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1. Introduction

In this paper we apply the so-called direct variant of the method of boundary
integral equations to solve the Dirichlet problem

∆u = 0 in Ω, u = ϕ on Γ \ {O} (1)

and the Neumann problem

∆u = 0 in Ω, ∂u/∂n = ψ on Γ \ {O} (2)

with boundary data ψ satisfying
∫
Γ
ψds = 0, where Ω is a plane simply con-

nected domain having compact closure and the boundary Γ with a peak at
z = 0. Here and elsewhere we assume that the normal n is directed outwards.

The classical method for solving boundary value problems is their reduction
to boundary integral equations by using potentials. In the case of the Dirichlet
and Neumann problems for the Laplace equation the solutions of these problems
are represented in the form of simple and double layer potentials whose den-
sities satisfy boundary integral equations. However, there exists another way
of reduction when solutions of integral equations are represented explicitly by
the solutions of the boundary value problems (1) and (2). In this case the inte-
gral equations can be obtained from the integral representation for a harmonic
function:

u(z) =
1

2π

(
V

∂u

∂n

)
(z)− 1

2π

(
Wu

)
(z), z ∈ Ω,

where V is the simple layer potential

(
V σ

)
(z) =

∫

Γ

σ(q) log
|z|

|z − q|dsq
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and W is the double layer potential

(
Wσ

)
(z) =

∫

Γ

σ(q)
∂

∂n
log

1

|z − q| dsq .

By making use of the continuity of the simple layer potential and the limit
relation for the double layer potential we obtain

πu(z) =

(
V

∂u

∂n

)
(z)− (

Wu
)
(z), z ∈ Γ \ {O}, (3)

where
(
Wu

)
(z) is the direct value of Wu at the point z on Γ\{O}. By inserting

the known values ϕ of u on Γ \ {O} into (1) we obtain that ∂u/∂n satisfies the
integral equation of first kind

V γ = πϕ + Wϕ on Γ \ {O}.
The normal derivative on Γ \ {O} of the solution u of (2) is defined by the
boundary data ψ. From (3) it follows that u on Γ \ {O} is a solution of the
integral equation

πσ + Wσ = V ψ .

Using the results of [1]–[3] we study the equations obtained by the direct re-
duction of problems (1) and (2) for a domain with a peak to integral equations.
For every integral equation we choose a pair of function spaces and prove the
solvability of the equation in one of these spaces with a right-hand side from
another. We also describe solutions of the corresponding homogeneous equa-
tion.

We mention recent articles [4], [5] dealing with boundary integral equations
in weighted Lp-spaces on contours with peaks. The solvability in Smirnov’s
classes of boundary value problems in domains with piecewise smooth bound-
aries was studied in [6], [7] where the reduction to the Riemann-Hilbert problem
for analytic functions in the unit disc was used.

Let Ω be a plane simply connected domain with boundary Γ which has a
peak at the origin O. We assume that Γ\{O} belongs to the class C2. We say
that O is an outward (inward) peak if Ω (the exterior domain Ω′) is given near
O by the inequalities κ−(x) < y < κ+(x), 0 < x < δ, where

x−µ−1κ±(x) ∈ C2[0, δ], lim
x→+0

x−µ−1κ±(x) = α±

with µ > 0 and α+ > α−.
By Γ± we denote the arcs {(x, κ±(x)) : x ∈ [0, δ]}. Points on Γ+ and Γ− with

equal abscissas are denoted by q+ and q−.
We say that ϕ belongs to Lp,β(Γ) if |q|βϕ ∈ Lp(Γ). The norm in this space is

given by
‖ ϕ ‖Lp,β(Γ)=‖ |q|βϕ ‖Lp(Γ) .

Let L1
p,β(Γ) be the space of absolutely continuous functions on Γ\{O} with the

finite norm

‖ ϕ ‖L1
p,β(Γ)=‖ (∂/∂s)ϕ ‖Lp,β(Γ) + ‖ ϕ ‖Lp,β−1(Γ) .
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We introduce the space Np,β(Γ) of absolutely continuous functions ϕ on Γ\{O}
with the finite norm

‖ ϕ ‖Np,β(Γ)=

( ∫

Γ+∪Γ−

|ϕ(q+)− ϕ(q−)|p|q|p(β−µ)dsq

)1/p

+ ‖ ϕ ‖L1
p,β+1(Γ) .

By N−1
p,β(Γ) we denote the space of functions on Γ\{O} represented in the form

ϕ = (d/ds)ψ, where ψ ∈ Np,β(Γ) and ψ(z0) = 0 for a fixed point z0 ∈ Γ \ {O}.
A norm on N−1

p,β(Γ) is defined by

‖ ϕ ‖
N−1

p,β(Γ)
=‖ ψ ‖

Np,β(Γ)
.

Furthermore, we introduce the space N
(+)
p,β (Γ) of absolutely continuous functions

ϕ on Γ \ {O} supplied with the norms

‖ ϕ ‖
N

(+)
p,β (Γ)

=

( ∫

Γ+∪Γ−

|ϕ(q+) + ϕ(q−)|p|q|p(β−µ)dsq

)1/p

+ ‖ ϕ ‖L1
p,β+1(Γ) .

Let P(Γ) denote the space of restrictions to Γ \ {O} of functions of the form
p(z) =

∑m
k=0 t(k)Re zk, where m = [µ−β−p−1 +2−1] and t(k) are real numbers.

We endow P(Γ) with the norm

‖ p ‖
P(Γ)

=
m∑

k=0

| t(k) | .

The space Mp,β(Γ) is defined as the direct sum of N
(+)
p,β (Γ) and P(Γ).

Now, we can describe our results. We assume that p > 1 and 0 < β + p−1 <
min{µ, 1}.

Let Ω have an outward peak. We introduce the double layer potential in Ω′

by setting

(
W extσ

)
(z) =

∫

Γ

σ(q)

(
∂

∂nq

log
1

|z − q| + 1

)
dsq, z ∈ Ω′ .

The value of this potential at the point z ∈ Γ \ {O} will be also denoted by(
W extσ

)
(z). In Theorem 1 we prove that the integral equation

πσ + W extσ = V ψ (4)

with the function ψ ∈ N−1
p,β(Γ) on the right-hand side has a unique solution σ

in Np,β(Γ) satisfying
∫

Γ
σds = 0.

As is shown in Theorem 3, the integral equation of first kind

V γ = πϕ + Wϕ (5)

with the function ϕ ∈ Np,β(Γ) on the right-hand side has a unique solution γ
in N−1

p,β(Γ).
For Ω with an inward peak, we show in Theorem 2 that the integral equation

πσ + W extσ = V ψ′ , (6)
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with the function ψ ∈ L1
p,β+1(Γ) is solvable in L1

p,β+1(Γ) and that the solution

σ satisfies
∫

Γ
σds = 0. In Theorem 4 we prove that the integral equation

V γ = πϕ + Wϕ (7)

with the function ϕ ∈ L1
p,β+1(Γ) has a solution γ ∈ Lp,β+1(Γ).

In Theorems 2 and 4 we prove that the homogeneous equations (6) and (7)
have only trivial solutions for 0 < β + p−1 < 1/2 and a one-dimensional space
of solutions for 1/2 < β + p−1 < 1.

We shall use the following statements proved in [1]–[3].

Theorem A (see [1]). Let Ω have either an outward or an inward peak and
let 0 < β + p−1 < min{µ, 1}. Then the operator

Lp,β+1(Γ)× R 3 (σ, t)
V7−−→V σ + c ∈ Np,β(Γ)

is continuous and, if β + p−1 6= 2−1, it is surjective. The kernel of V is trivial
for 0 < β + p−1 < 1/2 and one-dimensional for 1/2 < β + p−1 < 1. If Ω has an
outward peak and 1/2 < β + p−1 < 1, then

kerV =

{
t

π

∂

∂n
Im

1

γ(out)
, t Im

1

γ(out)(∞)

}
,

where t ∈ R and γ(out) is the conformal mapping of Ω′ onto R2
+ = {z : Im z > 0}

subject to γ(out)(0) = 0 and γ(out)(∞) = i.
If Ω has an inward peak and 1/2 < β + p−1 < 1 then

kerV =

{
t

π

∂

∂n
Im

1

γ(in)
, 0

}
,

where t ∈ R and γ(in) is the conformal mapping of Ω onto R2
+ subject to the

conditions γ(in)(0) = 0 and γ(in)(z0) = i with a fixed point z0 ∈ Ω.

Theorem B (see [2]). Let Ω have an inward peak and let 0 < β + p−1 <
min{µ, 1}. Then the operator

L1
p,β+1(Γ) 3 σ

Win7−−−→ (πI + W ext)σ ∈ Np,β(Γ)

is continuous and, provided β + p−1 6= 2−1, it is surjective. The operator W
has a trivial kernel for 0 < β + 1/p < 1/2 and a one-dimensional kernel for
1/2 < β + 1/p < 1. In the latter case

KerW =

{
t Re

1

γ0

}
,

where t ∈ R and γ0 is the conformal mapping of Ω onto R2
+ subject to

γ0(0) = 0,

∫

Γ

Re
1

γ0

ds = 0 and Im γ0(z0) = 1 ,

with a fixed point z0 in Ω.
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We introduce the functions Iext
k , k = 1, 2, . . ., by setting

Iext
k (z) = Im

(
zz0

z0 − z

)k−1/2

, z ∈ Ω′,

where z0 is a fixed point in Ω.

Theorem C (see [3]). Let Ω have an outward peak and let 0 < β + p−1 <
min{µ, 1} and m =

[
µ− β − p−1 + 2−1

]
. Then the operator

L1
p,β+1(Γ)× Rm 3 (σ, t)

Wout7−−−→ πσ + W extσ +
m∑

k=1

t(k)Iext
k ∈ Mp,β(Γ)

is continuous and injective. In case µ− β − p−1 + 2−1 /∈ N and β + p−1 6= 2−1

the operator Wµ is bijective.

In the proof of the surjectivity of Wout we use the next proposition.

Proporision 1. Let Ω have an inward peak and let ϕ ∈ N
(+)
p,β (Γ), where

0 < β + p−1 < min{µ, 1}, β + p−1 6= 2−1 and µ− β − p−1 + 2−1 /∈ N.

Then there exists a harmonic extension of ϕ onto Ω′ with the normal derivative
in the space Lp,β+1(Γ) such that the conjugate function g with g(z0) = 0 for a
fixed point z0 ∈ Γ \ {O} can be written as

m∑

k=1

ck(ϕ)Re zk−1/2 + g#(z),

where ck(ϕ) are linear continuous functionals in N
(+)
p,β (Γ) and g# satisfies

‖g#‖
N

(−)
p,β (Γ)

≤ c ‖ϕ‖
N

(+)
p,β (Γ)

.

with a constant c independent of ϕ.

The proof of Proposition 1 in [3] was not complete. In particular, the condi-
tion β + p−1 6= 2−1 was omitted. In Appendix we give a complete proof of this
proposition.

2. The Dirichlet and Neumann problems for domains with peaks

2.1. Let the operator T be defined by

Tf(x) =

∫

R

K(x, y)f(y)dy,

where

|K(x, y)| ≤ c
1

|x− y|
1

(1 + |x− y|J)
, J ≥ 0.

Here and elsewhere by c we denote different positive constants.
We introduce the space Lp,α(R) of functions on R with the norm

‖ϕ‖Lp,α(R) = ‖(1 + x2)α/2ϕ‖Lp(R).
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The following lemma can be proved in the same way as Stein’s theorem on the
boundedness of a singular integral operator in a weighted Lp-space [8].

Lemma 1. If T : Lp(R) → Lp(R), 1 < p < ∞, is bounded and −J <
α + p−1 < J + 1, then T is a continuous operator in Lp,α(R).

2.2. Let G ⊂ R2 be a domain with C2-boundary such that the set {(τ, ν) ∈ G :
τ ≤ 0} has compact closure and {(τ, ν) ∈ G : τ > 0} = {(τ, ν) : τ > 0, |ν| <
1}.

As usual, by C∞
0 (G) we mean the space of infinitely differentiable functions

with compact supports in G. By W k
p (G), k = 0, 1, 2, p ∈ (1,∞), we de-

note the Sobolev space of functions in Lp(G) with derivatives up to order k in

Lp(G). The notation W̊ k
p (G) stands for the completion of C∞

0 (G) in W k
p (G). Let

W
k−1/p
p (∂G) be the space of traces on ∂G of functions in W k

p (G). We introduce

also the space W−1
p (G) of distributions on G with the finite norm

‖ ϕ ‖W−1
p (G)= inf

2∑
j=0

‖ ϕj ‖Lp(G),

where the infimum is taken over all representations ϕ = ϕ0 + (∂/∂τ)ϕ1 +
(∂/∂ν)ϕ2 with ϕj ∈ Lp(G), j = 0, 1, 2.

Let α ∈ R. We say that ϕ ∈ W k
p,α(G) if (1+τ 2)α/2ϕ ∈ W k

p (G), k = −1, 0, 1 . . .,
and define the norm

‖ ϕ ‖W k
p,α(G)=‖ (1 + τ 2)α/2ϕ ‖W k

p (G) .

The spaces W k
p,α(∂G) and W

k−1/p
p,α (∂G) are introduced in the same way. By

Lp,α(∂G) we denote the space of functions with the finite norm

‖ ϕ ‖Lp,α(∂G)=‖ (1 + τ 2)α/2ϕ ‖Lp(∂G) .

We shall make use of the same definitions for the strip Π = {(τ, ν) : τ ∈ R,
|ν| < 1}.

The following lemma is contained in more general results of [9].

Lemma 2. The operator

W k
p,α(G) 3 u → {∆u, u|

∂G
} ∈ W k−2

p,α (G)×W k−1/p
p,α (∂G)

performs an isomorphism for every real α and k = 1, 2. The same is true for
k = 1, 2 if G is replaced by the strip Π.

2.3. In this section we consider the Dirichlet problem in Ω with an outward
peak. The following proposition is an improvement of Proposition 1 from [1].

Proporision 2. Let ϕ belong to space Np,β(Γ), where 0 < β+p−1 < min{µ, 1}.
Then there exists a harmonic extension u of ϕ onto Ω with the normal derivative
∂u/∂n in N−1

p,β(Γ) satisfying

‖ ∂u/∂n ‖N−1
p,β(Γ)≤ c ‖ ϕ ‖Np,β(Γ) . (8)
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Proof. It is sufficient to obtain (8) under the assumption ϕ = 0 in a neighbor-
hood of the peak.

We start with the case where ϕ ∈ Np,β(Γ) vanishes on Γ∩ {|q| < δ/2}. Let θ
be a conformal mapping of the unit disk D onto Ω. We introduce the harmonic
extension F of the continuous function ϕ ◦ θ onto D. The normal derivative
∂F/∂n on ∂D has the form

∂F

∂n
(ζ) =

1

2π

π∫

−π

d

dt
ϕ(θ(eit)) cotan

s− t

2
dt, ζ = eis.

Hence u = F ◦ θ−1 satisfies

‖ ∂u/∂n ‖Lp,γ+1(Γ)≤ c1 ‖ ∂F/∂n ‖Lp(∂D)≤ c2 ‖ (ϕ ◦ θ)′ ‖Lp(∂D)≤ c3 ‖ ϕ ‖Np,γ(Γ)

for every real γ. Since
∫

Γ
(∂u/∂n)ds = 0, ∂u/∂n is represented in the form

(∂/∂s)v, where the function v satisfies

‖ v ‖Lp,β−µ(Γ) + ‖ v′ ‖Lp,β+1(Γ)≤ c ‖ ϕ ‖Np,β(Γ) .

It remains to prove (8) for ϕ ∈ Np,β(Γ) vanishing outside Γ+ ∪ Γ−. Let G be
the domain defined in 2.2.

By z = ω(τ + iν) we denote a conformal mapping of G onto Ω such that
ω(∞) = 0 and ω(∂G∩{(x, y) : x > 1}) ⊃ Γ+∪Γ−. It is well-known and follows
essentially from Warschawski’s asymptotic formula for conformal mappings [10]
that

ω(τ + iν) = c (τ + iν)−1/µ(1 + o(1)), |ω′(τ + iν)| ≤ c |τ + iν|−1−1/µ (9)

as τ → +∞, τ + iν ∈ G, and that

ω−1(z) = c z−µ(1 + o(1)), |(ω−1
)′

(z)| ≤ c |z|−1−µ (10)

as x → 0, z = x + iy ∈ Ω. We introduce the functions Φ± on R by

Φ±(τ) = ϕ(ω(τ ± i)) for τ ≥ 0 and Φ±(τ) = 0 for τ < 0.

The following estimates hold:

c1 ‖ϕ‖Np,β(Γ) ≤ ‖Φ+ − Φ− ‖Lp,1−α(R)

+
∑
±

(
‖Φ±‖Lp,−α(R) +

∥∥Φ′
±
∥∥

Lp,1−α(R)

)
≤ c2 ‖ϕ‖Np,β(Γ) (11)

with α defined by β + p−1 = µ(α− p−1).
Let r be a measurable function on (0,∞) subject to |r(τ)| ≤ 1. We have

∞∫

0

|Φ±(τ)− Φ±(τ + r(τ))|p τ (1−α)pdτ

≤ c1

∞∫

0

( τ+1∫

τ−1

|Φ′
±(ν)|dν

)p

τ (1−α)pdτ ≤ c2

∞∫

0

|Φ′
±(τ)|pτ (1−α)pdτ. (12)
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For z, z1 ∈ Ω with |z1 − z| ≤ xµ+1 the distance between ω−1(z1) and ω−1(z) is
bounded by (10). Hence and by (12) we obtain the left inequality in (11).

Let h be a measurable function on [0, δ] such that |h(x)| ≤ xµ+1. By the
theorem on the boundedness of the Hardy–Littlewood maximal operator in
weighted Lp-spaces (see [11]) we have

δ∫

0

|ϕ(x)− ϕ(x + h(x))|px(β−µ)pdx

≤ c

δ∫

0

(
1

xµ+1

x+xµ+1∫

x−xµ+1

|t ϕ′(t)|dt

)p

xβpdx ≤ c

δ∫

0

|ϕ′(t)|pt(β+1)pdt. (13)

By using (9) we obtain that for ζ, ζ1 ∈ G with |ζ− ζ1| < 1 the distance between
ω(ζ) and ω(ζ1) does not exceed c xµ+1. Hence and by (13) the right inequality
in (11) follows.

Let Π denote the same strip as in 2.2. We introduce the bounded harmonic
function Φ(+) on Π taking the same value (Φ+(τ)+Φ−(τ))/2 at the points (τ, 1)
and (τ,−1) of ∂Π. The Fourier transform of Φ(+)(τ, ν) with respect to τ is given
by

c
(
Φ̂+(ξ) + Φ̂−(ξ)

)
cosh (νξ) (cosh ξ)−1 ,

where Φ̂± denote the Fourier transform of Φ±. Therefore the Fourier transform
of (∂/∂n)Φ(+)(τ,±1) is equal to

c i
(
Φ̂′

+(ξ) + Φ̂′−(ξ)
)

tanh ξ .

Hence

∂Φ(+)

∂n
(τ,±1) = c

∫

R

d

dt
(Φ+(t) + Φ−(t))

(
sinh

(π

2
(τ − t)

))−1

dt .

By Lemma 1,

‖ ∂Φ(+)/∂n ‖Lp,1−α(∂Π)≤ c ‖ (Φ+ + Φ−)′ ‖Lp,1−α(∂Π) .

We rewrite the Fourier transform of (∂/∂n)Φ(+)(τ, ν) with respect to τ in the
form

c iξ
(
Φ̂′

+(ξ) + Φ̂′−(ξ)
) sinh ξ

ξ cosh ξ
.

Clearly, the function (∂/∂n)Φ(+)(τ,±1) can be represented as (∂/∂s)Y (−)(τ,±1),
where Y (−)(τ, +1) = −Y (−)(τ,−1). By a theorem on the Fourier multipliers in
weighted Lp-spaces (see [12]) it follows that

‖ Y (−) ‖Lp,1−α(∂Π) + ‖ (∂/∂τ)Y (−) ‖Lp,1−α(∂Π)≤ c ‖ (∂/∂τ)(Φ+ +Φ−) ‖Lp,1−α(∂Π) .

Let Φ(−) be the bounded harmonic function on Π taking the opposite values
(Φ+(τ) − Φ−(τ))/2 and (Φ−(τ) − Φ+(τ))/2 at the points (τ, 1) and (τ,−1) of
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∂Π. The Fourier transform of Φ(−)(τ, ν) with respect to τ has the form

c
(
Φ̂+(ξ)− Φ̂−(ξ)

)
sinh(νξ) (sinh ξ)−1 .

Therefore the Fourier transform of (∂/∂n)Φ(−)(τ,±1) is equal to

±c ξ
(
Φ̂+(ξ)− Φ̂−(ξ)

)
cosh ξ (sinh ξ)−1

= ±c
{(

Φ̂+(ξ)− Φ̂−(ξ)
) ξ

sinh ξ
+ i

(
d̂

dt
Φ+(ξ)− d̂

dt
Φ−(ξ)

)
tanh ξ

}
.

and hence

∂Φ(−)

∂n
(τ,±1) = ±c1

∫

R

(Φ+(t)− Φ−(t))
(
cosh

π

2
(τ − t)

)−2

dt

±c2

∫

R

(
dΦ+

dt
(t)− dΦ−

dt
(t)

)
(sinh π(τ − t))−1 dt .

By Lemma 1,

‖ ∂Φ(−)/∂n ‖Lp,1−α(∂Π)≤ c ‖ Φ+ − Φ− ‖W 1
p,1−α(∂Π) .

It is clear that (∂/∂n)Φ(−) can be written as (∂/∂s)Y (+)(τ,±1), where
Y (+)(τ, +1) = Y (+)(τ,−1) and according to the theorem on the Fourier multi-
pliers in weighted Lp-spaces (see [12]) the following estimate is valid:

‖ Y (+) ‖Lp,−α(∂Π) + ‖ (∂/∂τ)Y (+) ‖Lp,1−α(∂Π)≤ c ‖ (Φ+ − Φ−) ‖W 1
p,1−α(∂Π) .

Let χ ∈ C∞(R) be equal to 1 for t > 1 and vanish for t < 0, and let
Ψ = ∆(χ(Φ(−) + Φ(+))). Using Lemma 2 we have

‖ Ψ ‖Lp(Π)≤ c
(
‖ Φ(−) ‖

W
1−1/p
p,−α (∂Π)

+ ‖ Φ(+) ‖
W

1−1/p
p,−α (∂Π)

)
.

By the inclusion W 1
p (∂Π) ⊂ W

1−1/p
p (∂Π) the right-hand side has the majorant

c
(
‖ Φ(−) ‖W 1

p,1−α(∂Π) + ‖ Φ(+) ‖Lp,−α(∂Π) + ‖ dΦ(+)/dt ‖Lp,1−α(∂Π)

)
.

Applying Lemma 2 with k = 2, we obtain that the Dirichlet problem

∆Z = −Ψ in G, Z = 0 on ∂G

has a solution satisfying

‖ ∂Z/∂n ‖Lp,γ(∂G)≤ c1 ‖ Z ‖W 2
p,γ(G)≤ c2 ‖ Ψ ‖Lp(G)

for every real γ. Since
∫

∂G
(∂Z/∂n)ds = 0, the function ∂Z/∂n can be repre-

sented in the form ∂X/∂s, where X satisfies

‖ X ‖Lp,1−α(Γ) + ‖ X ′ ‖Lp,1−α(Γ)≤ c ‖ Φ+ − Φ− ‖Lp,1−α(R)

+
∑
±

(‖ Φ± ‖Lp,−α(R) + ‖ Φ′
± ‖Lp,1−α(R)

)
.
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We set F = Z + χ(Φ(−) + Φ(+)). By (12) the function u = F ◦ ω−1 is the
required harmonic extension of ϕ onto Ω. ¤

Since 1 ∈ Np,β(Γ), the next proposition follows from the Cauchy–Riemann
conditions.

Proporision 3. Let ψ belong to N−1
p,β(Γ), where 0 < β + p−1 < 1. Then

the Neumann problem in Ω with boundary data ψ has a solution v in Np,β(Γ)
satisfying

‖ v ‖Np,β(Γ)≤ c ‖ ψ ‖N−1
p,β(Γ) .

3. An Integral Equation of the Neumann Problem

Theorem 1. Let Ω have an outward peak, and let 0 < β + p−1 < min{µ, 1}.
Then, for any ψ ∈ N−1

p,β(Γ), the integral equation

πσ + W extσ = V ψ (14)

has a unique solution σ in Np,β(Γ), satisfying
∫
Γ
σ ds = 0.

Proof. Let ψ belong to C∞
0 (Γ\{O}). By h we denote a solution of the Neumann

problem in Ω with boundary data ψ as in Proposition 3. From the integral
representation of the harmonic function h in Ω and the limit relation for the
double layer potential we obtain

h(z) +
1

π

∫

Γ

h(q)
∂

∂nq

log
1

|z − q|dsq =
1

π

∫

Γ

log
|z|

|z − q|ψ(q)dsq (15)

We choose h so that
∫

Γ
h(q)dsq = 0. According to Proposition 3, h belongs to

Np,β(Γ). From (15) it follows that σ = h ∈ Np,β(Γ) is a solution of (14).
Now let ψ be an arbitrary function in N−1

p,β(Γ). For β > −p−1 there exists
a sequence {ψn}n≥1 of smooth functions on Γ \ {O} vanishing near the peak
and approaching ψ in N−1

p,β(Γ). By σn we denote the constructed solution of
(14) with ψn on the right-hand side which is unique by Theorem C. Since the
operator

Lp,β+1(Γ) 3 ψ 7−−→V ψ ∈ Np,β(Γ)

is continuous (see Theorem A), it follows that {V ψn} converges in L1
p,β+1(Γ)

to the limit V ψ. According to Proposition 3, the sequence {σn} converges in
L1

p,β+1(Γ) to the limit σ. Since the operator

L1
p,β+1(Γ) 3 σ

W7−−−→ (πI + W ext)σ ∈ Mp,β(Γ) ⊂ L1
p,β+1(Γ)

is continuous (see Theorem C), we obtain that σ is a solution of (14) by passing
to the limit.

The kernel of W in L1
p,β+1(Γ) is trivial. Therefore equation (14) is uniquely

solvable in Np,β(Γ). ¤
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Remark 1. Under the assumptions of Theorem 1 and provided µ − β −
p−1 + 2−1 /∈ N , β + p−1 6= 2−1, ψ ∈ N−1

p,β(Γ) we conclude that V ψ belongs to
Np,β(Γ) ∩Mp,β(Γ) and satisfies the “orthogonality” conditions

∫

Γ

∂

∂s
(V ψ) Re

1

ζ2k−1
ds = 0, k = 1, . . . , m ,

where ζ is the conformal mapping of Ω′ onto R2
+ subject to

ζ(0) = 0, Re ζ(∞) = 0 and Re (1/ζ(z)) = ±x−1/2 + O(1).

Proof. By Theorem 1 we have V ψ ∈ Np,β(Γ), since ψ ∈ Lp,β+1(Γ), and V ψ ∈
Mp,β(Γ). Therefore V ψ = ϕ +

∑m
k=0 d(k)Re zk, where ϕ ∈ N

(+)
p,β (Γ). According

to Proposition 1, there exists a harmonic extension of ϕ onto Ω′ such that the
conjugate function g satisfying g(∞) = 0 has the representation

m∑

k=1

c(k)(ϕ)Re zk−1/2 + g#(z),

where c(k)(ϕ) are linear continuous functionals in N
(+)
p,β (Γ) and g# ∈ Np,β(Γ).

We apply the Green formula to the functions g and Re ζ1−2k in Ω′ ∩ {|z| < ε}.
Passing to the limit as ε → 0, we obtain

c(k)(ϕ) = ck

∫

Γ

∂g

∂n
Re

1

ζ2k−1
ds = ck

∫

Γ

ϕ′sRe
1

ζ2k−1
ds.

Let (σ, t) ∈ L1
p,β+1(Γ)× Rm be the solution of the equation

(πI + W ext)σ +
m∑

k=1

t(k)Ik = V ψ

with the right-hand side from Mp,β(Γ). As is shown in Theorem 2 [3], the
components t(k), are equal to c(k)(ϕ), k = 1, . . . ,m. Since the operator W is
surjective and since ∫

Γ

∂

∂n
Im zk Re

1

ζ2k−1
ds = 0 ,

it follows that V ψ ∈ Np,β(Γ) ∩Mp,β(Γ) and c(k)(V ψ) = 0, k = 1, . . . , m. ¤
Theorem 2. Let Ω have an inward peak, and let 0 < β + p−1 < min{µ, 1}

and β+p−1 6= 1/2. Then, for any ψ ∈ L1
p,β+1(Γ), the boundary integral equation

πσ + W extσ = V ψ′ (16)

has a solution σ ∈ L1
p,β+1(Γ) satisfying

∫
Γ
σ ds = 0. The homogeneous equation

(16) has only a trivial solution for 0 < β + p−1 < 1/2 and a one-dimensional
space of solutions for 1/2 < β + p−1 < 1, given by

{
t Re

1

γ0

}
,
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where t ∈ R and γ0 is the conformal mapping of Ω onto R2
+ subject to

γ0(0) = 0,

∫

Γ

Re
1

γ0

ds = 0 and Imγ0(z0) = 1

with a fixed point z0 ∈ Ω.

Proof. Let ψ ∈ L1
p,β+1(Γ). Then V ψ′ ∈ Np,β(Γ) (see Theorem A). According to

Theorem B, equation (16) is solvable in L1
p,β+1(Γ). Since the harmonic extension

of V ψ′ vanishes at infinity, we have
∫

Γ
σ ds = 0. By Theorem B, the set of

solutions to the homogeneous equation (16) in L1
p,β+1(Γ) is one-dimensional for

1/2 < β + p−1 < 1 and trivial for 0 < β + p−1 < 1/2. The set of solutions to
the homogeneous equation (16) is described in Theorem B. ¤

4. An Integral Equation of the Dirichlet Problem

Theorem 3. Let Ω have an outward peak and let 0 < β + p−1 < min{µ, 1}.
Then the boundary integral equation

V γ = πϕ + Wϕ (17)

has a solution γ ∈ N−1
p,β(Γ) for every ϕ ∈ Np,β(Γ). This solution is unique for

β + p−1 6= 2−1.

Proof. Let ϕ ∈ C∞
0 (Γ \ {O}). By u we denote the bounded harmonic extension

of ϕ onto Ω constructed in Proposition 2. By the integral representation of the
harmonic function u on Ω and by the limit relation for the simple layer potential
we obtain for z ∈ Γ \ {O}

∫

Γ

log
|z|

|z − q|
∂u

∂n
(q) dsq = πϕ(z) +

∫

Γ

ϕ(q)
∂

∂nq

log
1

|z − q| dsq . (18)

Since ∂u/∂n belongs to N−1
p,β(Γ), from (18) it follows that γ = ∂u/∂n satisfies

(17).
Now let ϕ be an arbitrary function in Np,β(Γ). There exists a sequence

{ϕn}n≥1 of smooth functions on Γ \ {O} vanishing near the peak and converg-
ing to ϕ in Np,β(Γ). By γn we denote the constructed solution of (17) with ϕn

instead of ϕ on the right-hand side. Since the operator (πI +W ) : L1
p,β+1(Γ) →

Mp,β(Γ) is continuous (see Theorem C), we obtain by taking the limit that
{πϕn + Wϕn}n≥1 converges in L1

p,β+1(Γ). In view of Proposition 2, the se-
quence {∂un/∂n}, where un is the bounded extension of ϕn onto Ω, converges
in Lp,β+1(Γ). According to Theorem A,

Lp,β+1(Γ) 3 γ
V7−−→V γ ∈ Np,β(Γ)

is continuous. Then by passing to the limit in the equation V γn = πϕn + Wϕn

we obtain that γ is a solution of (17). For Ω with an outward peak Theorem 1
implies that KerV is trivial provided β+p−1 6= 2−1. Therefore the just obtained
solution of (17) is unique. ¤
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Theorem 4. Let Ω have an inward peak, and let 0 < β + p−1 < min{µ, 1},
β + p−1 6= 1/2. Then the integral equation

V γ = πϕ + Wϕ (19)

has a solution γ ∈ Lp,β+1(Γ) for every ϕ ∈ L1
p,β+1(Γ). This solution is unique

for 0 < β+p−1 < 1/2 and the homogeneous equation (19) has a one-dimensional
space of solutions for 1/2 < β + p−1 < 1 given by

{
t

∂

∂n
Im

1

γ(in)

}
,

where t ∈ R and γ(in) is the conformal mapping of Ω onto R2
+ subject to the

conditions γ(in)(0) = 0 and γ(in)(z0) = i with a fixed point z0 ∈ Ω.

Proof. Let ϕ ∈ L1
p,β+1(Γ). According to Theorem B, (πI + W )ϕ belongs to

Np,β(Γ) and its harmonic extension onto Ω′

(
Wσ

)
(z) =

∫

Γ

σ(q)
∂

∂nq

log
1

|z − q| dsq, z ∈ Ω′,

vanishes at infinity. The range of the operator

Lp,β+1(Γ) 3 γ 7−−→V γ ∈ Np,β(Γ)

consists of the elements of Np,β(Γ) whose harmonic extensions to Ω′ vanish at
infinity (see Theorem A). Therefore equation (19) has a solution in Lp,β+1(Γ).
The homogeneous equation (19) has only a trivial solution in Lp,β+1(Γ) for 0 <
β + p−1 < 1/2 and a one-dimensional space of solutions for 1/2 < β + p−1 < 1.
The set of solutions to the homogeneous equation (19) is described in Theorem
A. ¤

5. Appendix: Proof of Proposition 1

(i) We shall make use of the representation of a conformal mapping θ of
R2

+ = {ζ = ξ + iη : η > 0} onto Ω

θ(ξ) =





[2µ]+1∑

k=2

B(k)ξk + B([2µ]+2)ξ[2µ]+2 log |ξ|+ B(±)|ξ|2µ+2

+O
(
ξ2µ+2+γ

)
if 2µ ∈ N,

[2µ]+2∑

k=2

B(k)ξk + B(±)|ξ|2µ+2 + B([2µ]+3)ξ[2µ]+3

+O
(
ξ2µ+2+γ

)
if 2µ 6∈ N,

(20)

as ξ → ±0, where B(k), k = 2, . . . , [2µ] + 2, are real coefficients and 0 < γ <
min(µ, 1). Decomposition (20) can be differentiated at least once ( see [3]).
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By D we denote the image of Ω under the mapping u + iv = (x + iy)1/2. Let

θ̃ denote a conformal mapping of R2
+ onto D normalized by θ̃(0) = 0. Then

θ̃(ξ)=





[2µ]∑

k=1

b(k)ξk+b([2µ]+1)ξ[2µ]+1 log |ξ|+b(±)|ξ|2µ+1+O
(
ξ2µ+1+γ

)
if 2µ ∈ N,

[2µ]+1∑

k=1

b(k)ξk + b(±)|ξ|2µ+1 + b([2µ]+2)ξ[2µ]+2 + O
(
ξ2µ+1+γ

)
if 2µ 6∈ N,

The inverse mapping θ−1(z) restricted to Γ± has the form

ξ =

[2µ]∑

k=1

(±1)kβ(k)xk/2+(±1)[2µ]+1β([2µ]+1)x([2µ]+1)/2 log
1

x
+β(±)xµ+1/2+o (xµ+1/2)

if 2µ ∈ N, and

ξ =

[2µ]+1∑

k=1

(±1)kβ(k)xk/2 + β(±)xµ+1/2 + o (xµ+1/2) (21)

if 2µ 6∈ N. Here β(k), k = 1, . . . [2µ] + 1, are real coefficients. We notice that
there exists a function of the form

d0(ζ) =





ζ +

[2µ]∑

k=2

a(k)ζk if 2µ ∈ N,

ζ +

[2µ]+1∑

k=2

a(k)ζk if 2µ 6∈ N,

defined on R2
+ and satisfying

(θ̃ ◦ d0)(ζ) = ζ + γ(ζ) .

Here γ(ζ) is the holomorphic function on a neighborhood of ζ = 0 in R2
+ taking

real values in a neighborhood of ξ = 0 in R and having the representation

γ(ξ) =

{
b[2µ]+1ξ[2µ]+1 log |ξ|+ O

(|ξ|2µ+1
)

if 2µ ∈ N,

O
(|ξ|2µ+1

)
if 2µ /∈ N .

Then the function

d(ζ) =

{
d0(ζ) + γ(ζ) if 2µ ∈ N,

d0(ζ) if 2µ /∈ N
satisfies (

θ̃ ◦ d
)
(ξ) = ξ + O

(|ξ|2µ+1
)
.

It is clear that θ0 =
(
θ̃ ◦ d

)2
is a conformal mapping of a neighborhood of ζ = 0

in R2
+ onto a neighborhood of the peak in Ω and admitting the representation

x = Re θ0(ξ) = ξ2 + O
(|ξ|2µ+2

)
as ξ → ±0 . (22)



A DIRECT METHOD 587

The inverse mapping θ−1
0 has the form

ξ = Re θ−1
0 (z) = ±x1/2 + O

(
xµ+1/2

)
on Γ± .

By diminishing δ in the definition of Γ±, we can assume that θ0 is defined on
Γ+ ∪ Γ−.

(ii) Now, let ϕ ∈ N
(+)
p,β (Γ) vanish outside Γ+ ∪ Γ−. We extend the function

Φ(τ) = (ϕ ◦ θ0)(τ) by zero outside a small neighborhood of O.
We first prove the estimate

c1 ‖ϕ‖
N

(+)
p,β (Γ)

≤ ‖Φ(+)‖
Lp,2β−2µ+1/p(R)

+ ‖(dΦ/dτ)‖
Lp,2β+1+1/p(R)

+ ‖Φ‖
Lp,2β+1/p(R)

≤ c2 ‖ϕ‖
N

(+)
p,β (Γ)

, (23)

where Φ(+)(ξ) = (Φ(ξ) + Φ(−ξ))/2.
Let r be a measurable function on (0,∞) subject to |r(ξ)| ≤ |ξ|2µ+1. We

choose ` ∈ [0, 1] such that

`/2 < β + p−1 < (` + 1)/2 .

Then, from the boundedness of the Hardy–Littlewood maximal operator in a
weighted Lp-space (see [11]), we obtain

∫

R

|Φ(ξ)− Φ(ξ + r(ξ))|p|ξ|2βp−2µp+1dξ

≤ c

∫

R

(
1

|ξ|2µ+1

ξ+c|ξ|2µ+1∫

ξ−c|ξ|2µ+1

∣∣τ 1+`(dΦ/dτ)(τ)
∣∣dτ

)p

|ξ|2βp−`p+1dξ

≤ c

∫

R

|(dΦ/dτ)(ξ)|p|ξ|2βp+p+1dξ . (24)

For z ∈ Γ+ we have
|θ−1

0 (z) + θ−1
0 (z−)| ≤ c |ξ|2µ+1 .

Hence and by (24) the left inequality in (23) follows.
Let h be a measurable function on [0, δ] such that |h(x)| ≤ xµ+1. Similarly

to (24) we have

δ∫

0

|ϕ(x)− ϕ(x + h(x))|px(β−µ)pdx

≤ c

δ∫

0

(
1

xµ+1

x+cxµ+1∫

x−cxµ+1

t |(dϕ/dt)(t)|dt

)p

xβ pdx

≤ c

δ∫

0

|(dϕ/dt)(t)|px(β+1)pdx . (25)



588 V. MAZ’YA AND A. SOLOVIEV

By using (22) we obtain that for ξ in a small neighborhood of the origin the
distance between θ0(ξ) and θ0(−ξ) does not exceed c xµ+1. Hence and by (25)
the right inequality in (23) follows.

We introduce a function H by

H(ζ) =
1

π

∫

R

dΦ

dτ
(τ) Re log

ζ − τ

ζ
dτ, ζ = ξ + iη ∈ R2

+ .

From the norm inequality for the Hilbert transform of even functions in the
space Lp,2β−1+p−1(R) (see [13]) it follows that the function

(∂/∂ξ)H(+)(ξ) =
1

πξ2

∫

R

d

dτ
Φ(−)(τ)

τ 2dτ

ξ − τ

satisfies

‖(∂/∂ξ)H(+)‖
Lp,2β+1+1/p(R)

≤ c ‖(d/dξ)Φ(−)‖
Lp,2β+1+1/p(R)

, (26)

where Φ(−)(ξ) = (Φ(ξ) − Φ(−ξ))/2 and H(+)(ξ) denote the function (H(ξ) +
H(−ξ))/2.

Using again the norm inequality for the Hilbert transform of even functions
in the space Lp,2β+p−1(R) (see [13]), we obtain that the function

(∂/∂ξ)H(−)(ξ) =
1

πξ

∫

R

d

dτ
Φ(+)(τ)

τdτ

ξ − τ

satisfies

‖(∂/∂ξ)H(−)‖
Lp,2β+1+1/p(R)

≤ c ‖(d/dξ)Φ(+)‖
Lp,2β+1+1/p(R)

(27)

for 0 < β + 1
p

< 1
2
. Here Φ(+)(ξ) = (Φ(ξ) + Φ(−ξ))/2 and H(−)(ξ) = (H(ξ) −

H(−ξ))/2.
Let ν be an even C∞

0 -function on R with a small support, vanishing inside
a neighborhood of ξ = 0 and subjected to

∫
R ν(u)du = 1. We remark that∫

RΦ(+)(τ)dτ is a linear continuous functional on N
(+)
p,β (Γ). We introduce the

function ϕ0 := Φ(+) ◦ θ−1 − (ν ◦ θ−1)
∫
RΦ(+)τdτ and, for 1

2
< β + 1

p
< 1, we

consider the function ϕ−ϕ0 ∈ N
(+)
p,β (Γ) for which we keep the same notation ϕ.

Then the function (∂/∂ξ)H(−) can be represented in the form

(∂/∂ξ)H(−)(ξ) =
1

πξ2

∫

R

d

dτ
Φ(+)(τ)

τ 2dτ

ξ − τ
.

From the norm inequality for the Hilbert transform of odd functions in
Lp,2β−1+p−1(R) (see [13]) it follows that

‖(∂/∂ξ)H(−)‖
Lp,2β+1+1/p(R)

≤ c ‖(d/dξ)Φ(+)‖
Lp,2β+1+1/p(R)

. (28)

Let n0 be the integer subject to the inequalities

n0 − 1 ≤ 2(µ− β − p−1) < n0 .
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Then m = [µ− β − p−1 + 2−1] is the largest integer satisfying 2m ≤ n0.
We represent the odd function H(−) on R in the form

H(−)(ξ) =
1

π

∫

R

d

dτ
Φ(+)(τ) log

∣∣∣ξ − τ

ξ

∣∣∣dτ

=
ξn0

π

∫

R

Φ(+)(τ)

τn0 (ξ − τ)
dτ −

n0−1∑

k=0

ξk

π

∫

R

Φ(+)(τ)

τ k+1
dτ .

Since Φ(+) ∈ Lp,2β−2µ+1/p(R) and since

0 < 2β − 2µ + n0 + 2p−1 < 1 for even n0

and

0 < 2β − 2µ + n0 + 2p−1 < 2 for odd n0,

it follows from the boundedness of the Hilbert transform in weighted Lp-spaces
(see [13]) that Lp,2β−2µ+1/p(R)–norm of

ξn0

π

∫

R

Φ(+)(τ)

τn0 (ξ − τ)
dτ

does not exceed ‖Φ(+)‖Lp,2β−2µ+1/p(R) provided µ− β − p−1 + 2−1 /∈ N .

Hence by (26), (27) and (28) we obtain that the function h(z) = H ◦ θ−1
0 (z)

can be represented in the form

m∑

k=1

ak(ϕ)Rezk−1/2 + h#(z) (29)

for z ∈ Ω lying in a small neighborhood of the peak. Here

ak(ϕ) =

∫

R

Φ(+)(τ)τ−2kdτ , 1 ≤ k ≤ m,

are linear continuous functionals in N
(+)
p,β (Γ), and h# belongs to Np,β(Γ) and

satisfies

‖h#‖Np,β(Γ+∪Γ−) ≤ c ‖ϕ‖
N

(+)
p,β (Γ)

.

Now let æ ∈ C∞(R2) be equal to 1 for |z| < δ and vanish for |z| > δ. We
extend æh by zero outside a small neighborhood of O and set

ψ1(z) = −∆(æh)(z), z ∈ Ω′,

ϕ1(z) = (∂/∂s)ϕ(z)− (∂/∂n)(æh)(z), z ∈ Γ.

Since (∂/∂η)H = (∂/∂ξ)Φ ∈ Lp,β+1(R), it follows that ∂h/∂n belongs to
Lp,β+1(Γ+ ∪ Γ−) We consider the boundary value problem

∆F(ζ) = Q(ζ), ζ ∈ R2
+, (∂/∂n)F(ξ + i0) = T (ξ), ξ ∈ R, (30)
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where Q(ζ) = (ψ1 ◦ θ)(ζ) |θ′(ζ)|2 and T (ξ) = (ϕ1 ◦ θ)(ξ + i0) |θ′(ξ + i0)|. For
0 < β + 1/p < 1/2, by using the estimates

|gradH(ζ)| ≤ c

|ζ|
∣∣∣
∫

R

τ (dΦ/dτ)(τ)

ζ − τ
dτ

∣∣∣, |H(ζ)| ≤
∣∣∣
∫

R

Φ(τ)

ζ − τ
dτ

∣∣∣ , (31)

and the theorems on the boundedness of the Hardy–Littlewood maximal oper-
ator and the Hilbert transform in weighted Lp-spaces [11], [14], we obtain

‖T ‖Lp(R) + ‖Q‖Lp(R2
+) ≤ c

(
‖dΦ/dτ‖Lp,2β+1+1/p(R) + ‖Φ‖Lp,2β+1/p(R)

)
. (32)

In order to prove (32) for 1/2 < β + 1/p < 1, we use (31) for Φ = Φ(−) and the
estimates

|gradH(−)(ζ)|≤ c

|ζ|2
∣∣∣
∫

R

τ 2 (dΦ(+)/dτ)(τ)

ζ − τ
dτ

∣∣∣, |H(−)(ζ)|≤ 1

|ζ|
∣∣∣
∫

R

τ Φ(+)(τ)

ζ − τ
dτ

∣∣∣ .

A solution of (30) is given by

F(ζ) =

∫

R

T (u)G(u, ζ) du−
∫

R2
+

Q(w)G(w, ζ) du dv, w = u + iv,

with the Green function

G(w, ζ) =
1

2π
log

∣∣∣∣
(

1− w

ζ

)(
1− w

ζ

)∣∣∣∣ .

We rewrite F on R in the form

F(ξ) = t−1(ϕ) log |ξ|+ t0(ϕ)

+
1

π

∫

R

T (u) log
∣∣∣1− ξ

u

∣∣∣du− 1

π

∫

R2
+

Q(w) log
∣∣∣1− ξ

w

∣∣∣dudv , (33)

where

t−1(ϕ) = − 1

π

∫

R

T (u)du +
1

π

∫

R2
+

Q(w)dudv,

and

t0(ϕ) =
1

π

∫

R

T (u) log |u|du− 1

π

∫

R2
+

Q(w) log |w|dudv .

Hence

∂F
∂ξ

(ξ)− t−1(ϕ)

ξ
=

1

π

∫

R

T (u)

ξ − u
du− 1

π

∫

R2
+

(ξ − u)Q(w)

|ξ − w|2 dudv .

By the boundedness of the Hilbert transform in Lp(R) and the Minkowski in-
equality we find that

(∂F/∂ξ)(ξ)− t−1(ϕ) ξ−1 ∈ Lp(R) (34)
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and that the Lp-norm of this function does not exceed

‖T ‖Lp(R) + ‖Q‖Lp(R2
+).

It is clear that in a neighborhood of infinity

(∂F/∂ξ)(ξ) = R∞(ξ) ξ−2, (35)

where
|R∞(ξ)| ≤ c

(‖T ‖Lp(R) + ‖Q‖Lp(R2
+)

)
for large |ξ|.

Set f = F ◦ θ. From (34) and (35) it follows that ∂f/∂s belongs to Lp,β+1(Γ)
and satisfies

‖∂f/∂s‖Lp,β+1(Γ) ≤ c ‖ϕ‖L1
p,β+1(Γ) . (36)

By the Taylor decomposition of the integral terms in (33) we obtain

F(ξ) = t−1(ϕ) log |ξ|+ t0(ϕ) +

n0−1∑

k=1

tk(ϕ)ξk + |ξ|n0Rn0(ξ) , (37)

where
|tk(ϕ)| ≤ c

(‖T ‖Lp(R) + ‖Q‖Lp(R2
+)

)
, k = −1, . . . , n0 − 1,

and
|Rn0(ξ)| ≤ c

(‖T ‖Lp(R) + ‖Q‖Lp(R2
+)

)

for small |ξ|. Taking into account the asymptotic representations (20), (21) of
θ−1 and the inequality 2(µ− β − p−1) < n0, it follows from (36) and (37) that
f is represented in the form

f(z) =
m∑

k=1

bk(ϕ)Re zk−1/2 + f#(z), z ∈ Ω , (38)

where f# ∈ Np,β(Γ), and bk(ϕ), k = 1, . . . , m, are linear combinations of the
coefficients t`(ϕ) in (37).

According to (29) and (38), the function g = æh + f is harmonic in Ω and
can be written as

g(z) =
m∑

k=1

ck(ϕ)Re zk−1/2 + g#(z), z ∈ Ω′,

with ck(ϕ) = ak(ϕ) + bk(ϕ). Moreover,
m∑

k=1

|c(k)|+ ‖g#‖Np,β(Γ) ≤ c ‖ϕ‖
N

(+)
p,β (Γ)

and (g ◦ θ)(∞) = 0 by the definition of g. Owing to (∂/∂s)g ∈ Lp,β+1(Γ), one
of the functions conjugate to −g is a harmonic extension of ϕ onto Ω with the
normal derivative in Lp,β+1(Γ).

(iii) Now let ϕ belong to N
(+)
p,β (Γ) and let ϕ vanish on Γ ∩ {|q| < δ/2}. We

introduce the function

Φ(ξ) = (ϕ ◦ θ)(1/ξ), ξ ∈ R,
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which vanishes outside a certain interval. Set

G(ζ) =
1

π
P.V.

∞∫

−∞

Φ(τ)Re
ζ

τ(ζ − τ)
dτ, ζ ∈ R2

+. (39)

It is clear that one of the conjugate functions G̃ is a harmonic extension of −Φ
onto R2

+. It follows from the boundedness of the Hilbert transform in Lp-spaces
that g = G(

1/θ−1
)

belongs to L1
p,β+1(Γ) and satisfies

‖ g ‖L1
p,β+1(Γ)≤ c ‖ ϕ ‖

N
(+)
p,β (Γ)

. (40)

Further, we represent G on R in the form

G(ξ) =
1

π
P.V.

∫

R

Φ(τ)τ−1dτ +

n0−1∑

k=1

1

πξk

∫

R

Φ(τ)τ k−1dτ

+
1

πξn0−1

∫

R

Φ(τ) τn0−1

ξ − τ
dτ =

n0−1∑

k=0

tk(ϕ)ξk + G#(ξ),

where

tk(ϕ) =
1

π

∫

R

Φ(τ)τ k−1dτ and G#(ξ) =
1

πξn0−1

∫

R

Φ(τ) τn0−1

ξ − τ
dτ, ξ ∈ R. (41)

Since −1/p < 2µ− 2β − 3/p− n0 + 1 < 1− 1/p, we have

n0−1∑

k=0

|tk(ϕ)|+
∥∥G#

∥∥
Lp,2µ−2β−3/p(R)

≤ c
∥∥Φ

∥∥
Lp,2µ−2β−3/p(R)

.

Hence it follows from (40) that g is represented in the form

g(z) =
m∑

k=1

ck(ϕ)Re zk−1/2 + g#(z), z ∈ Ω,

where g# ∈ Np,β(Γ), and ck(ϕ), k = 1, . . . , m, are linear combinations of the
coefficients t`(ϕ), ` = 1, . . . , n0 − 1 in (41). These coefficients and the function
g# satisfy

m∑

k=1

|ck(ϕ)|+ ‖g#‖Np,β(Γ) ≤ c ‖ϕ‖
N

(+)
p,β (Γ)

and the conjugate function g̃ = G̃(1/θ−1) is the harmonic extension of ϕ onto
Ω with the normal derivative in Lp,β+1(Γ). ¤
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