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LIMIT DISTRIBUTION OF THE INTEGRATED SQUARED
ERROR OF TRIGONOMETRIC SERIES REGRESSION
ESTIMATOR

E. NADARAYA

ABSTRACT. Limit distribution is studied for the integrated squared
error of the projection regression estimator (2) constructed on the
basis of independent observations (1). By means of the obtained
limit theorems, a test is given for verifying the hypothesis on the
regression, and the power of this test is calculated in the case of
Pitman alternatives.

Let observations Y1, Y3, ... ,Y, be represented as

Y;' :M(xi)+5i7 1= 17”7 (1)

where p(x), € [—m, x|, is the unknown regression function to be estimated
by observations Y;; x;, ¢ = 1,n, are the known numbers, and —7 = z¢ <
1 < - < xp <7, &, ¢ = 1,n, are independent equidistributed random
variables; Feq = 0, Fe? = 02, and Eef < o0.

The problem of nonparametric estimation of the regression function p(x)
for the model (1) has a recent history and has been treated only in few
papers. In particular, a kernel estimator of the Rosenblatt—Parzen type for
w(zx) was proposed for the first time in [1].

Assume that p(x) is representable as a converging series in Lo(—m,m)
with respect to the orthonormal trigonometric system

[e.°]
{(27r)*1/2, 7 Y2 cosiz, 7% sin zx}
i=1

Consider the estimator of the function p(x) constructed by the projection
method of N.N. Chentsov [2]

N
ao . .
tnn(x) = 7” + Z @iy, COS 1T + by SINiT, (2)
i=1
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where N = N(n) — oo for n — oo and

1 & 1 &
Aip, = — E Y;Ajcosizj, biyp=— E Y;Ajsinix;,
T T
Jj=1 Jj=1
Aj:xj*xj—la j:].,n, ZZO,N

The estimator (2) can be rewritten in a more compact way as

n
pnn = > ViN Ky (z — ;)
j=1
where Ky (u) = 5= > € is the Dirichlet kernel.
|r|<N
In [3], p.347, N.V. Smirnov considered estimators of the type (2) for
a specially chosen class of functions p(z) in the case of equidistant points
xj € [—m, x| and of independent and normally distributed observation errors
g;. In [4] an estimator of the type (2) is obtained, which is asymptotically
equivalent to projection estimators which are optimal in the sense of some
accuracy criterion. The asymptotics of the mean value of the integrated
squared error of the estimator (2) is considered in [5].
It is of interest to investigate the limit distribution of the integrated
squared error
[ (@) - o),
which is the goal pursued in this paper. The method used to prove the
theorems below is based on the functional limit theorem for a sequence of
semimartingales [6].

Denote
n B 2
Uin= . - F dx,
NToreN + 1) /,ﬂ [tnv (@) = Bpiny (2)] de
n r—1
Qi'r = A,LATKN(I'Z xr), UnN 2N+ 1 S onN 1 1\2 ;;Qgrv
n
Nik = €i€kQik,

m(2N + 1)oun

61:07 Skzznika k:27n7 fk:()a k>n>
and assume that Fj is o-algebra generated by random variables ei,¢€q,
&y Fo = (¢7Q)

Lemma 1 ([7], p.179). The stochastic sequence (&, Fi)k>1 1S a mar-
tingale-difference.
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Lemma 2. Let p(x) be the known positive continuously differentiable
distribution density on [—m,w|, and points x; be chosen from the relation
[ pu)du= L, i=Tn.

If%—ﬂ)fornﬂoo, then

NInN o> [T
B =040 () o= T [Ty )
2 ot [T -2
(2N + 1)oiiny — b2 = 3 _ﬂp (u) du. (4)

Proof. From the definition of z; we easily obtain

A = @ [1+o(i)] ,

where O( ) is uniform with respect to ¢ = 1, n.

1
n
Hence it follows that

1

i = ()

K (@i — o) {1 + o(i)] . 5)

Taking into account the relation

_max |Ky(u)| = O(N) (6)
and (5), we find
) 0_4 n n 1 1
U7LN_WVW;;K12\T(Ii$j)WW+O(n). (7)

Let F(z) be a distribution function with density p(z) and F,(z) be an
empirical distribution function of the “sample” 1, xs,... , 2y, ie., F,(z) =
n Y I—oox)(xk), where I4(+) is the indicator of the set A. Then the
right side of (7) can be written as the integral

. ot T e o M) () 1
TN = 5N 1) / KRt -9 o)
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Further we have

T e B T[T AR dE()

| [ K= MOLOE || i O
<I1+123

dF,(s)
= ‘/ _ﬁKN D p@pep [0~ dF O],

dF(t)
IQ ‘,/_ﬂ _ﬂKN )[()()] [dF() dF(S)].

By integration by parts in the internal integral in I; we readily obtain

T dF,(s) [T ,
I §2/_W e / (dFw(t) — dF ()] | (K (t — s)p(t) -

—Kn(t—s)p'(t)) Kn(t —s)/p*(t)| dt. (8)
Since sUp_ < <, [Fn(z) — F(z)| = O(%) and the relations [8]'

e K@ =00V, [ Kydu=2n 41,
. - (9)
/ |Kn(u)] du=O(InN)

iy

<

are fulfilled, from (8) we have the estimate

2
Ile(N lnN>'

n
In the same manner we show that

2
1_2_0(N 1nN>'

n

Therefore

entst= s [ [ anten gt 0 (%) o

where @ (u) = 2N+1KN( u) is the Fejér kernel.

We shall complete the definition of the function p~! outside [—m, 7] as
regards its periodicity and also note that Ky (u) and ®y(u) are periodic
functions with the period 2w. The continued function will be denoted by

g(z). Then
/7; /7; P (s —t)p(f)iit) = /irpz(z) dz + Xn,

1See p. 115 in the Russian version of [8]: “Mir”, Moscow, 1965.

1
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where

Xl < / " Jow(@) - glo)|da,

—T

an(z) = /” O (u)g(z — u)du.

—T

Hence, on account of the theorem on convergence of the Fejér integral
~N(x) to g(z) in the norm of the space Li(—m,m) (see [9], p.481), we have
Xn — 0 for n — oo.
Therefore

4 iy
(2N +1)02y — 40?/ p~%(z) d.

Now we shall prove (3). We have

D,LLnN

—z) [1+0(i)} .

Applying the same reasoning as in deriving (10), we find

Doy (z / K2 (x Cg ) +O(w). (11)

Therefore

EU,y = [ / Dt ds(d)ﬂo(w\f)—
(27T) / ~1(s )ds+O<N1nN)

Denote by the symbol 2 the convergence in distribution, and let £ be a
random variable having normal distribution with zero mean and variance 1.

Theorem 1. Let z; i = 1,n be the same as in Lemma 2 and N’ N lnN — 0

forn — oo. Then, as n increases, V2N + 1(U,n — 01)05 /2 4 — £.

Proof. We have
Unn — EUnn

=gV + H?
OnN " "
where

n

HO — ~ g — " 2 _ Ee?)Qi.
n ;fﬁ n 27T(2N 4 ]-)UnN ;(81 Ez)Q
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H,SQ) converges to zero in probability. Indeed,

2Fed
DH® < e
=2 )(2N+120NZQ

= @np (szEf 2 Z )<1+O< )) <

e o)

whence H,(?) Lt 0. Here and in what follows C is the positive constant
varying from one formula to another and the letter P above the arrow
denotes convergence in probability

We will now prove that H LA &. To this end we will verify the validity
of Corollaries 2 and 6 of Theorem 2 from [6]. We have to show whether
the conditions contained in these statements are fulfilled for asymptotic
normality of the square-integrable martingale-difference, which, by Lemma
1, is our sequence {&k, Fk }x>1-

A direct calculation shows that > ,_, E¢Z = 1. Asymptotic normality
will take place if for n — oo

ZE & - 1(|ék| =€) | Fia] — 0 (12)

and
S (13)

k=1

It is shown in [6] that the fulfillment of (13) and the condition sup || £
1<k<n

implies the validy of (12) as well.
Since for € > 0

P >el <e N B
{étklgnlﬁkl_e}_e kZ::l &

to prove M <, ¢ we have to verify only (13) by the relation (15) to be
given below.

We will establish >")'_, &2 £ 1. For this it suffices to make sure that
E i & —1)2—0forn— oo, ie,duetod EZ =1

E(;gz)zz;ffséw Y oEe 1 ()

1<ki<ka<n
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In the first place we find that ZZ=1 E{,‘i — 0 for n — oco. By virtue of
the definitions of &, and 7;; we write

> B =LY+ LY,
k=1

where
Lo = n’ —F (Bt — 3 -~y
T ni(2N + 1)4 61 51 — 30" ZZQM’
k=2 j=1
3ntotEet n okl 2
@) _ 1 2
Ln (2N + 1)*ot W4Z(; jk) '

From (5) and (6) we obtain

n k—1

eSS o(d) <

1LY = O
ntNto, N = = lp(z)p(e)]*

k= j=1
1 ~ /7r K% (x —u) )2
dF,(u) ] <
n2N4a4NkZ_2( AW
L (g2 1 ’
_Cn2N404 Z [KN(a?k—u)p (u)du} +
k=2

Hence, taking into account the relation (9) and the formula of integration
by parts, we have |L512)| = O(%) Therefore

Z B¢l —0 for n— oo. (15)
k=1
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Let us now establish that 23, 4. <, Efilfiz — 1 for n — oo. The
definition of ¢; implies - -

ki—1 ko—1 ki—1 ko—1
.8, = ( > 771'2k1>< > 773;@) + ( > n?kl)( > mkznskz) +
i=1 i=1 i=1 i#s=1
ko—1 ki—1 k-1 ko—1
+( Z n?kz)( Z nskmtkl) + ( Z ﬂsklntkl)( Z 77kk:177rk2> =
i=1 sAt=1 sAt=1 k#r=1
(1) (2) (3) (4)
- Bk}1k}2 + Bk}1k}2 + B k1ko + Bkle'
Therefore
4
2 > EBG&, =) A,
1<ki <ks<n i=1
where

AV =2 > EBY,. i=14
1<ki<ko<n

In the first place we consider ASLS). By the definition of 7;; we obtain
EnZ Nk ek, = 0, 8 # t, ki < kz. Thus

AB) = . (16)

Let us derive an estimate of Ag). Divide the sum EB,(C?),C2 into two parts:

ki—1 Kk ki1—1 ko—1
2
EBY. =3 3 End i+ > Y. Bk ek,
i=1 r#s=1 i=1 r#s=k;+1

The second term is equal to zero, since ¢ cannot coincide with r or with s
and 7 # s; in this case En?klnrkznskz =0, and En?klnrkg’r]skrg = 0 also in the
first term each time except for the case s = k; or r = kj.
Thus
k-1
EB{), =2 > B0, Mika ks ks -
i=1

Hence, using the definition of 7;; and the inequality |Q;;| < cx ~= obtained
from (5) and (6), we find

ki1—1
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Next, taking into account statement (4) of Lemma 2 and the definition
of 02, from (17) we have

n ki—1 1
AP O 30 Y @l <0z =0(3) ()

N =2 =1
Consider now Agl). By the definition of n;; we obtain

8nt
ALY = Z Qsky Qsky Qe Qti, <

4 4 4
& (2N+1) InN s<t<ki<ksa

n4
SCW H Z stlengtletkz

g,
N T stk ko

D Q2.0 | Y QiQui@nQu

k1,8t k1,s,t

_l’_
TL4
= Cgo—[|E1| + | Ea| + | Ea]]. (19)

44
Nioyn

According to (5) and (6) we write

E,=n"" Z Ky(zs — xp, ) Kn (2 — 28y ) ¥
S,t,k‘rl
s N2
X Ky(zs —u)Kn(z: — u) an(u)—i—O(T).

—T

Hence, integrating by parts and taking into account (9), we obtain

Elzn_7/ Z KN(xs—xkl)KN(xt—xkl)x

s,t,k1

N4lnN).

nd

Ky(zs —u)Kn(z: —uw)p(u) du + O( (20)

Applying the same operations three times, we represent (20) in the form

B :n/// _:KN@—u)KN<z—t>KN<y—u>KN<y—t> x

xp(y)p(w)p(2)p(t) du dt dz dy + O(N 4711?N ) -
:o(m:;jN) +0(N41“N).

nd
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Thus
nt B O(ln3N>+O(N21nN) 1)
— 1 = .
N4gt N
Further, it is not difficult to show
nt N2
gt Bl =0(50).
A N2 (22)
gt Bl =0(0).
Therefore (19), (21), and (22) imply
N2InN In® N
(4) —
A6 0( - )+0( ~ ) (23)

Finally, we will show that AV 1 for n — oo. For this represent A

in the form AﬁP = QS) + Qg), where

ki1—1 ko—1
Q=23 (X i) (X ),
ki<ky i=1 j=1
k1—1 ko—1
1
QP =2 3 BB, — X (X Bad ) (X End))
k1<kao k1 <kso =1 j=1

From the definition of afL y it follows that

n

k—1 5
QY =1- Z (ZEnfk) ]

k=2 =1
where
n k—1 2 n4 n k—1 5
S (X Eni) < Oqa 2 (k) <
k=2 i=1 InN = “i=1
1 N2
= CnUﬁN - O(T)
Therefore
QY =1+0(N?/n). (24)

Let us now show that Qg) — 0. Qg) can be written as

ki—1

QY =2 Z { Z (cov(nin,» Miy) + COV(W?klanzlkg))]

ki1 <kso =1
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But

4

2 2 n 2 2
Enii, Mik, < 07N404 ik Qiky <
niN

1 4 1
~ niNtol, ( —%%ng |KN(U)|) o O(n‘*aﬁN)'
Similarly, En;; = O(n™?0,, K,) Therefore
cov(Mi, s Miky) = 0(4%)- (25)
nion

Further, since Y7; . cp,<n (k1 — 1) = O(n?), (25) implies

Thus, according to (24) and (26)
A =14 O(N?/n). (27)

Combining the relations (16), (18), (23) and (27), we finally obtain
n 2
E(ng - 1) — 0 for n — oo.
k=1

Therefore
UnN - EUnN d
N
OnN

Further, due to Lemma 2, EU,y = 61 + O(M2X) and (2N +1)02y — 65,
and hence we obtain

¢.

2N + 1D)Y2(U,.y — 01)0, 2 S ¢, O

Denote

Theorem 2. Let x;, i = 1,n, be the same as in Lemma 2 and the func-
tion p(x) with period 2m have bounded derivatives up to the second order.
Moreover, if N2 InN/n — 0 and nln®* N/N%/2 — 0 for n — oo, then

IN + 1(Ton — 01)05 % % ¢.
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Before we proceed to proving the theorem, we have to show

/7T K\ (u)|du = O(NIn N). (28)

—T

Denote D, (u) = > r_ysinku. Then by virtue of the Abel transformation
we have

stmku- ZD )+ NDy.

It is well known [8] that 7, = (Inv)~' [7_ 1D, (u)|du — 1 for v — oo.
Denote by = Zf,v:_ll Inv. Then by the Toeplitz lemma

Therefore

™

P N—
/\KN Jldu < Z/ Widu+ N [ D (w)]du =

-7 -

=by-Bv+N [ |Dy(u)|du=O(NInN).

—T

Let us return to the proof of the theorem. We have
TnN = UnN + Aln + A2na

- ) /_W [tinn (2) = Epnn ()] [Bpny () — p(2)]dz,

Ap=—
T (2N + 1

It is not difficult to find

<5 ﬁ(iAi[ :K( — ;) x

X (Epnn(y) — M(x))dy} 2) v

V2N 4+ 1E|A1,| <

But
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and

/’T pa)p™ (@) En(y — o) dFa(z) =

s 1 ™
— [ w@knt-+0(y [ IKiwld).
- nJ_x
It is well known ([10], p.22) that

| @ knty = 0y = ) + (53

uniformly in y € [—7, w]. By virtue of (28) this gives us

In N NInN
EunN(m)zu(x)+O(W>+O( - ) (29)
Therefore
nln® N\1/2In N
V2N + 1E[ Al SCK N9/2 ) N1/4
N2In N\1/21n*2 N
+( - ) T } = 0. (30)

Further, from (29) we have

nln?N N2 In’N
VAN + 14y, < C(W +— W> ~0.
Finally, the statement of Theorem 2 directly follows from Theorem 1, (30),
and (31).

Using Theorems 1 and 2, it is easy to solve the problem concerning testing
of the hypothesis on u(z). Given o2, it is required to verify the hypothesis
Hy : p(x) = po(x). The critical region is defined approximately by the
inequality U,n > d, (@) or T,y > d,,(«), where

(31)

dn(a) = 0*(Li + (2N +1)7V2Ly) A,
Ly = ((2m)~? /” p (@) dz, L= ( = /W p2(z) dm)l/z,

3
—7 am -

and A, is the quantile of level « of standard normal distribution.
Let now 2 be unknown. We call an v/ N-consistent estimate of variance

o2, for instance,
n

1
52 = - Z (Vi — /~Ln,\(9€i))27
i=1

where A = A(n) — oo is a sequence such that % — 0, Nl)\ﬂz)‘ — 0 and

4
%HOfornﬂoo.
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Indeed, using the expressions (11) and (29), we easily find

N\ 1/2 NY21n )
22y _ VA
VN(ES? — o?) o(( n) )+0( > ) (32)

Denote

Zj =Y — Ry,

Rj = ZYI@AI@K)\(J:] — LL’k)

k=1

Then

n
n?DS2 = Z:DZJ2 + Z cov(Z7, Z7).
j=1 i#iy

Simple calculations show that C,OV(ZJ2 , ijl) = O(%) Therefore DS? =
O(’%) This and (32) imply VN (S2 — o2) 5 0.

Corollary. Let the conditions of Theorem 2 be fulfilled. Moreover, let
%—>0, NT’\AI—N) and%%& Then

ST2L7'WAN + LUy — S2L1) % €,
S72LYWAN § LTy — S2L1) % €.

This corollary enables one to construct a test for verifying Hy : p(z) =
to(z). The critical region is defined approximately by the inequality U,y >
dy () or Tyn > dn(c), where dy,(c) is obtained from d,(a) by using S2
instead of o2.

Consider now the local behavior of the test power in the case where the
critical region is of the form {z € R', x > d,(a)}. More exactly, find a
distribution of the quadratic functional U,, y under a sequence of alternatives
close to the hypothesis Hy : u(x) = po(x). The sequence is written as

Hy () = po(2) + e (@) + 0o(m), (33)

where 7, — 0 appropriately and o(v,) is uniform in x € [—m, 7).

Theorem 3. Let fi,(x) satisfy the conditions of Theorem 2. If 2N +
1 =nd, ~, = n-1/2H0/4 % <6< %, then under the alternative H
the statistic (2N + 1)Y/2(U,n — 61) is distributed in the limit normally

(2 [, #*(u)du, B3).
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Proof. Let us represent U,y as the sum

Unn = m /_T; (Hnn () — El,unN(a?))de +
+-W(2p?4_1)7hl/”;[“”N(z)_*ElﬂnN(I)}éﬁ(x)dx<+
! mﬁ /_7; Pnl(@)dv = Ai(n) + Ao(n) + As(n),

where Fj(+) denotes the mathematical expectation under the hypothesis Hy,
n
Bn(@) =Y o)A Kz — x;).
j=1

Due to Theorem 1 one can readily assertain that /2N + 1(A1(n) — 6;) is
distributed asymptotically normal (0,v/05).
By analogy with the proof of Lemma 2 we find

\/mfg(n):i/ﬂ (/ﬂ (p(y)KN(:cfy)dy>2dx+O(N21nN).

2T n

—T —T

Hence, by virtue of theorem 2 from [9], p.474, we have

VIN F 14s(n) — % / " 2 (u)du.

—T

Further, for our choice of N and +,, we can show by simple calculations that

In? 1
V2N + 1E|As(n)| < c(M + i)

nd/d T p1-76/4
Thus the local behaviour of the power Py, (U,n > dn(e)) is

P, (Uny > dn(a)) — 1 — <I>()\a - 9;1/2%/ 02 (u) du). (34)
Since [*_¢*(u)du > 0 and is equal to zero iff ¢(z) = 0, from (34)
we conclude that the test for the hypothesis Hy : u(z) = po(z) against
alternatives of the form (33) is asymptotically strictly unbiased.
Remark. Similar results can be obtained by the same method for the
kernel estimator of Priestley and Chao [1].
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