈ R (i ∈ N0(t1, . . . , tn)) system (1.1) has one and only one
bounded solution satisfying conditions (1.9).

If ti ∈ {−∞, +∞} (i = 1, . . . , n), then N0(t1, . . . , tn) = ∅. In that case
in Theorems 1.1 and 1.2 conditions (1.8) and (1.9) become unnecessary so
that these theorems are formulated as follows.

Theorem 1.1′. Let there exist ti ∈ {−∞,+∞} (i = 1, . . . , n), a non-
negative constant matrix A = (aik)n

i,k=1 and a nonnegative number a such
that conditions (1.5)–(1.7) are fulfilled. Then system (1.1) has at least one
bounded solution.

Theorem 1.2′. Let all the conditions of Theorem 1.1′ be fulfilled and

lim inf
t→ti

0
∫

t

lii(1)(s) ds = −∞ (i = 1, . . . , n).

Then system (1.1) has one and only one bounded solution.

The above theorems yield the following statements for system (1.3).

Corollary 1.1. Let there exist ti ∈ R ∪ {−∞,+∞} (i = 1, . . . , n), a
nonnegative constant matrix A = (aik)n

i,k=1 and a nonnegative number a
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such that r(A) < 1,

∣

∣

∣

∣

t
∫

ti

exp
(

t
∫

s

pii(ξ)dξ
)[∣

∣

∣

∣

pii(s)

τii(s)
∫

s

|pik(ξ)|dξ
∣

∣

∣

∣

+ (1− δik)|pik(s)|
]

ds
∣

∣

∣

∣

≤

≤ aik for t ∈ R (i, k = 1, . . . , n), (1.11)

n
∑

i=1

∣

∣

∣

∣

t
∫

ti

exp
(

t
∫

s

pii(ξ)dξ
)[∣

∣

∣

∣

pii(s)

τii(s)
∫

s

|qi(ξ)|dξ
∣

∣

∣

∣

+ |qi(s)|
]

ds ≤

≤ a for t ∈ R (1.12)

and

sup
{

t
∫

ti

pii(s)ds : t ∈ R
}

< +∞ for i ∈ N0(t1, . . . , tn). (1.13)

Then for any ci ∈ R (i ∈ N0(t1, . . . , tn)) system (1.3) has at least one
bounded solution satisfying conditions (1.9).

Corollary 1.2. Let all the conditions of Corollary 1.1 be fulfilled and

lim inf
t→ti

0
∫

t

pii(s)ds = −∞ for i ∈ {1, . . . , n} \ N0(t1, . . . , tn). (1.14)

Then for any ci ∈ R (i ∈ N0(t1, . . . , tn)) system (1.3) has one and only one
bounded solution satisfying conditions (1.9).

Corollary 1.3. Let there exist ti ∈ R ∪ {−∞,+∞}, bi ∈ [0, +∞[, bik ∈
[0, +∞[ (i, k = 1, . . . , n) such that the real part of every eigenvalue of the
matrix (−δikbi + bik)n

i,k=1 is negative and the inequalities

σ(t, ti)pii(t) ≤ −bi,
∣

∣

∣

∣

pii(t)

τii(t)
∫

t

|pik(s)|ds
∣

∣

∣

∣

+ (1− δik)|pik(t)| ≤

≤ bik (i, k = 1, . . . , n)

hold almost everywhere on R, where σ(t, ti) ≡ sgn(t−ti) if ti ∈ R, σ(t, ti) ≡
1 if ti = −∞ and σ(t, ti) ≡ −1 if ti = +∞. Moreover, let

sup
{

t+1
∫

t

[∣

∣

∣

∣

pii(s)

τii(s)
∫

s

|qi(ξ)|dξ
∣

∣

∣

∣

+ |qi(s)|
]

ds : t ∈ R
}

<

< +∞ (i = 1, . . . , n). (1.15)
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Then for any ci ∈ R (i ∈ N0(t1, . . . , tn)) system (1.3) has one and only one
bounded solution satisfying conditions (1.9).

Corollary 1.1′. Let there exist ti ∈ {−∞,+∞} (i = 1, . . . , n), a non-
negative constant matrix A = (aik)n

i,k=1 and a nonnegative number a such
that r(A) < 1 and conditions (1.11) and (1.12) are fulfilled. Then system
(1.3) has at least one bounded solution.

Corollary 1.2′. Let all the conditions of Corollary 1.1′ be fulfilled and

lim inf
t→ti

0
∫

t

pii(s) ds = −∞ (i = 1, . . . , n).

Then system (1.3) has one and only one bounded solution.

Corollary 1.3′. Let there exist σi ∈ {−1, 1}, bi ∈ [0, +∞[, bik ∈ [0,+∞[
(i, k = 1, . . . , n) such that the real part of every eigenvalue of the matrix
(−δikbi + bik)n

i,k=1 is negative and the inequalities

σipii(t) ≤ −bi,
∣

∣

∣

∣

pii(t)

τii(t)
∫

t

|pik(s)|ds
∣

∣

∣

∣

+ (1− δik)|pik(t)| ≤

≤ bik (i, k = 1, . . . , n)

hold almost everywhere on R. Moreover, if conditions (1.15) are fulfilled,
then system (1.3) has one and only one bounded solution.

2. Lemma of the Existence of a Bounded Solution of
System (1.1)

Let ti ∈ R ∪ {−∞, +∞} (i = 1, . . . , n) and (t0m)+∞m=1 and (t0m)+∞m=1 be
arbitrary sequences of real numbers such that

t0m < t0m, t0m ≤ ti ≤ t0m
(

i ∈ N0(t1, . . . , tn); m = 1, 2, . . .
)

,

lim
m→+∞

t0m = −∞, lim
m→+∞

t0m = +∞.
(2.1)

For any natural number m and arbitrary functions u ∈ Cloc(R,R) and
h ∈ Lloc(R, R) set

tim =











ti for ti ∈ R
t0m for ti = −∞
t0m for ti = +∞

, (2.2)
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em(u)(t) =











u(t) for t0m ≤ t ≤ t0m
u(t0m) for t < t0m

u(t0m) for t > t0m

, (2.3)

likm(u)(t) = lik(em(u))(t) (i, k = 1, . . . , n) (2.4)

and

νim(h) = max
{

∣

∣

∣

t
∫

tim

exp
(

t
∫

s

lii(1)(ξ) dξ
)

[

lii
(∣

∣η(|h|)(·, s)
∣

∣

)

(s) +

+|h(s)|
]

ds
∣

∣

∣ : t0m ≤ t ≤ t0m

}

. (2.5)

On the interval [t0m, t0m] consider the boundary value problem

y′i(t) =
n

∑

k=1

likm(yk)(t) + hi(t) (i = 1, . . . , n), (2.6m)

yi(tim) = ci for i ∈ N0(t1, . . . , tn),

yi(tim) = 0 for i ∈ {1, . . . , n} \ N0(t1, . . . , tn).
(2.7m)

Lemma 2.1. Let there exist a positive number ρ such that for any hi ∈
Lloc(R,R) (i = 1, . . . , n), ci ∈ R (i ∈ N0(t1, . . . , tn)) and natural m every
solution (yi)n

i=1 of problem (2.6m), (2.7m) admits the estimate

n
∑

i=1

|yi(t)| ≤ ρ
n

∑

i=1

(

|ci|+ νim(hi)
)

for t0m ≤ t ≤ t0m, (2.8)

where ci = 0 as i ∈ {1, . . . , n} \ N0(t1, . . . , tn). Moreover, let conditions
(1.7) hold. Then for any ci ∈ R (i ∈ N0(t1, . . . , tn)) system (1.1) has at
least one bounded solution satisfying conditions (1.9).

Proof. If ci = 0 and hi(t) ≡ 0 (i = 1, . . . , n), then (2.8) implies that yi(t) ≡ 0
(i = 1, . . . , n), i.e., the homogeneous problem

y′i(t) =
n

∑

k=1

likm(yk)(t) (i = 1, . . . , n),

yi(tim) = 0 (i = 1, . . . , n)

has only the trivial solution. On the other hand, by (1.2), (2.3) and (2.4)
for any u ∈ C([t0m, t0m], R) the inequalities

∣

∣likm(u)(t)
∣

∣ ≤ lik(1)(t)‖u‖ (i, k = 1, . . . , n) (2.9)

hold almost everywhere on [t0m, t0m], where ‖u‖ = max{|u(t)| : t0m ≤
t ≤ t0m}. These facts imply that for any hi ∈ Lloc(R, R), ci ∈ R (i ∈
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N0(t1, . . . , tn)) and natural m the boundary value problem has one and
only one solution (see [3], Theorem 1.1).

For arbitrarily fixed ci ∈ R (i ∈ N0(t1, . . . , tn)) and natural m denote by
(xim)m

i=1 the solution of the problem

x′im(t) =
n

∑

k=1

likm(xkm)(t) + qi(t) (i = 1, . . . , n), (2.10)

xim(tim) = ci (i = 1, . . . , n), (2.11)

where
ci = 0 as i ∈ {1, . . . , n} \ N0(t1, . . . , tn),

and extend xim (i = 1, . . . , n) on R by the equalities

xim(t) = em(xim)(t) for t ∈ R (i = 1, . . . , n). (2.12)

Then according to (1.7), (2.5) and (2.8) we have

n
∑

i=1

|xim(t)| ≤ ρ
n

∑

i=1

(

|ci|+ νim(qi)
)

≤ ρ∗ for t ∈ R (m = 1, 2, . . . ), (2.13)

where ρ∗ = ρ(
n
∑

i=1
|ci|+ a) is a nonnegative number independent of m.

By virtue of (2.9) and (2.13) from (2.10) we obtain
n

∑

i=1

|x′im(t)| ≤ q(t) for almost all t ∈ R (m = 1, 2, . . . ),

where

q(t) =
n

∑

i=1

[

ρ∗
n

∑

k=1

lik(1)(t) + |qi(t)|
]

and q ∈ Lloc(R, R). Consequently, the sequences (xim)+∞m=1 (i=1, . . . , n) are
uniformly bounded and equicontinuous on every compact interval. Without
loss of generality, by Arzela–Ascoli’s lemma we can assume that (xim)+∞m=1
(i = 1, . . . , n) are uniformly convergent on every compact interval. Put

lim
m→+∞

xim(t) = xi(t) for t ∈ R (i = 1, . . . , n). (2.14)

Then by (2.1), (2.3), and (2.12)

lim
m→+∞

em(xim)(t) = xi(t)

uniformly on every compact interval (i = 1, . . . , n). (2.15)

Let m0 be a natural number such that

t0m < 0 < t0m (m = m0,m0 + 1, . . . ).
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Then by (2.10) we have

xim(t) = xim(0) +

t
∫

0

[
n

∑

k=1

likm(xkm)(s) + qi(s)
]

ds

for t0m ≤ t ≤ t0m (i = 1, . . . , n).

According to conditions (2.1), (2.4), (2.15) and the continuity of the oper-
ators lik : Cloc(R,R) → Lloc(R, R) (i, k = 1, . . . , n) these equalities imply
that

xi(t) = xi(0) +

t
∫

0

[
n

∑

k=1

lik(xk)(s) + qi(s)
]

ds for t ∈ R (i = 1, . . . , n),

i.e., (xi)n
i=1 is a solution of system (1.1). On the other hand, by virtue of

(2.1), (2.2), and (2.14) from (2.11) and (2.13) we conclude that the vector
function (xi)n

i=1 is bounded and satisfies conditions (1.9).

3. Proof of the main results

Along with the notation introduced in Section 1, we shall also use some
additional notation.

Z−1 is the matrix, inverse to the nonsingular n× n matrix Z.
E is the n× n unit matrix.
If Z = (zik)n

i,k=1, then ‖Z‖ =
∑n

i,k=1 |zik|.
The inequalities between the real column vectors z = (zi)n

i=1 and z =
(zi)n

i=1 are understood componentwise, i.e.,

z ≤ z ⇔ zi ≤ zi (i = 1, . . . , n).

Proof of Theorem 1.1. By (1.8) there exists a constant ρ0 > 1 such that

exp
(

t
∫

ti

pii(s)ds
)

< ρ0 for t ∈ R (i ∈ N0(ti, . . . , tn)). (3.1)

On the other hand, by (1.5) the matrix E−A is nonsingular and its inverse
matrix (E −A)−1 is nonnegative. Put

ρ = ρ0‖(E −A)−1‖. (3.2)

Let (t0m)∞m=1 and (t0m)∞m=1 be arbitrary sequences of real numbers satis-
fying conditions (2.1) and tim, em, likm and νim (i, k = 1, 2; m = 1, 2, . . . )
are the numbers and operators given by equalities (2.2)–(2.5). By Lemma
2.1, to prove Theorem 1.1 it is sufficient to show that for any hi ∈ Lloc(R, R)
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(i = 1, . . . , n), ci ∈ R (i ∈ N0(t1, . . . , tn)) and natural m an arbitrary solu-
tion (yi)n

i=1 of problem (2.6m), (2.7m) admits estimate (2.8), where ci = 0
as i ∈ {1, . . . , n} \ N0(t1, . . . , tn).

By (1.4) and (2.4), equation (2.6m) implies

liim(yi)(t) = liim(1)(t)yi(t) + liim
(

yi(·)− yi(t)
)

(t) =

= lii(1)(t)yi(t) + liim
(

η(y′i)(·, t)
)

(t) =

= lii(1)(t)yi(t) +
m

∑

k=1

liim
(

η(likm(yk))(·, t)
)

(t) +

+ liim
(

η(hi)(·, t)
)

(t),

y′i(t) = lii(1)(t)yi(t) + ˜hi(t) (i = 1, . . . , n),

and

yi(t) =ci exp
(

t
∫

tim

lii(1)(ξ)dξ
)

+

+

t
∫

tim

exp
(

t
∫

s

lii(1)(ξ)dξ
)

˜hi(s)ds (i = 1, . . . , n), (3.3)

where

˜hi(t) =
m

∑

k=1

[

liim
(

η(likm(yk))(·, t)
)

(t) + (1− δik)likm(yk)(t)
]

+

+ liim
(

η(hi)(·, t)
)

(t) + hi(t) (i = 1, . . . , n).

Set

γi = max
{

|yi(t)| : t0m ≤ t ≤ t0m
}

, γ = (γi)n
i=1. (3.4)

Then according to (1.2), (1.4), (2.3), and (2.4) we obtain

|q̃i(t)| ≤
m

∑

k=1

[

lii
(

|η(lik(1))(·, t)|
)

(t) + (1− δik)lik(1)(t)
]

γk +

+ lii
(

|η(|hi|)(·, t)|
)

(t) + |hi(t)| (i = 1, . . . , n).

If along with these inequalities we take into account conditions (1.6) and
(3.1) and notation (2.5), then from (3.3) we find

γi ≤
n

∑

k=1

aikγk + ρ0|ci|+ νim(hi) ≤
n

∑

k=1

aikγk + ρ0
(

|ci|+ νim(hi)
)

,
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i.e.,

(E −A)γ ≤ ρ0
(

|ci|+ νim(hi)
)n
i=1.

But, as mentioned above, the matrix E − A is nonsingular and (E − A)−1

is nonnegative. Therefore the last inequality implies that

γ ≤ ρ0(E −A)−1(|ci|+ νim(hi)
)n
i=1.

Hence by (3.2) and (3.4) we obtain estimate (2.8).

Proof of Theorem 1.2. By Theorem 1.1, system (1.1) has at least one
bounded solution satisfying conditions (1.9). Consequently, to prove Theo-
rem 1.2 it is sufficient to show that the homogeneous problem

x′i(t) =
n

∑

k=1

lik(xk) (i = 1, . . . , n), (3.5)

xi(ti) = 0 for i ∈ N0(t1, . . . , tn) (3.6)

has no nontrivial bounded solution.
Let (xi)n

i=1 be a bounded solution of problem (3.5), (3.6) and

γi = sup
{

|xi(t)| : t ∈ R
}

, γ = (γi)n
i=1.

Then

lii(xi)(t) = lii(1)(t)xi(t) + lii(xi(·)− xi(t))(t) =

= lii(1)(t)xi(t) + lii
(

η(x′i)(·, t)
)

(t) =

= lii(1)(t)xi(t) +
n

∑

k=1

lii
(

η(lik(xk))(·, t)
)

(t)

and

x′i(t) = lii(1)(t)xi(t) + ∆i(t) (i = 1, . . . , n), (3.7)

where

∆i(t) =
n

∑

k=1

[

lii
(

η(lik(xk))(·, t)
)

(t) + (1− δik)lik(xk)(t)
]

(i = 1, . . . , n)

and

|∆i(t)| ≤
n

∑

k=1

[

lii
(

|η(lik(1))(·, t)|
)

(t) + (1− δik)lik(1)(t)
]

γk

(i = 1, . . . , n). (3.8)
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By (1.10) there exist tim ∈ R (i ∈ {1, . . . , n} \ N0(t1, . . . , tn); m =
1, 2, . . . ) such that

lim
m→+∞

tim = ti, lim
m→+∞

0
∫

tim

lii(1)(s)ds = −∞

for i ∈ {1, . . . , n} \ N0(t1, . . . , tn). (3.9)

Set

tim = ti (i ∈ N0(t1, . . . , tn); m = 1, 2, . . . ). (3.10)

From (3.7) we have

xi(t) = xi(tim) exp
(

t
∫

tim

lii(1)(ξ)dξ
)

+

+

t
∫

tim

exp
(

t
∫

s

lii(1)(ξ)dξ
)

∆i(s)ds (i = 1, . . . , n).

Hence by virtue of conditions (3.6) and (3.8)–(3.10) we find

xi(t) =

t
∫

ti

exp
(

t
∫

s

lii(1)(ξ)dξ
)

∆i(s)ds (i = 1, . . . , n).

These equalities and conditions (1.6), (3.6) and (3.8)–(3.10) yield

γi ≤
n

∑

k=1

aikγk (i = 1, . . . , n),

i.e.,
(E −A)γ ≤ 0.

Hence the nonnegativity of the matrix (E−A)−1 and vector γ implies that
γ = 0, i.e., xi(t) ≡ 0 (i = 1, . . . , n).

If
lik(u)(t) ≡ pik(t)u(τik(t)) (i, k = 1, . . . , n),

then system (1.1) admits form (1.3). In that case

lik(u)(t) ≡ |pik(t)|u(τik(t)) (i, k = 1, . . . , n),

lii
(

|η(lik(1))(·, t)|
)

(t) ≡
∣

∣

∣

∣

pii(t)

τii(t)
∫

t

|pik(ξ)|dξ
∣

∣

∣

∣

(i, k = 1, . . . , n)
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and

lii
(

|η(|qi|)(·, t)|
)

(t) ≡
∣

∣

∣

∣

pii(t)

τii(t)
∫

t

|qi(ξ)|dξ
∣

∣

∣

∣

(i = 1, . . . , n)

and conditions (1.6)–(1.8) and (1.10) take the form of (1.11)–(1.13) and
(1.14). Theorems 1.1 and 1.2 (Theorems 1.1′ and 1.2′) give rise to Corol-
laries 1.1 and 1.2 (Corollaries 1.1′ and 1.2′).

Finally, note that if the conditions of Corollary 1.3 (Corollary 1.3′) hold,
then the conditions of Corollary 1.2 (Corollary 1.2′) hold too.∗
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