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Abstract. The linear sampling method is an algorithm for solving the in-
verse scattering problem for acoustic and electromagnetic waves. The method
is based on showing that a linear integral equation of first kind has a solution
that becomes unbounded as a parameter z approaches the boundary of the
scatterer D from inside D. However, except for the case of the transmission
problem, the case where z is in the exterior of D is unresolved. Since for the
inverse scattering problem D is unknown, this step is crucial for the mathe-
matical justification of the linear sampling method. In this paper we give a
mathematical justification of the linear sampling method for arbitrary z by
using the theory of integral equations of first kind with singular kernels.
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1. Introduction

The inverse scattering problem of interest to us in this paper is that of de-
termining the shape of a two dimensional scattering object from the knowledge
of the far field pattern of the scattered wave where the incident field is a time
harmonic plane wave. (The restriction to two dimensions is purely for conve-
nience and all our results remain valid in the three-dimensional case). Until
recently, the solution of this problem required more information, in particular
whether or not the scattering object was penetrable or impenetrable as well as
what boundary conditions were satisfied by the scattered field on the boundary
of the scatterer D. However, in 1996 a method was introduced, which does
not require this extra information and, in addition, is a linear algorithm for
determining of the boundary Γ of the scatterer [5]. This method is called the
linear sampling method and has been the subject of considerable attention since
its introduction [1], [9]–[12].

To describe the linear sampling method, we assume the incident field ui is
given by (factoring out a term of the form e−iωt where ω is the frequency and t
is time)

ui(x) = eikx·d, (1.1)
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where k > 0 is the wave number, d is a unit vector and x ∈ R2. Then the
scattered field us(x) = us(x, d) has the asymptotic behavior

us(x) =
eikr

√
r

u∞(x̂, d) + O(r−3/2), (1.2)

where u∞ is the far field pattern [6]. The linear sampling method chooses a
parameter z ∈ R2 and then looks for a solution g ∈ L2(Ω) (where Ω is the unit
circle in R2) of the far field equation

∫

Ω

u∞(x̂, d)g(d) ds(d) = Φ∞(x̂, z), (1.3)

where x̂ = x/|x|, and Φ∞ is the far field pattern of the fundamental solution

Φ(x, z) = H
(1)
0 (k|x− z|) (1.4)

with H
(1)
0 denoting a Hankel function of first kind of order zero. It can then be

shown [4], [5] that for z ∈ D and almost every k there exists an approximate
regularized solution of (1.3) such that

lim
z→Γ

∥∥g(·, z)
∥∥

L2(Ω)
= ∞ (1.5)

and

lim
z→Γ

∥∥vg(·, z)
∥∥

H1(D)
= ∞, (1.6)

where vg is Herglotz wave function with kernel g defined by

vg(x) =

∫

Ω

eikx·dg(d) ds(d), x ∈ R2. (1.7)

In particular, Γ is characterized by the norm of the regularized solution of
(1.3) becoming unbounded. Note that although the proof of this fact required
knowing the boundary conditions of us on Γ, the equation (1.3) that one needs
to solve to determine Γ is independent of such knowledge, i.e., u∞ is assumed
to be given data (in general noisy).

A major problem with the above approach to solving the inverse scattering
problem is that the conclusion (1.5) and (1.6) requires that z ∈ D and nothing is
said about what happens if z ∈ R2 \D. Since D is unknown, this at first glance
seems disastrous. However, numerical experiments indicate that ‖g(·, z)‖L2(Ω)

not only becomes large as z approaches Γ from inside D but continues to become
larger as z moves into R2 \ D. It is highly desirable to give a mathematical
explanation of this observed numerical behaviour of the regularized solution of
(1.3) for z ∈ R2 \D since this would then put the linear sampling method on a
clearer mathematical foundation.

For the case of the acoustic transmission problem this was done in [3] by the
use of variational methods. Such an approach could probably also be carried
out for other problems in the acoustic scattering theory such as the Dirichlet
and mixed boundary value problems, but this has not been done.
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Here, in honor of Professor Kupradze’s fundamental contributions to the use
of integral equation methods in the scattering theory, we propose to carry out
the above program for the Dirichlet and mixed boundary value problems using
the method of integral equations. For completeness, we also consider the special
case of the transmission problem when the total field has no jump across the
boundary since this case was excluded in the analysis of [3]. This task is accom-
plished by factoring the far field operator F in the form F = FSH where H
maps functions in L2(Ω) onto Herglotz wave functions, S is a solution operator
which maps the incident field onto a density function and F maps the density
function onto the far-field pattern.

2. The Linear Sampling Method for the Inverse Obstacle
Problem

2.1. Formulation of the direct and inverse scattering problem. Let D ⊂
R2 be an open, bounded region with Lipschitz boundary Γ such that R2 \ D
is connected. We assume that the boundary Γ has a Lipschitz dissection Γ =
ΓD∪Π∪ΓI , where ΓD and ΓI are disjoint, relatively open subsets of Γ, having Π
as their common boundary in Γ (see e.g. [8]). Furthermore, boundary conditions
of Dirichlet and impedance type with the surface impedance λ ≥ 0 are specified
on ΓD and ΓI , respectively. Let ν denote the unit outward normal vector defined
almost everywhere on ΓD ∪ ΓI .

We assume that the incident field ui is given by the plane wave eikx·d where
x ∈ R2, k > 0 is the wave number and d is a fixed unit vector describing the
incident direction. If we denote the scattered field by us and define the total
field by u(x) = us(x) + eikx·d, then the direct obstacle scattering problem for the
obstacle D is to find a weak solution u ∈ H1

loc(R2 \D) of the following exterior
mixed boundary value problem for the Helmholtz equation

∆u + k2u = 0 in R2 \D, (2.1)

u = 0 on ΓD, (2.2)

∂u

∂ν
+ ikλu = 0 on ΓI , (2.3)

and us satisfies the Sommerfeld radiation condition [6]

lim
r→∞

√
r
(∂us

∂r
− ikus

)
= 0, (2.4)

where r = |x| and (2.4) is assumed to hold uniformly in x̂ = x/|x|. In par-
ticular the above formulation covers the Dirichlet boundary if ΓI = ∅ and the
impedance boundary (Neumann boundary) if ΓD = ∅ and λ > 0 (if ΓD = ∅
and λ = 0).

In [2] it was proved that the direct scattering problem (2.1)–(2.4) admits a
unique weak solution u and the corresponding scattered field us has the asymp-
totic behaviour (1.2) at infinity with the far field pattern u∞(x̂, d). The inverse
obstacle scattering problem is to determine D from the knowledge of u∞(x̂, d)
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for x̂ and d on the unit circle Ω and fixed wave number k. The far field pattern
u∞ defines the far-field operator F : L2(Ω) −→ L2(Ω) by

(Fg)(x̂) :=

∫

Ω

u∞(x̂, d)g(d) ds(d). (2.5)

Then the linear sampling method looks for a solution g = g(·, z) ∈ L2(Ω) of the
linear far field equation (1.3) which we write in the form [3, 4, 5]

(Fg)(x̂) = γe−ikbx·z, (2.6)

γ =
eiπ/4

√
8πk

. (2.7)

Our main concern in this paper is to study the far field equation (2.6) for various
sampling points z ∈ R2.

2.2. The linear sampling method for Dirichlet boundary conditions.
In this section we consider the simple case where only Dirichlet data is given
on the Lipschitz boundary Γ, that is ΓI = ∅ in (2.1)–(2.4), and assume that k2

is not a Dirichlet eigenvalue for −∆ in D.
The direct scattering problem is then a special case of the exterior Dirichlet

boundary value problem

∆w + k2w = 0 in R2 \D, (2.8)

w = f on Γ, (2.9)

where w satisfies the Sommerfeld radiation condition (2.4). This problem has
a unique solution w ∈ H1

loc(R2 \D) provided f ∈ H1/2(Γ) (see e.g. [8]), and w
has the asymptotic behavior (1.2) at infinity.

Let us define the linear operator B which maps the boundary data f onto the
far field pattern w∞ of the radiating solution w of (2.8)–(2.9). Since w depends
continuously on the boundary data f ∈ H1/2(Γ), the operator B : H1/2(Γ) −→
L2(Ω) is bounded. By superposition, we have the relation

(Fg) = −B(Hg), (2.10)

where Hg is the trace on the boundary Γ of the Herglotz wave function vg given
by (1.7). Next we define the operator F : H−1/2(Γ) −→ L2(Ω) by

(Fφ)(x̂) =

∫

Γ

φ(y)e−ikbx·y ds(y), x̂ ∈ Ω. (2.11)

For given φ ∈ H−1/2(Γ), the function (Fφ)(x̂) is the far field pattern of the
radiating solution γ−1Sφ(x) where Sφ is the single layer potential

Sφ(x) :=

∫

Γ

φ(y)Φ(x, y)ds(y), x ∈ R2 \ Γ, (2.12)
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with Φ(x, y) defined by (1.4). From the trace theorem we have Sφ(x)|Γ = Sφ(x),
where S is a boundary integral operator defined by

(Sφ)(x) :=

∫

Γ

φ(y)Φ(x, y)ds(y), x ∈ Γ, (2.13)

which under our assumption on k2 is an isomorphism from H−1/2(Γ) onto
H1/2(Γ) (see Theorem 7.6 in [8]).

Hence the following relation holds:

(Fφ) = γ−1B(Sφ). (2.14)

Combining (2.10) and (2.14), we obtain the following factorization of the far
field operator F :

(Fg) = −γFS−1(Hg), (2.15)

and hence the far field equation (2.6) can be written as

FS−1(Hg) = −e−ikbx·z. (2.16)

Theorem 2.1. The operator F : H−1/2(Γ) −→ L2(Ω) is injective and has
dense range provided k2 is not a Dirichlet eigenvalue for the negative Laplacian
in D.

Proof. Let Fφ = 0 and φ ∈ H−1/2(Γ). Then the radiating solution Sφ(x) has
zero far field pattern, whence Sφ(x) ≡ 0 for x ∈ R2 \D (see Theorem 2.13 in
[6]). The trace theorem yields Sφ = 0 almost everywhere on the boundary Γ,
and from the injectivity of the boundary operator φ ≡ 0 in H−1/2(Γ). Hence F
is injective.

The dual (or transpose) operator F> : L2(Ω) −→ H1/2(Γ) of F is given by

(F>g)(y) =

∫

Ω

g(x̂)e−ikbx·y ds(x̂), y ∈ Γ. (2.17)

Let F>g = 0 in H1/2(Γ). Then

vg(y) :=

∫

Ω

g(x̂)e−ikbx·y ds(x̂) (2.18)

defines a Herglotz wave function which solves the homogeneous Dirichlet prob-
lem in the interior of Γ. Since k2 is not an eigenvalue vg vanishes in D, and
since vg is analytic in R2 it follows that vg ≡ 0 everywhere. Theorem 3.15 of [6]
yields g = 0 on Ω, which means that F> is injective.

Now the rangeF can be characterized as follows (see, e.g., [8], p. 23)

kernF> = (rangeF)a, (2.19)

where the annihilator (rangeF)a is a closed subset of L2(Ω) defined by

(rangeF)a =
{
g ∈ L2(Ω) : 〈g, ψ〉 = 0 for all ψ ∈ rangeF}

(2.20)
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with 〈g, ψ〉 being the duality pairing given by
∫
Γ
gψ ds. Therefore from (2.19)

and the injectivity of F> we have{
g ∈ L2(Ω) : 〈g, ψ〉 = 0 for all ψ ∈ rangeF}

= {0} , (2.21)

whence the range of F is dense in L2(Ω). ¤
We remark that from (2.14) the range of F coincides with the range of B

since the operator S : H−1/2(Γ) −→ H1/2(Γ) is bijective.
Now let us consider a far field equation in the form (2.16) and assume first

that z ∈ D. Since −e−ikbx·z is in the range of F (γe−ikbx·z is the far field pattern
of the fundamental solution Φ(x, z)), it follows that for any z ∈ D there exists
a unique φz ∈ H−1/2(Γ) such that

(Fφz)(x̂) = −e−ikbx·z. (2.22)

Hence, to solve the far field equation we have to find g(·, z) ∈ L2(Ω) such
that S−1Hg(·, z) = φz or Hg(·, z) = Sφz. Thus the corresponding Herglotz
wave function vg(·, z) solves the Dirichlet problem in D with boundary data
Sφz ∈ H1/2(Γ). Unfortunately, this cannot always be done. However from the
result of Colton and Sleeman [7] (justified for Lipschitz domains in [2]) we can
approximate the solution Sφz ∈ H1(D) of the Helmholtz equation by a Herglotz
wave function vg(·, z) and therefore by the continuity of the trace operator we
can approximate Sφz ∈ H1/2(Γ) by Hg(·, z) := vg(·, z)|Γ. Hence, since S−1 is
continuous, for every ε > 0 we can find g(·, z) ∈ L2(Ω) such that∥∥S−1Hg(·, z)− φz

∥∥
H−1/2(Γ)

< ε, (2.23)

which yields ∥∥FS−1Hg(·, z) + e−ikbx·z∥∥
L2(Ω)

< cε (2.24)

for some positive constant c or, in other words, g(·, z) ∈ L2(Ω) satisfies the far
field inequality ∥∥Fg(·, z)− γe−ikbx·z∥∥

L2(Ω)
< cε. (2.25)

Furthermore, since γe−ikbx·z = Φ∞(x, z), we have Sφz ≡ −Φ(x, z)|x∈Γ. Thus for
this g(·, z) it follows from the boundedness of the trace operator and the fact
that, for z ∈ Γ, Φ(·, z) /∈ H1(D) that

lim
z→Γ

∥∥vg(·, z)
∥∥

H1(D)
= ∞ (2.26)

and hence
lim
z→Γ

∥∥g(·, z)
∥∥

L2(Ω)
= ∞. (2.27)

Now let us consider z ∈ R2 \D. In this case −e−ikbx·z does not belong to the
range of F . But, from Theorem 2.1, by using Tikhonov regularization we can
construct a regularized solution of (2.22). In particular, if φα

z ∈ H−1/2(Γ) is
the regularized solution of (2.22) corresponding to the regularization parameter
α (chosen by a regular regularization strategy, e.g., the Morozov discrepancy
principle), we have∥∥(Fφα

z )(x̂) + e−ikbx·z∥∥
L2(Ω)

< δ, δ > 0, (2.28)
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and

lim
α→0

∥∥φα
z

∥∥
H−1/2(Γ)

= ∞. (2.29)

The above considerations for φz in the case of z ∈ D are valid for φα
z as well.

In particular for every ε′ > 0 we can find a function gα(·, z) ∈ L2(Ω) such that
∥∥S−1Hgα(·, z)− φα

z

∥∥
H−1/2(Γ)

< ε′. (2.30)

Combining (2.28) and (2.30) we have that gα(·, z) ∈ L2(Ω) satisfies
∥∥FS−1Hgα(·, z) + e−ikbx·z∥∥

L2(Ω)
< ε + δ (2.31)

or, in other words, the far field inequality
∥∥Fgα(·, z)− γe−ikbx·z∥∥

L2(Ω)
< ε + δ (2.32)

for ε > 0 and δ > 0 arbitrary small. In addition, (2.29) and (2.30) yield

lim
α→0

∥∥Hgα(·, z)
∥∥

H1/2(Γ)
= ∞, (2.33)

and hence

lim
α→0

∥∥gα(·, z)
∥∥

L2(Γ)
= ∞ (2.34)

and

lim
α→0

∥∥vgα(·, z)
∥∥

H1(D)
= ∞, (2.35)

where vgα is the Herglotz wave function with kernel gα.
We summarize these results in the following theorem, noting that for z ∈

R2 \D we have that α → 0 as δ → 0.

Theorem 2.2. Assume that Γ is Lipschitz and k2 is not a Dirichlet eigenvalue
for the negative Laplacian in the interior of Γ. Then if F is the far field operator
corresponding to the scattering problem for Dirichlet boundary conditions, i.e.
(2.1)–(2.4) with ΓI = ∅, we have that

1) if z ∈ D, then for every ε > 0 there exists a solution gε(·, z) ∈ L2(Ω) of
the inequality ∥∥Fgε(·, z)− γe−ikbx·z∥∥

L2(Ω)
< ε

such that

lim
z→Γ

∥∥gε(·, z)
∥∥

L2(Ω)
= ∞ and lim

z→Γ

∥∥vgε(·, z)
∥∥

H1(D)
= ∞,

where vgε is the Herglotz wave function with kernel gε, and
2) if z ∈ R2 \ D, then for every ε > 0 and δ > 0 there exists a solution

gε,δ(·, z) ∈ L2(Ω) of the inequality
∥∥Fgε,δ(·, z)− γe−ikbx·z∥∥

L2(Ω)
< ε + δ

such that

lim
δ→0

∥∥gε,δ(·, z)
∥∥

L2(Ω)
= ∞ and lim

δ→0

∥∥vgε,δ(·, z)
∥∥

H1(D)
= ∞,

where vgε,δ is the Herglotz wave function with kernel gε,δ.
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In the Introduction we claimed that the above analysis provides a mathemat-
ical explanation for the numerical behaviour exhibited in the implementation
of the linear sampling method. A legitimate criticism of this statement is that
we do not know how well the regularized solution of

Fg = Φ∞ (2.36)

approximates the solution g of

Fg = Φε,δ
∞ , (2.37)

where Φε,δ
∞ is the approximation of Φ∞ due to the approximation of the far

field pattern Φ∞ (measured by δ) and the approximation of the solution of the
Helmholtz equation by a Herglotz wave function (measured by ε). In particular
since in general a solution of (2.36) does not exist for z either in D or in R2 \D,
it makes no sense to let ε and δ tend to zero, i.e. ε and δ are fixed parameters.
However the same criticism applies in practice to any regularization scheme
since noise is not a variable but rather a fixed parameter. In particular even
if an exact solution to (2.36) did exist in a noise free environment (i.e. u∞ is
free of noise), in practice the kernel is noisy and one has no idea if the noise is
small enough so that the regularized solution of the equation with noisy data
is in fact a good approximation to the solution of (2.36) with noise free data.
The only statement that can be made is what happens if the noise tends to
zero. However, since the noise is fixed and nonzero, in either case the analysis
leads to the same conclusion: there is a “nearby” equation (F with noisy kernel
and, in the case of (2.37), also with the inexact right-hand side) whose solution
behaves in a known way, and if this “nearby” equation is “close enough” to
(2.36) (with u∞ free of noise), then one expects the regularized solution to
behave like the known solution. In particular, since error estimates are not
available for the dependency of the regularized solution on the noise level, the
remark of Lanczos is valid: “the lack of information cannot be remedied by
any mathematical trickery”. Nevertheless, an explanation such as that given
above is valuable since it provides an explanation of the observed numerical
behaviour of the regularized solution and thus an understanding of why the
linear sampling method works.

2.3. The linear sampling method for mixed boundary conditions. In
this section we show that the argument of the previous analysis can be easily
applied to the more general case of the obstacle scattering problems involving
partially coated obstacles or multiple scattering objects with different bound-
ary conditions. To our knowledge the linear sampling method is the only nu-
merically viable method for solving inverse scattering problems in the case of
(unknown) mixed boundary conditions (see [2]). Here we give a mathematical
justification of the method.

We consider the Lipschitz boundary Γ dissected Γ = ΓD∪Π∪ΓI as described
in Section 2.1, and furthermore assume that ΓI 6= ∅. The direct obstacle
scattering problem (2.1)–(2.4) is a special case of the exterior mixed boundary
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value problem

∆w + k2w = 0 in R2 \D, (2.38)

w = f on ΓD, (2.39)

∂w

∂ν
+ iλkw = h on ΓI , (2.40)

where λ ≥ 0 is a constant, and w satisfies Sommerfeld radiation condition (2.4).
If f ∈ H1/2(ΓD) and h ∈ H−1/2(ΓI) then the exterior mixed boundary value
problem has a unique solution w ∈ H1

loc(R2 \D) [2], and w has the asymptotic
behavior (1.2) at infinity with far field pattern w∞. We recall that for Γ0 ⊆ Γ

H1/2(Γ0) :=
{
u|Γ0 : u ∈ H1/2(Γ)

}
,

H̃1/2(Γ0) :=
{
u ∈ H1/2(Γ) : supp u ⊆ Γ0

}
(2.41)

and, moreover, H−1/2(Γ0) :=
(
H̃1/2(Γ0)

)′
and H̃−1/2(Γ0) :=

(
H1/2(Γ0)

)′
.

Let B be the bounded operator from H1/2(ΓD)×H−1/2(ΓI) onto L2(Ω) which
maps the boundary data (f, h) to the far field pattern w∞. Thus the far field
operator (2.5) corresponding to this case can be written

(Fg) = −B(Hg), (2.42)

where now the boundary trace Hg of the Herglotz wave function is given by

Hg(x) :=





∫

Ω

g(d)eikx·dds(d), x ∈ ΓD,

∂

∂νx

∫

Ω

g(d)eikx· dds(d) + ikλ

∫

Ω

g(d)eikx·dds(d), x ∈ ΓI .
(2.43)

We define the operator F : H̃−1/2(ΓD)× H̃1/2(ΓI) −→ L2(Ω) by

F(φD, φI)(x̂) =

∫

ΓD

φD(y)e−ikbx·y ds(y) +

∫

ΓI

φI(y)
∂

∂νy

e−ikbx·y ds(y)

+ ikλ

∫

ΓI

φI(y)e−ikbx·y ds(y), x̂ ∈ Ω, (2.44)

and observe that for a given pair (φD, φI) ∈ H̃−1/2(ΓD)×H̃1/2(ΓI), the function
F(φD, φI)(x̂) is the far field pattern of the radiating solution γ−1P(φD, φI)(x)
with

P(φD, φI) := Sφ̃D +Dφ̃I + ikλSφ̃I , (2.45)

where φ̃D ∈ H−1/2(Γ) and φ̃I ∈ H1/2(Γ) are the extensions by zero of φD with
support in ΓD and φI with support in ΓI , respectively. Here Sφ denotes the
single layer potential (2.12) and Dφ the double layer potential defined by

Dφ(x) :=

∫

Γ

φ(y)
∂

∂νy

Φ(x, y)ds(y), x ∈ R2 \ Γ. (2.46)
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Since φD|ΓI
≡ 0 and φI |ΓD

≡ 0, the trace theorem and jump relations of the
single- and double- layer potentials on the boundary Γ yield

( P(φD, φI)|ΓD( ∂

∂ν
+ ikλ

)
P(φD, φI)|ΓI

)
=

1

2
M

(
φD

φI

)
, (2.47)

where the operator M is given by

M =

(
SDD, KDI + ikλSDI

K ′
ID + ikλSID, −k2λ2SII + ikλ(K ′

II + KII) + TII

)
. (2.48)

Here S,K,K ′, T denote the four basic boundary integral operators defined by

Sφ(x) := 2

∫

Γ

φ(y)Φ(x, y)dsy, Kφ(x) := 2

∫

Γ

φ(y)
∂

∂νy

Φ(x, y)dsy,

K ′φ(x) := 2

∫

Γ

φ(y)
∂

∂νx

Φ(x, y)dsy, Tφ(x) := 2
∂

∂νx

∫

Γ

ψ(y)
∂

∂νy

Φ(x, y)dsy,

the operator SID is the operator S applied to a function φ with supp φ ⊆ ΓD

and evaluated on ΓI , with analogous definitions for SDD, SDI , SII , KDI , K ′
ID,

KII , K ′
II and TII . In [2] it is proved that provided λ > 0 and ΓI 6= ∅ the

operator

A = M ·
(

I 0
0 −I

)
: H̃−1/2(ΓD)× H̃1/2(ΓI) −→ H1/2(ΓD)×H−1/2(ΓI),

with I the identity operator, is bijective. Hence, if we define H := H̃−1/2(ΓD)×
H̃1/2(ΓI) and its dual H∗ := H1/2(ΓD)×H−1/2(ΓI), then M is an isomorphism
from H onto H∗.

Obviously, the following relation holds:

F(φD, φI) = −γBM(φD, φI), (2.49)

and hence the far field equation can be written as

FM−1(Hg) = −e−ikbx·z. (2.50)

Theorem 2.3. Assume that λ > 0 and ΓI 6= ∅. Then the operator F :
H −→ L2(Ω) defined by (2.44) is injective and has dense range.

Proof. The proof of the theorem proceeds in exactly the same way as in Theorem
2.1. We note that in this case the dual operator F> : L2(Ω) −→ H∗ is given by

(F>g)(y) :=





∫

Ω

g(x̂)e−ikbx·yds(x̂), y ∈ ΓD,

∂

∂νx

∫

Ω

g(d)e−ikbx·yds(̂x) + ikλ

∫

Ω

g(x̂)e−ikbx·yds(x̂), y ∈ ΓI .

Moreover, in the proof of this theorem the bijective operator M given by (2.48)
plays the role of the operator S in Theorem 2.1. ¤
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We are now ready to analyze the far field equation written in the form (2.50).
We proceed for F given by (2.44) and H given by (2.43) in the same way as
in Section 2.2. Note that the role of a weak solution Sφz ∈ H1(D) and the
boundary operator S is now replaced by a weak solution P(φD, φI) ∈ H1(D)
and the boundary operator M , respectively. Hence we conclude that Theorem
2.2 is also valid for the far field operator F corresponding to the scattering
problem (2.1)–(2.4) provided λ > 0 and ΓI 6= ∅:

Theorem 2.4. Assume that Γ is Lipschitz having a Lipschitz dissection
Γ = ΓD ∪ Π ∪ ΓI with ΓI 6= ∅, and λ > 0. Then if F is the far field operator
corresponding to (2.1)–(2.4) we have that

1) if z ∈ D, then for every ε > 0 there exists a solution gε(·, z) ∈ L2(Ω) of
the inequality ∥∥Fgε(·, z)− γe−ikbx·z∥∥

L2(Ω)
< ε

such that

lim
z→Γ

∥∥gε(·, z)
∥∥

L2(Ω)
= ∞ and lim

z→Γ

∥∥vgε(·, z)
∥∥

H1(D)
= ∞,

where vgε is the Herglotz wave function with kernel gε, and
2) if z ∈ R2 \ D, then for every ε > 0 and δ > 0 there exists a solution

gε,δ(·, z) ∈ L2(Ω) of the inequality∥∥Fgε,δ(·, z)− γe−ikbx·z∥∥
L2(Ω)

< ε + δ

such that

lim
δ→0

∥∥gε,δ(·, z)
∥∥

L2(Ω)
= ∞ and lim

δ→0

∥∥vgε,δ(·, z)
∥∥

H1(D)
= ∞,

where vgε,δ is the Herglotz wave function with kernel gε,δ.

We remark that if λ = 0, i.e. the Neumann boundary condition is assumed
on ΓI , the same conclusion remains valid provided k2 is not an eigenvalue for
the interior homogeneous mixed boundary value problem in D.

In the particular case of the impedance problem, i.e. ΓD = ∅, λ > 0, we
obtain the same result as in Theorem 2.4 by an appropriate modification of the
previous analysis.

3. The Linear Sampling Method for the Inverse Medium Problem

We now turn our attention to the scattering of a plane wave by a penetrable
inhomogeneous medium of compact support. In particular, consider the direct
scattering problem of finding u ∈ C2(R2 \ Γ) ∪ C1(R2) such that

∆u + k2n(x)u = 0 in R2 \ Γ, (3.1)

u(x) = eikx·d + us(x), (3.2)

lim
r→∞

(∂us

∂r
− ikus

)
= 0. (3.3)

The index of refraction n is assumed to be piecewise continuously differentiable
such that m := 1 − n has a compact support D ⊂ R2 where the complement
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of D is connected and D has a smooth boundary Γ with unit outward normal
ν. More specifically, we assume that n is smooth except for jump discontinuity
across Γ. We will further restrict ourselves to the case where Im n(x) ≥ c > 0
for x ∈ D and c is a constant (absorbing medium). However, if we have that
Im n(x) = 0 for x ∈ D (nonabsorbing medium), then the analysis that follows
remains valid if we assume that k is not a transmission eigenvalue (c.f. [6] for
the definition of a transmission eigenvalue).

Under these assumptions it is known [6] that there exists a unique solution u
to (3.1)–(3.3) and u has the asymptotic behavior (1.2) at infinity with the far
field pattern u∞ given by

u∞(x̂; d) = −γ

∫

D

e−ikbx·ym(y)u(y) dy, x̂ ∈ Ω. (3.4)

The scattering problem (3.1)–(3.3) can be written as the integral equation

eikx·d = u(x, d) + k2Tu(·, d)(x) (3.5)

with the operator T : L2(D) −→ L2(D) defined by

(Tϕ)(x) :=

∫

D

Φ(x, y)m(y)ϕ(y) dy for x ∈ D, (3.6)

where Φ(x, y) is given by (1.4). It is known [6] that the operator I + k2T is an
isomorphism from L2(D) onto itself.

The inverse medium scattering problem we discuss in this section is to deter-
mine the support D of m = 1−n from the knowledge of u∞(x̂, d) for x̂ and d on
the unit circle Ω and fixed wave number k. We use the linear sampling method
to solve the inverse medium problem. In other words, our aim is to show again
in this case that there exists an approximate solution g(·, z) of the far field
equation (1.3) such that

∥∥g(·, z)
∥∥

L2(Ω)
and

∥∥vg(·, z)
∥∥

L2(D)
, become unbounded

as z tends to Γ and remain such for z ∈ R2 \D.
If vg is a Herglotz wave function with kernel g, then by virtue of (3.4) the far

field equation (2.5) takes the form

−γ

∫

D

e−ikbx·ym(y)(I + k2T )−1vg(y) dy = γe−ikbx·z, z ∈ R2, (3.7)

where γ is given by (2.7). Denote by H the closure of the set of Herglotz wave
functions in L2(D) and define the operator F : L2(D) −→ L2(Ω) by

(Fϕ)(x̂) := γ

∫

D

e−ikbx·ym(y)ϕ(y) dy, x̂ ∈ Ω. (3.8)

Hence, in terms of the operator F the far field equation (3.7) can be written as

F(I + k2T )−1vg = −e−ikbx·z. (3.9)

We note that F(I+k2T )−1 is clearly a bounded operator from L2(D) onto itself.
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For the following analysis we recall the interior transmission problem of find-
ing a pair of functions v, w such that

∆w + k2n(x)w = 0, ∆v + k2v = 0 in D, (3.10)

and v, w satisfy the transmission conditions

w − v = Φ(·, z),
∂w

∂ν
− ∂v

∂ν
=

∂

∂ν
Φ(·, z) on Γ. (3.11)

For z ∈ D, this problem has a unique weak solution v ∈ H and w ∈ L2(D),
(for the definition of a weak solution and the proof of this statement see [4] or
Theorem 10.24, Theorem 10.25 in [6]).

Theorem 3.1. The operator F(I + k2T )−1 : H ⊂ L2(D) −→ L2(Ω) is
injective and has dense range.

Proof. Let F(I + k2T )−1v = 0 for a v ∈ H and set w = (I + k2T )−1v. Then the
pair v ∈ H and w ∈ L2(D) is a solution of the homogenous interior transmission
problem, and by uniqueness v ≡ 0. Hence F(I + k2T )−1 is injective.

Now, let us suppose that there exists g ∈ L2(Ω) such that for all v ∈ H we
have (F(I + k2T )−1v, g

)
= 0. (3.12)

Then the far field patterns corresponding to all Herglotz wave functions as
incident fields are orthogonal to g. But the far field patterns corresponding
to the incident fields eikx·d, d ∈ Ω, are complete in L2(Ω) (Theorem 8.12 in
[6]) whence the far field patterns corresponding to all Herglotz functions are
complete in L2(Ω). Hence g ≡ 0, and therefore the range F(I + k2T )−1(H) is
dense in L2(Ω). ¤

Now let us consider the far field equation (3.9). If z ∈ D, we have that
e−ikbx·z is in the range of F(I + k2T )−1. Then, let v(·, z) ∈ H and w(·, z) =
(I+k2T )−1v(·, z) ∈ L2(D) be a unique weak solution of the interior transmission
problem (3.10)–(3.11). In this case it can be shown that (see Theorem 10.26
in [6]) for every ε > 0 the kernel g(·, z) ∈ L2(Ω) of the Herglotz wave function
vg(·, z) which approximates v(·, z) ∈ H, i.e.,

∥∥v(·, z) − vg(·, z)
∥∥

L2(Ω)
< ε′ for

sufficiently small ε′ > 0, solves the inequality
∥∥F(I + k2T )−1vg(·, z) + e−ikbx·z∥∥

L2(Ω)
< ε, z ∈ D, (3.13)

and, moreover, satisfies

lim
z→Γ

∥∥g(·, z)
∥∥

L2(Γ)
= ∞ and lim

z→Γ

∥∥vg(·, z)
∥∥

L2(D)
= ∞. (3.14)

If z ∈ R2 \ D, then e−ikbx·z is not in the range of F(I + k2T )−1. But, from
Theorem 3.1, by using Tikhonov regularization we can construct a regularized
solution vα(·, z) ∈ H depending on the regularization parameter α such that

∥∥F(I + k2T )−1vα(·, z) + e−ikbx·z∥∥
L2(Ω)

< δ, z ∈ R2 \D, (3.15)
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for arbitrary small δ > 0, and

lim
α→0

∥∥vα(·, z)
∥∥

L2(D)
= ∞. (3.16)

By the definition of the space H we can approximate vα(·, z) ∈ H by a Herglotz
wave function vgα(·, z) with kernel gα(·, z), i.e., for every ε′ > 0 there exists
gα(·, z) ∈ L2(Ω) such that∥∥vα(·, z)− vgα(·, z)

∥∥
L2(D)

< ε′. (3.17)

Then, by the continuity of F(I + k2T )−1, we have that∥∥F(I + k2T )−1vα(·, z)−F(I + k2T )−1vgα(·, z)
∥∥

L2(D)
< c̄ε′ (3.18)

for some positive constant c̄. If we now combine the inequalities (3.15)–(3.18),
we get∥∥F(I + k2T )−1vgα(·, z) + e−ikbx·z∥∥

L2(D)
< ε + δ, z ∈ R2 \D, (3.19)

with ε = c̄ε′. Moreover, both inequalities (3.16)–(3.17) imply that

lim
α→0

∥∥vgα(·, z)
∥∥

L2(D)
= ∞, (3.20)

whence
lim
α→0

∥∥gα(·, z)
∥∥

L2(Ω)
= ∞. (3.21)

Noting that α → 0 as δ → 0, we have proved the following theorem for the far
field operator F corresponding to the scattering problem (3.1)–(3.3) provided
Im n(x) ≥ c > 0 for x ∈ D:

Theorem 3.2. Assume that Γ is smooth and Im n(x) ≥ c > 0 for x ∈ D.
Then if F is the far field operator corresponding to (3.1)–(3.3), we have that

1) if z ∈ D, then for every ε > 0 there exists a solution gε(·, z) ∈ L2(Ω) of
the inequality ∥∥Fgε(·, z)− γe−ikbx·z∥∥

L2(Ω)
< ε

such that

lim
z→Γ

∥∥gε(·, z)
∥∥

L2(Ω)
= ∞ and lim

z→Γ

∥∥vgε(·, z)
∥∥

L2(D)
= ∞,

where vgε is the Herglotz wave function with kernel gε, and
2) if z ∈ R2 \ D, then for every ε > 0 and δ > 0 there exists a solution

gε,δ(·, z) ∈ L2(Ω) of the inequality∥∥Fgε,δ(·, z)− γe−ikbx·z∥∥
L2(Ω)

< ε + δ

such that

lim
δ→0

∥∥gε,δ(·, z)
∥∥

L2(Ω)
= ∞ and lim

δ→0

∥∥vgε,δ(·, z)
∥∥

L2(D)
= ∞,

where vgε,δ is the Herglotz wave function with kernel gε,δ.

We end by noting that the assumption on the smoothness of the refraction
index n and of the boundary Γ can be weakened. One can consider, for example,
that n is a complex valued Lipschitz function except for jump discontinuity
across a Lipschitz curve Γ and the above analysis remains valid.
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