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TWO-WEIGHTED ESTIMATES FOR SOME INTEGRAL
TRANSFORMS IN THE LEBESGUE SPACES WITH
MIXED NORM AND IMBEDDING THEOREMS

V.KOKILASHVILI

ABSTRACT. Two-weighted inequalities are proved for anisotropic po-
tentials. These estimates are used to obtain the refinements of the
well-known imbedding theorems in the scale of weighted Lebesgue
spaces.

Two-weighted inequalities are obtained for anisotropic potentials in Le-
besgue spaces with mixed norm. These estimates are used to prove imbed-
ding theorems for different metrics and different dimensions for weighted
spaces of anisotropic Bessel potentials.

Nonweighted cases were previously treated in [1-3]. One-weighted esti-
mates for isotropic Bessel potentials can be found in [4].

1. A measurable almost everywhere positive function ¢ : R? — R! will
be called a weight function. Let w = (wq, wa, ... ,w,) be a vector-function
where w; (i =1,2,...,n) is a weight function. By definition a measurable
function f(z) = f(z1,22,...,2,) given on the n-dimensional space R™
belongs to LE, p =(p1,p2,--,Pn)y 1 < p; < 00 (1 = 1,2,...,n), if the
norm

£l e, mny =
s 0 °° Pn—1 p1\ 71
:(/ wh? (ml)dxl(/ wh? (z2)dzs. . (/ f(x)wﬁ"(xn)dma o ) ..)m)
is finite.

We shall introduce a class of pairs of weight functions.

For a given number 7, 1 <7 < oo, we write 1’ = —X5.
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Definition 1. A pair of weight functions (p, o) given on R* will be said
to belong to the class G}, 0 < f < 1, 1 <r < s < oo, if the conditions

L
7

Sup(/gs(t)dt)g</ 0 f‘;l (_t)tl)ﬁr,dt) 7 < oo, (1.1)

R1

sup (/orl(t)dt)w</(|l|_i_ngt)_tl)sﬁdt>s < 00, (1.2)

1 R

are fulfilled, where the supremum is taken over all bounded one-dimensional
intervals I, with centre and length, ¢t; and |I| respectively.

In the sequel we shall proceed from

Theorem A [5-7]. The fractional integral
_ [ )
L(f)(z) = / mdﬂ 0<y<1,

generates a continuous operator from L} (R') into L3(R') if and only if
(0,0) €GY”,.

Let numbers a; > 0 (j = 1,2,... ,n) be given. For a=(x1,zs,... ,z,) we
set
2o = (D I2l) "
i=1
It is obvious that for a; = 1 (j = 1,2,... ,n) we obtain an usual Euclidian
distance.
Theorem 1. Let w = (wi,ws,... ,wy), v = (v1,v2,...,0,), where w;
and v; (i =1,2,...,n) are weight functions given on R™. We set
f(y)
Kf(z) = / — == dy,
(z) P
R’VL
where

p=> aj(l—7), 0<y<1(j=12...,n).
j=1

If 1 < p; < g; < 00, (v, w;) € G’f_”% (i=1,2,...,n), then there exists a
positive number ¢ such that the inequality [|ICf|| s < c||f|rz holds for any
felrLr.

The proof of Theorem 1 will be based on several lemmas. The first lemma
is a weighted analogue of the well-known Hardy-Littlewood inequality (see
[8], Theorem 382).
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Lemma 1. Let (o, )€G17,1<7’<s<oo,0<'y<1. Then there
exists a constant ¢ > 0, such that the inequality

‘77%@@ < cllellzy

—00 —00

(1.3)

holds for any arbitrary ¢ € L7(R') and ¢ € Lf//g(]Rl).
Proof. By virtue of the Holder inequality we have

[ s

—00 —00

< H(poHLr(/</ = ||fly,y o”’l(x)dx)rl/.

R R!

From the condition (¢,0) € G}, readily follows that (2, ) € G Usmg
Theorem A we obtain the estlmate

JL=att

—0o0 —O0

Bellow we shall set o = (v—l17 i, o ,%) for v = (v1,v2,... ,0p).

Lemma 2. Let 1 < p; < g; < 00, (v, w;) € GI"2, 0 < v; < 1. Then
there exists a positive constant ¢ such that

‘// = |M dxdy < |||

for arbitrary ¢ € LE (R™) and ¢ € LZ/ (R™).

w16

Proof. We shall apply the reduction technique to the one-dimensional case.
Let 2’ = (z1,22,... ,Tn-1), ¥ = (Y1, Y2, ... ,Yn—1) and

w = Zaj(l —7;), d =(a,az,...,an_1).

It readily follows that

’
=yt = |z — y|¥ |z — y[@ ) > |2 — o [ |z, — |V
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Therefore by Lemma 1 we obtain

da'dy ) [y
‘//u—y“ dedy| < / /|x |u / /m o iy, <

|2/ —y’IZ/

<c

Rn—1Rn—1

where

F) = ( [lo@peut@ade) ™,

R1

1) = ([ 1ew)
J

Further reduction leads us to the proof of Lemma 2. [J

1
an ’qu" (yn)dyn) an .

Proof of Theorem 1. By the property of the norm and also by Lemma 2 we
have

£z = sup | [ KF(@g(oda].

Rn
where the least upper bound is taken over all functions g for which
1 1 1
<1 =(—,—,...,—).
lolly <1 o= (oo i)

Next, by Lemma 2 we have

\//f 2 iy < ol

oz, Mgl <
Theorem 2. Let 1<m<n, vi=(v1,v2,...,0m), W=(w1,Wa,... , W),
w = (W, wWa, ... ,Wp,1,....,1), 1 <p <qg <o (i=12...,m), qg =

(Q1,112’--- 7Qm); P+ = (p17p25"' 7pm)7 1 <pi < o0 (’L:m+17 7”)'
Next we set

n

u:Zaj(1*7j)+ > a*f, (1.4)

j:m+] J

where a; >0,0<v;,<1(j=1,2,...,m)
If (vi,wi) € GIPP1 (i = 1,2,... ,m), then there exists a constant ¢ > 0
such that for any f € L (R™) and arbitrary (29, ,,,... ,20) the function

B f(y)
=) _R[ |z — ylé‘dy
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belongs to the space Lg: (R™) and the inequality holds

where the constant c is independent of f.
The proof of Theorem 2 is based on the following

Lemma 3. Let the conditions of Theorem 2 be fulfilled. If o=(=, 1 ...,

vy vg?

) ¢, = (q1.45, .- .4q),), then there exists a constant ¢ > 0 such that for
all f:R" - R! and g : R™ — R we have

‘// z — |ﬂ’<c||f||Lp(Rn ||9|| % @y (1.5)

R™ R™

PTOOf' Let y/:(ylay27 s aym)a y,/:(ym—O—la s 7yn)a P+ = (plap% s 7pWL)7
P— = (Pm+1s--- 5 Pn)s - = (Plugas -+ 5 P0)-
Obviously

[ [ 22| = ([ (] H o) oo

Rn—m

By virtue of the Holder inequality

[f(W)ldy” _
— (Rn—m) T — 1.7
| <1l oy W=l e (D)
Rn—m
We introduce some notation:
o(y) = I e @n-my, 01(2,y) = e =yl o g
T= (Zm —yj\“f) ~
j=1
Let us prove that there exists a positive number ¢; such that
/ ( ;L:m+1 :7’]:7“)
o1(z,y) <aT i (1.8)
We have
/ 2 - a.l 7%
(pl(xay):H(T + Z |mj_yj|3> ‘ p’ _ =
) L'— (Rn—m)
j=m+1
Ly 2\ F
=N 2 ) ey

j=m+1
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The change of the variable y; = T%'t; in the latter expression leads to
the equality

n aj n o K
e (T ST I

<)

Pl pn—my
j=m-+1 L= (R )
Now it is obvious that
n 2 B n 2 Z +Z 1(1 71
(14 3 1) T = (14 3 ) P _
j=m+1 j=m+1
- = i _%(%“’6) n i *%(%4»6)
= H (1+ Z |tj|a]) 7 S H (1+|t]|a1) J ,
J=m+1 j=m+l j=m+1
where € > 0.
Therefore
1 t; “J') ‘ , <
H< i Z gl LP=(Rr-m)
j=m+1
. 2\ —3(GF+e)
< 1 tal @i P , '
7HH (L+11) L"= (Rn=m)
j=m+1
On the other hand,
dt; dt.
]l(iJ ) ’ S J o < Q.
SO (I R A

Thus we have proved the estimate (1.8). It implies

- 2\=3> 0" a0 -~
@,y < (Yl —yl™) T <er [l — w70 (19)

j=1 j=1

Using the generalized Holder inequality and Lemma 1 with (1.6), (1.7),
(1.8) and (1.9) we obtain:

o [ < [ [ Iy

J

< csllely )HLZ;:(]RM) ”g”LZ’(Rm)'
This implies that

| [ao [ 228 < ol floge

Rm™ Rn

QHL‘”r(Rm) u
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Proof of Theorem 2. Using the standard arguments, the validity of Theo-
rem 2 readily follows from Lemma 3. [

2. In this paragraph we shall prove the imbedding theorems for different
metrics and different dimensions for weighted spaces of anisotropic Bessel
potentials.

Definition 2 (see[2]). Let r=(r1,72,... ,7n), D=[1,D2;--- sDn), Tj >
0(j=12...,n). It will be said that f € L&"(R") if

flz) = / G(z — y)g(y)dy,
RTL

where G, is the anisotropic Bessel-Macdonald kernel and g € L2 (R™). By
the definition, ||f[| 2~ = gl e -

The kernel G, is characterized by its Fourier transform as follows (see[2])
(2m)3 Ga(N) = [1+ 02 ()\)]_77 where the function o()\) is determined by the
equation

DY A B RN |

> =1 oaj=— S =—-%
gt Tj r n < Tj
Jj=1

j=1

The kernel G, obeys, along each j — the coordinate direction, the estimates
1Go(@)] < elay | (Eie 1), (21)
Now we shall prove the imbedding theorem of different metrics.

Theorem 3. Let 1<p; <gqj<oo, (v;,w;)€eGTY (=1,2,...,n). Put

1—v;
n
nw=1- ZE
=1

and 0 = »r, v = (r1,72,... ,Tn).
Then each function f € L2 (R™) belongs to the space LL2(R™) and the
inequality || f||pae <c||fll e holds, where the constant c is independant of

f-
Proof. We have
£@) = [ Gole = by,
R’n

where

hz) = / Gy (& — 1) () dy
J

and g € LP (R™).
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Now it will be shown that h € LI(R™). Due to (2.1) we have

Gry(@)] < el 07 Dl 7 1,

or
1—n;

|G7"(1—){) (m)‘ S C|.’L'7;‘_Tj Zi:l [T

Let a; = % and
J

1 " (11—~ 1 " (11—
s [y 2t ) g 7y e O

As can be easily verified,

n

n 1 n (1 o
(Z|$j|‘%j)22i:1az( Vi) Scl|gjjo|ﬁ2i:1a1(l ’Yz).
=1

Therefore
G150 (@)] < calz[, ", (2.2)
where
p=y_a;(l 7).
j=1
Hence

Ih(z)| < / 9] |z — yl7"dy.
RTL

Applying Theorem 1, we obtain ||h|| s < c3| f||.r , which implies || f]| a.e
<|fllpe,y. W

Using Theorem 2 one may prove an imbedding theorem of different di-
mensions in a similar manner.

Theorem 4. Let 1 < p; < oo (i = 1,2,...,n), 1 < p; < q¢ < o0
(i =1,2,...,m), 1 <m < n. Itis also assumed that (v;,w;) € G'fﬁ’,’y’;,
O<y<l(@E=1,2,...).

If

—-1— A i 2.3

S S o 23
=17 j=m41 I

then for an arbitrary function f from the space LE"(R™) the function

F(z1,22,... ,@m) = f(@1,22,... ,@m, 20 1,...,20) belongs to the space

LE2(R™) and the inequality |F| paemm) < ¢l fllrr@ny holds where the

constant ¢ is independent of f.
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Proof. In the case under consideration the kernel G;_,,), admits the esti-

mate |G- (2)| < clz| #, where a = (a1, a2,... ,a,), a; = % and
T SN 24
— 7 g i’
i=1 j=m+1 J

Hence we can apply Theorem 2. The rest of the proof is as for the
preceding theorem. [
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