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WEIGHTED ESTIMATES FOR THE HILBERT
TRANSFORM OF ODD FUNCTIONS

LUBOŠ PICK

Abstract. The aim of the present paper is to characterize the classes
of weights which ensure the validity of one-weighted strong, weak or
extra-weak type estimates in Orlicz classes for the integral operator

H0f(x) =
2
π

∫ ∞

0

yf(y)
x2 − y2

dy, x ∈ (0,∞).

1. Introduction. The Hilbert transform is given for any function f
satisfying

∞
∫

−∞

|f(x)| (1 + |x|)−1 dx < ∞

by the Cauchy principal value integral

Hf(x) =
1
π

lim
ε→0+

∫

R\(x−ε,x+ε)

f(y)
x− y

dy.

If f is an odd function, then Hf is even, and Hf(x) = Hof(|x|), where

Hof(x) =
2
π

∞
∫

0

yf(y)
x2 − y2 dy, x ∈ (0,∞).

The Hilbert transform is closely related to the Hardy–Littlewood maximal
operator

Mf(x) = sup
I3x

1
|I|

∫

I

|f(y)| dy.
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If % is a weight (measurable and nonnegative function) and 1 ≤ p < ∞,
strong type inequalities

∫

Ω

|Tf(x)|p%(x) dx ≤ C
∫

Ω

|f(x)|p %(x) dx, (1.1)

as well as weak type inequalities

%({|Tf | > λ}) ≤ C λ−p
∫

Ω

|f(x)|p %(x) dx, (1.2)

have been widely studied by many authors. The pioneering result of Muck-
enhoupt [13] stated that (1.1) holds with Ω = R, T = M and p > 1 if and
only if % ∈ Ap, that is,

sup
I

%I · ((%1−p′)I)p−1 ≤ C,

and (1.2) holds with Ω=R, T =M and p≥1 if and only if % ∈ Ap, where
% ∈ A1 means %I ≤ Cess infI%. Hunt, Muckenhoupt and Wheeden [10]
proved the same result for Ω = R and T = H. The class of good weights
for (1.1) or (1.2) with Ω = (0,∞) and T = Ho appears to be strictly
larger than Ap. This result is due to Andersen who showed that (1.1) with
Ω = (0,∞), p > 1, and T = Ho holds if and only if % ∈ Ao

p, that is,

%(a, b)
(

b
∫

a

%1−p′(x)xp′ dx
)p−1 ≤ C(b2 − a2)p, (a, b) ⊂ R, (1.3)

and (1.2) with Ω = (0,∞), p ≥ 1, and T = Ho holds if and only if % ∈ Ao
p,

where % ∈ Ao
1 means

%(a, b)
b2 − a2 ≤ Cess inf(a,b)

%(x)
x

.

Our aim is to study analogous inequalities where the power function tp is
replaced by a general convex function Φ(t). More precisely, we shall study
the inequalities

∫

Ω

Φ(|Tf(x)|) %(x) dx ≤ C
∫

Ω

Φ(C|f(x)|) %(x) dx, (1.4)

%({|Tf | > λ}) · Φ(λ) ≤ C
∫

Ω

Φ(C|f(x)|) %(x) dx, (1.5)
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and

%({|Tf | > λ}) ≤ C
∫

Ω

Φ(Cλ−1|f(x)|) %(x) dx. (1.6)

We call (1.4) strong type inequality, (1.5) weak type inequality, and (1.6)
extra–weak type inequality. While (1.4) is an analogue of (1.1), (1.5) and
(1.6) are two different analogues of (1.2). It is always true that (1.4) ⇒
(1.5) ⇒ (1.6), and none of these implications is reversible in general. The
interest in these types of inequalities stems from their use in various prob-
lems of Fourier analysis. For example, extra–weak type inequalities have
interesting interpolation applications (see [2]).

We assume throughout that Φ is a convex nondecreasing function on
(0,∞), Φ(0) = 0. In fact, it is not hard to prove that for all the above
operators the inequalities (1.4) or (1.5) always imply at least quasiconvexity
of Φ. For more detaile, see [9].

Weak and extra–weak type inequalities together were apparently firstly
studied in [14] for T = M and Ω = Rn. In [9] the following results were
obtained (for definitions see Section 2 below):

Theorem A. The inequality (1.5) holds with T = H and Ω = R if and
only if Φ ∈ ∆2 and % ∈ AΦ.

Theorem B. Let Φ ∈ ∆0
2. Then (1.6) holds with T = H and Ω = R if

and only if % ∈ EΦ.

The main aim of the present paper is to characterize the classes of weights
for which the inequalities (1.4–6) hold with Ω = (0,∞) and T = Ho (Theo-
rems 3–5 in Section 4). Moreover, we get a characterization for the strong
type inequality (1.4) with Ω = R and T = H. This is given in Section 3
(Theorem 2) as well as the similar assertion for T = M (Theorem 1). How-
ever, in the case T = M we do not obtain a full characterization but are left
with a small but significant gap between the necessary and the sufficient
condition.

It should be mentioned that Andersen obtained in [1] Lp–results also for
the operator

Hef(x) =

∞
∫

0

xf(y)
x2 − y2 dy, (1.7)

the Hilbert transform for even functions. However, our methods do not
provide analogous results for He with tp replaced by Φ(t).

Let us finally mention that the result of Andersen was generalized to
the case of multiple Hilbert transform in [17]. For other related results
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see also [15], [16]. Some of the results of this paper were included in the
comprehensive monograph [18].

2. Preliminaries. Let Φ be a convex nondecreasing function on [0,∞),
Φ(0) = 0, which does not vanish identically on [0,∞), but it is allowed that
Φ ≡ 0 on [0, a] and/or Φ ≡ ∞ on (a,∞) for some a > 0 provided that Φ(a−)
is finite. The complementary function to Φ, Φ̃(t) = sup

s>0
(st− Φ(s)), has the

same properties as Φ (for example, convexity of Φ̃ follows easily from the
subadditivity of supremum). Moreover, the Young inequality

st ≤ Φ(s) + Φ̃(t) (2.1)

holds for all s, t positive. Both Φ and Φ̃ are invertible on (0,∞) and it
follows immediately from (2.1) that

Φ−1(t) · Φ̃−1(t) ≤ 2t, t > 0. (2.2)

We say that Φ satisfies the ∆2 condition, (Φ ∈ ∆2), if Φ(2t) ≤ CΦ(t).
If this estimate holds merely near 0 (near ∞), we write Φ∈∆0

2 (Φ∈∆∞
2 ).

We recall that Φ∈∆2 is equivalent to 2Φ−1(t) ≤ Φ−1(Ct).
The functions

RΦ(t) = Φ(t)/t, SΦ(t) = Φ̃(t)/t

will play a crucial role in the sequel. Clearly, RΦ and SΦ are nondecreasing
on [0,∞). It is known [14], [9] that

Φ(SΦ(t)) ≤ CΦ̃(t), t ≥ 0, (2.3)

and, by convexity,

Φ(λSΦ(t)) ≤ CλΦ̃(t), t ≥ 0, λ ∈ (0, 1). (2.4)

We say that Φ is of bounded type near zero (near infinity), and write
Φ ∈ B0 (Φ ∈ B∞) if RΦ(t) ≥ a > 0 (or RΦ(t) ≤ a < ∞) for all t > 0. This
classification was introduced in [9]. It was proved in [9] that

RΦ(t) ≥ a, t > 0 ⇔ Φ̃(t) ≡ 0, t ∈ [0, a],

RΦ(t) ≤ a, t > 0 ⇔ Φ̃(t) ≡ ∞, t ∈ (a,∞),

Φ(t) ≡ 0, t ∈ [0, a] ⇔ SΦ(t) ≥ a, t > 0,

Φ(t) ≡ ∞, t ∈ (a,∞) ⇔ SΦ(t) ≤ a, t > 0.

The functions RΦ and SΦ need not be injective. However, thanks to con-
vexity of Φ, they can be constant on intervals only in a few special cases
(this is the main difference between RΦ and Φ′), namely, if RΦ is equal to a
constant on an interval (a, b), then it must be a = 0 (b may be ∞). On the
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rest of its domain RΦ is strictly increasing and thus invertible. Of course,
the same holds for SΦ.

It follows easily from (2.3) that

RΦ(t) ≤ S−1
Φ (Ct) (2.5)

holds for admissible t (that is, for t such that Ct belongs to the range of the
invertible part of SΦ). We shall also make use of the (converse) estimate

S−1
Φ (t) ≤ 2RΦ(2t), admissible t. (2.6)

To prove (2.6) substitute in (2.2) t→Φ̃(t) to get Φ̃(t) ≤ Φ(2SΦ(t)). The
complementary version of the last inequality reads as Φ(t) ≤ Φ̃(2RΦ(t)),
which yields t ≤ 2SΦ(2RΦ(t)). Putting now t → 2t and assuming that 2t is
admissible we get (2.6).

Let us introduce the notion of index of a nondecreasing function.
Putting h(λ) = supt>0 Φ(λt)/Φ(t), λ ≥ 0, we define the lower in-

dex of Φ as i(Φ) = lim
λ→0+

log h(λ)/ log λ and the upper index of Φ as

I(Φ) = lim
λ→∞

log h(λ)/ log λ.

It follows easily from the definitions that for every ε > 0 there exists
Cε ≥ 1 such that

Φ(λt) ≤ Cε max
{

λi(Φ)−ε, λI(Φ)+ε
}

Φ(t), t ≥ 0, λ ≥ 0, (2.7)

and

min
{

µi(Φ)−ε, µI(Φ)+ε
}

Φ(t) ≤ CεΦ(µt), t ≥ 0, µ ≥ 0. (2.8)

Let us recall that Φ ∈ ∆2 is equivalent to I(Φ) < ∞, and Φ̃ ∈ ∆2 is
equivalent to i(Φ) > 1.

We define the weighted modular by m%(f, Φ) =
∞
∫

−∞
Φ(|f(x)|)%(x) dx; then

the weighted Orlicz space LΦ,% is the set of all functions f for which
m%(f/λ, Φ) is finite for some λ > 0. This space can be equipped with
the Orlicz norm

|||f |||Φ,% = sup







∞
∫

−∞

fg%, m%(g, Φ̃) ≤ 1







,

and also with the Luxemburg norm

‖f‖Φ,% = inf{λ > 0,m%(f/λ, Φ) ≤ 1}.
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The norms are equivalent, and the unit ball in LΦ,% with respect to the Lux-
emburg norm coincides with the set of all functions f such that m%(f, Φ) ≤
1. The Hölder inequality

∞
∫

−∞

fg% dx ≤ ‖f‖Φ,% · |||g|||Φ̃,%

holds, and is saturated in the sense that

‖f‖Φ,% = sup







∞
∫

−∞

fg% dx, |||g|||Φ̃,% ≤ 1







and

|||f |||Φ,% = sup







∞
∫

−∞

fg% dx, ‖g‖Φ̃,% ≤ 1







.

The norm topology is stronger than the modular one, whence the mod-
ular inequality

∫

Φ(Tf)% ≤ C
∫

Φ(C|f |)% implies its norm counterpart
‖Tf‖Φ,% ≤ C‖f‖Φ,%, where T is any positive homogeneous operator.

As usual, given measurable functions h, g and a measurable set E, |E|
means

∫

E dx, h(E) means
∫

E h, hE means |E|−1h(E), and h ( { g > λ })
means

∫

{x∈R,g(x)>λ} h(t)dt.
The letter I will always denote an interval in R, and if I = (a, b), we

put I ′ = (b, 2b − a), I∗ = (a, 2b − a), and let αI, α > 0, be the interval
concentric with I and α times as long.

If %(2I) ≤ C%(I) for all I, we say that % is a doubling weight.
We say that % ∈ AΦ if either Φ /∈ B0 ∪B∞ and there exist C, ε such that

sup
α>0

sup
I

α%IRΦ
( ε
|I|

∫

I

SΦ
( 1
α%(x)

)

dx
)

≤ C,

or Φ ∈ B0 ∪B∞ and % ∈ A1.
We say that % ∈ EΦ if there exist C, ε > 0 such that

sup
I

1
|I|

∫

I

SΦ
(

ε
%I

%(x)
)

dx ≤ C.

3. Strong type inequalities for the maximal operator and the
Hilbert transform. We start by considering the strong type inequality
for the operator M . As known [6], the nonweighted inequality

∫

Φ(Mf) ≤ C
∫

Φ(|f |)
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holds if and only if Φ̃ ∈ ∆2. Kerman and Torchinsky [11] proved that under
the assumption that both Φ and Φ̃ satisfy the ∆2 condition the weighted
inequality

∫

Φ(Mf)% ≤ C
∫

Φ(|f |) %

is equivalent to the condition

sup
α,I





α
|I|

∫

I

%(x) dx



 φ





1
|I|

∫

I

φ−1
(

1
α%(x)

)

dx



 ≤ C,

where φ = Φ′.
As we shall see, the assumption Φ ∈ ∆2 can be removed. On the other

hand, the assumption Φ̃ ∈ ∆2, at least near infinity, is necessary.

Theorem 1. Assume that % and Φ are such that % ∈ AΦ and Φ̃ ∈ ∆2.
Then there exists C such that for every f the inequality

∞
∫

−∞

Φ(Mf(x))%(x) dx ≤ C

∞
∫

−∞

Φ(|f(x)|)%(x) dx (3.1)

holds.
Conversely, if (3.1) holds with C independent of f , then % ∈ AΦ and

Φ̃ ∈ ∆∞
2 .

We shall need the following two observations:

Lemma 1. If

|||Mf |||Φ,% ≤ C |||f |||Φ,%, (3.2)

then Φ̃ ∈ ∆∞
2 .

Lemma 2. If Φ̃ ∈ ∆2 and % ∈ AΦ, then there exists a function Φ0 such
that % ∈ AΦ0 and i(Φ0) < i(Φ).

Proof of Theorem 1. Necessity. As mentioned above, the modular in-
equality (3.1) implies (3.2). Necessity of Φ ∈ ∆∞

2 thus follows from Lemma
1. As proved in [14], % ∈ AΦ is necessary even for the weak type inequality,
the more so for (3.1).

Sufficiency. Let Φ0 be the function from Lemma 2. Put p = i(Φ0) and
Fp(t) = Φ(t1/p). Then i(Fp) = 1

p i(Φ) > 1, whence the weighted maximal
operator M%f = sup %(I)−1

∫

I |f |% is bounded on LFp,% [6]. Moreover, % ∈
AΦ0 implies % ∈ Ap, and (Mf)p ≤ CM%(fp) [11]. Thus,
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∫

Φ(Mf)% =
∫

Fp ((Mf)p) % ≤
∫

Fp (M% (C|f |p)) % ≤

≤ C
∫

Fp (C|f |p) % = C
∫

Φ(C|f |)%. �

Proof of Lemma 1. Fix a K > 0 such that the set E = { K−1 ≤ %(x)≤K}
has positive measure. Let x be a density point of E; with no loss of generality
let x = 0. Fix a0 such that |E ∩ [0, a)| ≥ 3

4a for all a ≤ a0. Then, for such
a,

|E ∩ (4−1a, a)| ≥ 1
2
a. (3.3)

Indeed, we have

|E ∩ (4−1a, a)| = |E ∩ (0, a)| − |E ∩ (0, 4−1a)| ≥ 3
4
a− 1

4
a.

From this we obtain the following observation to be used below: Since 1
x is

a decreasing function, we have for every a ∈ (0, a0)

∫

E∩(4−1a,a)

dx
x
≥

a
∫

2−1a

dx
x

= log 2. (3.4)

Moreover, for every a ∈ (0, a0),

|E ∩ (0, a)| ≤ a = 4m|(0, 4−ma)| ≤ 3−14m+1|E ∩ (0, 4−ma)|,

and so, by the definition of E,

%(E ∩ (0, a)) ≤ K|E ∩ (0, a)| ≤ K3−14m+1|E ∩ (0, 4−ma)| ≤
≤ K23−14m+1%(E ∩ (0, 4−ma)). (3.5)

For m ∈ N and a fixed b ∈ (0, a0) put fm(x) = χE∩(0,4−mb)(x). Then, by
(3.5),

|||fm|||Φ,% = %(E ∩ (0, 4−mb)) · Φ̃−1
(

1
%(E ∩ (0, 4−mb))

)

≤

≤ K|E ∩ (0, 4−mb)| · Φ̃−1( K23−14m+1

%(E ∩ (0, b))
)

. (3.6)
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Moreover, for x ∈ (4−mb, b), Mfm(x) ≥ x−1|E ∩ (0, 4−mb)|. Therefore,
setting

g(x) = Φ̃−1
(

1
%(E ∩ (0, b))

)

· χE∩(0,b)(x),

we get
∫

Φ̃(g)% = 1, and thus

|||Mfm|||Φ,% ≥
∞
∫

−∞

Mfm(x)g(x)%(x) dx ≥

≥ |E ∩ (0, 4−mb)|Φ̃−1
(

1
%(E ∩ (0, b))

) ∫

E∩(4−mb,b)

%(x)
x

dx ≥

≥ |E ∩ (0, 4−mb)|Φ̃−1
(

1
%(E ∩ (0, b))

)

K−1
m

∑

n=1

∫

E∩(4−nb,4−n+1b)

dx
x
≥

≥ by (3.4) ≥

≥ |E ∩ (0, 4−mb)|Φ̃−1
(

1
%(E ∩ (0, b))

)

K−1m log 2. (3.7)

Combining (3.2), (3.6) and (3.7), we arrive at

Φ̃−1
(

1
%(E ∩ (0, b))

)

·m ≤ CK2

log 2
· Φ̃−1

(

K23−14m+1

%(E ∩ (0, b))

)

.

Choose m = 2CK2/ log 2. Since m does not depend on b, the last inequality
can be rewritten as

2Φ̃−1(t) ≤ Φ̃−1(C0t), t ≥ t0,

with C0 = 3−14m+1K2 and t0 = (%(E ∩ (0, a0)))−1. In other words,
Φ̃ ∈ ∆∞

2 . �
Proof of Lemma 2. Fix α > 0 and I and define v = SΦ(1/α%). We claim

that v ∈ A∞, that is, there exist α and β independent of I such that the
set

Eβ = {x ∈ I; v(x) > βvI}
satisfies |Eβ | > α|I|.

We have to distinguish several cases. First assume that i(Φ) = ∞. Since
% ∈ AΦ always implies % ∈ A∞ [9], and % ∈ A∞ always implies % ∈ Ap for
certain p < ∞, in this case the assertion of the lemma is easily satisfied.

Suppose i(Φ) < ∞. Since Φ̃ ∈ ∆2, Φ cannot be of any bounded type.
However, this is not true for Φ̃, so it can be either

(i) SΦ(0,∞) = (0,∞);
(ii) SΦ(0,∞) = (0, a);
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(iii) SΦ(0,∞) = (a,∞); or
(iv) SΦ(0,∞) = [a,∞);
with some positive a. Note that in case (ii) SΦ is invertible on (0, a),

and in cases (iii) and (iv) SΦ is invertible on (a,∞). Choose γ ∈ (1, i(Φ))
arbitrarily. Then, by (2.7),

Φ(λt) ≤ Cγ · λγ · Φ(t), t ≥ 0, λ ∈ (0, 1). (3.8)

Let ε be the constant from AΦ. Choose β ≤ ε/2 in order that

C% · 2γ · Cγ ·
(

β
ε

)γ−1

≤ 1
2
, (3.9)

where C% is an AΦ constant for the weight %. Given fixed I, suppose that
βvI is admissible for S−1

Φ . We may then conclude from AΦ that

C%

RΦ(εvI)
≥ 1
|I|

∫

I

dx
S−1

Φ (v(x))
≥ |I\Eβ |

|I|
1

S−1
Φ (βvI)

. (3.10)

Hence, by (3.10), (2.6), (3.8) and (3.9),

|I\Eβ |
|I|

≤ C%
S−1

Φ (βvI)
RΦ(εvI)

≤ 2C%
RΦ(2βvI)
RΦ(εvI)

=
C%ε
β

Φ( 2β
ε εvI)

Φ(εvI)
≤

≤ C%2γCγ
(β
ε
)γ−1 ≤ 1

2
, (3.11)

or |Eβ | > 1
2 |I|.

Now suppose that βvI is not admissible for S−1
Φ . This is possible only in

case (iii) or (iv) if βvI ≤ a. But then, of course, Eβ = I, and the desired
estimate is trivial. Therefore, v ∈ A∞.

Now, as known [5], v satisfies the reverse Hölder inequality, that is, there
are positive C and δ such that





1
|I|

∫

I

v1+δ(x) dx





1/(1+δ)

≤ C
|I|

∫

I

v(x) dx (3.12)

for all I.
We define the function Φ0 by means of its complementary function: put

SΦ0 = S1+δ
Φ , that is, Φ̃0(t) = t · [SΦ(t)]1+δ .

Then, obviously,
I(Φ̃0) = I(Φ̃) + δ(I(Φ̃)− 1).
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The case I(Φ̃) = 1 (that is, i(Φ) = ∞) was already excluded at the begin-
ning. On the other hand, I(Φ̃) cannot be ∞, since Φ̃ ∈ ∆2. Consequently,
I(Φ̃0)>I(Φ̃), which is of course equivalent to i(Φ0) < i(Φ).

It remains to prove % ∈ AΦ0 . We start by rewriting (3.12) as

ε
2C





1
|I|

∫

I

v1+δ(x) dx





1/(1+δ)

≤ ε
2|I|

∫

I

v(x) dx. (3.13)

Suppose first that everything is admissible for S−1
Φ . Then, as S−1

Φ is nonde-
creasing,

S−1
Φ







ε
2C





1
|I|

∫

I

v1+δ(x) dx





1/(1+δ)






≤ S−1
Φ





ε
2|I|

∫

I

v(x) dx



 . (3.14)

Note that S−1
Φ0

(t) = S−1
Φ (t1/(1+δ)) for admissible t. So, (3.14) gives

S−1
Φ0





( ε
2C

)1+δ 1
|I|

∫

I

v1+δ(x) dx



 ≤

≤ S−1
Φ





ε
2|I|

∫

I

v(x) dx



 , (3.15)

which by means of (2.5) and (2.6) yields

RΦ0





( ε
2C

)1+δ 1
|I|

∫

I

SΦ0

(

1
α%(x)

)

dx



 ≤

≤ 2RΦ





ε
|I|

∫

I

SΦ

(

1
α%(x)

)

dx



 . (3.16)

Now assume that it was not possible to apply S−1
Φ in (3.13). This can

happen only in case (iii) or (iv) and

ε
2C





1
|I|

∫

I

v1+δ(x) dx





1/(1+δ)

< a. (3.17)
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Note that in the cases (iii) or (iv) it is for all t SΦ(t) ≥ a, that is, SΦ0(t) ≥
a1+δ, which is equivalent to RΦ0(t) = 0 for t ≤ a1+δ. Thus, in this case
(3.16) holds trivially. It is clear that from AΦ and (3.16) AΦ0 already follows.
The proof is finished. �

The method of the proof of Lemma 2 is the same as that in [11], the only
slight change being that we have replaced derivatives of Φ and Φ̃ by RΦ and
SΦ. Actually, our proof shows that the condition Φ̃ ∈ ∆2 is not required
as an assumption, and allows us to insert it as part of the statement of the
strong maximal theorem.

Let us turn our attention to the Hilbert transform.
It follows easily from the Kerman – Torchinsky theorem that if Φ ∈ ∆2

and Φ̃ ∈ ∆2, then % ∈ AΦ is necessary and sufficient for
∫

Φ(|Hf |)% ≤ C
∫

Φ(C|f |)%. (3.18)

Indeed, for sufficiency we use Coifman’s inequality [4]
∫

Φ(|Hf |)% ≤ C
∫

Φ(Mf)%

which is valid provided that Φ ∈ ∆2 and % ∈ A∞. However, Φ ∈ ∆2 is an
assumption, and % ∈ A∞ follows from % ∈ AΦ [9].

It may be of some interest that both Φ ∈ ∆2 and Φ̃ ∈ ∆2 are also
necessary for (3.18). We have the following characterization of the strong
type inequality for the Hilbert transform.

Theorem 2. The inequality

∞
∫

−∞

Φ(|Hf(x)|)%(x) dx ≤ C

∞
∫

−∞

Φ(|f(x)|)%(x) dx (3.19)

holds if and only if Φ ∈ ∆2, Φ̃ ∈ ∆2, and % ∈ AΦ.

We shall make use of the following assertion.

Lemma 3. Let us define the operator

G%f(x) =
1

%(x)
·H(f%)(x).

Then the following statements are equivalent.
(i) There is C such that

∞
∫

−∞

Φ(|Hf(x)|)%(x) dx ≤ C

∞
∫

−∞

Φ(C|f(x)|)%(x) dx;
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(ii)There is C such that

∞
∫

−∞

Φ̃(|G%f(x)|)%(x) dx ≤ C

∞
∫

−∞

Φ̃(C|f(x)|)%(x) dx. (3.20)

Proof of Theorem 2. The “if part” has already been established. It thus
remains to show Φ ∈ ∆2 and Φ̃ ∈ ∆2. It was proved in [9] that even the
weak type inequality with Hilbert transform implies Φ ∈ ∆2 and % ∈ AΦ.

It remains to prove Φ̃ ∈ ∆2. By Lemma 3, (3.19) is equivalent to (3.20).
Of course, (3.20) implies the weak type inequality

%({|G%f | > λ}) · Φ(λ) ≤ C

∞
∫

−∞

Φ(Cf)%. (3.21)

Take K positive such that the set E = {K−1 ≤ %(x) ≤ K} has positive
measure, and for any λ > 0 define f = λ

2C χE0 , where E0 is any bounded
subset of E. Inserting f into (3.21) we get

Φ̃(λ) ≤ C
%(E0)

%({|G%f | > 2C})
· Φ̃(

λ
2
),

in other words, Φ̃ ∈ ∆2. The idea is due to A. Gogatishvili [8]. �
To prove Lemma 3 we employ the following result of D. Gallardo which

was communicated to the author personally [7]. We give a sketch of the
proof since as far as we know the author has not published it. When this
manuscript was written, we learned that the same assertion was proved in
a preprint by Bloom and Kerman ([3], Proposition 2.5).

Lemma 4. Let T be a positively homogeneous operator. Then the mod-
ular estimate

∫

Φ(|Tf(x)|)%(x) dx ≤ C
∫

Φ(C|f(x)|)%(x) dx

is equivalent to the existence of C such that for all ε and f the norm in-
equality ‖Tf‖Φ,ε% ≤ C‖f‖Φ,ε% holds.

Proof of Lemma 4. Let the norm inequality be satisfied with C in-
dependent of ε and f . Then, by the definition of the Luxemburg norm,
∫

Φ((C‖f‖Φ,ε%)−1|Tf(x)|)ε%(x) dx ≤ 1. Fix f , a function with finite mod-
ular, and put ε = (

∫

Φ(C|f |)%)−1 > 0. Then ‖Cf‖Φ,ε% = 1, and so
∫

Φ(|Tf |)ε% =
∫

Φ
(

C|Tf(x)|
C‖Cf‖Φ,ε%

)

ε% ≤ 1.

Inserting ε, we are done. The converse implication is obvious. �
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Proof of Lemma 3. By Lemma 4, (i) is equivalent to

‖Hf‖Φ,ε% ≤ C‖f‖Φ,ε%, all ε.

That is,

C ≥ sup
‖f‖Φ,ε%≤1

‖Hf‖Φ,ε% =

= sup
‖f‖Φ,ε%≤1

sup
‖g‖Φ̃,ε%≤1

∞
∫

−∞

|Hf(x)|g(x)ε%(x) dx =

= sup
‖g‖Φ̃,ε%≤1

sup
‖f‖Φ,ε%≤1

∞
∫

−∞

|f(x)| · 1
%(x)

|H(g%)(x)|ε%(x) dx =

= sup
‖g‖Φ̃,ε%≤1

‖G%g‖Φ̃,ε%,

which is, again by Lemma 4, equivalent to (ii). �

4. The Hilbert transform for odd functions. In this section we
shall make use of the measure ν defined on (0,∞) by dν(x) = x dx.

We say that % ∈ Ao
Φ if either Φ /∈ B0 ∪ B∞ and there exist positive C, ε

such that

sup
α,I





α
ν(I)

∫

I

%(x)
x

dν



 RΦ





ε
ν(I)

∫

I

SΦ

(

ε
x

α%(x)

)

dν



 ≤ C

or Φ ∈ B0 ∪B∞ and % ∈ Ao
1, that is,

%(I)
ν(I)

≤ Cess infI
%(x)
x

.

We say that % ∈ Eo
Φ if there exist positive C, ε such that

sup
I

1
ν(I)

∫

I

SΦ

(

ε
x

%(x)
%(I)
ν(I)

)

dν ≤ C.

Remark. Obviously, % ∈ Ao
1 implies % ∈ Ao

Φ for any Φ. Further, putting
α = ν(I)

%(I) we obtain that % ∈ Ao
Φ implies % ∈ Eo

Φ for any Φ.

We shall prove the following theorems.
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Theorem 3. The strong type inequality

∞
∫

0

Φ(|Hof(x)|)%(x) dx ≤ C

∞
∫

0

Φ(C|f(x)|)%(x) dx (4.1)

holds with C independent of f if and only if Φ ∈ ∆2, Φ̃ ∈ ∆2, and % ∈ Ao
Φ.

Theorem 4. The weak type inequality

%({|Hof | > λ}) · Φ(λ) ≤ C

∞
∫

0

Φ(C |f(x)|) %(x) dx (4.2)

holds with C independent of f and λ if and only if Φ ∈ ∆2, and % ∈ Ao
Φ.

Theorem 5. Let Φ ∈ ∆0
2. Then the extra–weak type inequality

%({|Hof | > λ}) ≤ C

∞
∫

0

Φ(
C |f(x)|

λ
) %(x) dx (4.3)

holds with C independent of f and λ if and only if % ∈ Eo
Φ.

The following auxiliary assertion is a modification of Lemma 1 from [1].

Lemma 5. Define

σ(x) =
%(

√

|x|)
2
√

|x|
, x 6= 0.

Then % ∈ Ao
Φ if and only if σ ∈ AΦ, and % ∈ Eo

Φ if and only if σ ∈ EΦ.

Proof of Lemma 5. Let I = (a, b), a > 0, and put J = (
√

a,
√

b). Easily,
|I| = 2ν(J) and σ(I) = %(J). Therefore,

ασIRΦ





γ
|I|

∫

I

SΦ

(

1
ασ(x)

)

dx



 =

=
α%(J)
2ν(J)

RΦ





γ
ν(J)

∫

J

SΦ

(

2y
α%(y)

)

dν(y)



 ,

and analogously
∫

I

Φ̃
(

ε
σI

σ(x)

)

σ(x)
σ(I)

dx =
∫

J

Φ̃
(

ε
y%(J)

%(y)ν(J)

)

%(y)
%(J)

dy.
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Similar argument holds for b < 0, and, in the remaining case, we split the
interval into two. �

Proof of Theorem 4. Necessity. First we claim that if (4.3) holds, then %
is a doubling weight.

Let I = (a, b), 0 < a < b < ∞. Assume that supp f ⊂ I. Since
ν(I∗) = 2b(b− a) > (b2 − a2),

Hof(x) ≥ 1
πν(I∗)

∫

I

f(y) dν(y), x ∈ I ′. (4.4)

Now, easily 4ν(I) > ν(I∗), so inserting f = χI in (4.4) yields HoχI(x) >
(4π)−1 for all x ∈ I ′. This together with (4.3) leads to %(I ′) ≤ C%(I). By
symmetry,

C−1%(I) ≤ %(I ′) ≤ C%(I), (4.5)

and the doubling condition follows.
Now we shall show, using again the idea from [8], that Φ ∈ ∆2. Given λ,

set f = (2C)−1λχI , where C is from (4.2) and I is an appropriate interval.
It then follows from (4.2) that

Φ(λ) ≤ C
%(I)

%({|HoχI | > 2C})
Φ(λ/2), λ > 0,

that is, Φ ∈ ∆2.
It remains to show that % ∈ Ao

Φ. Given α > 0, and I = (a, b), put

f = C−1SΦ

(

γ
α

x
%(x)

)

χI(x),

where C is from (4.2), and

λ =
1

2πν(I∗)

∫

I

f dν.

Then by (4.4), (2.1), (4.2) and (2.3)

%(I ′) · Φ(λ) ≤ C
∫

I

ΦSΦ

(

γ
α

x
%(x)

)

%(x) dx ≤ Cγα−1
∫

I

f dν,

or, by (4.5),
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α%(I)
ν(I)

Φ





1
8πCν(I)

∫

I

SΦ

(

γ
α

x
%(x)

)

dν(x)



 ≤

≤ Cγ
ν(I)

∫

I

SΦ

(

γ
α

x
%(x)

)

dν(x) . (4.6)

Denote A =
∫

I f dν. Obviously, A > 0. Assume that A = ∞. Then
∫

I
Φ̃( γ

α
x

%(x) )%(x)dx = ∞, and there must exist a function g ∈ LΦ,%(I) such

that

∞ =
∫

I

γ
α

x
%(x)

g(x) %(x) dx =
γ
α

∫

I

g dν.

This and (4.4) would give Ho(εg)(x) = ∞ for all x ∈ I ′ and ε > 0 and, by
(4.2),

%(I ′)Φ(λ) ≤ C
∫

I

Φ(εCg(x))%(x) dx, λ, ε > 0.

Since g ∈ LΦ,%, there must be ε such that the last integral is finite, and so
it follows that %(I ′) = 0. However, since % is doubling and nontrivial, this
is impossible. Hence 0 < A < ∞ and we can divide both sides of (4.6) by
ν(I)−1A to get % ∈ Ao

Φ. �
Sufficiency. By Lemma 5, % ∈ Ao

Φ implies σ ∈ AΦ. We thus have from
Theorem A

σ({Hg > λ}) · Φ(λ) ≤ C

∞
∫

−∞

Φ(C|g(x)|)σ(x) dx.

For given f on (0,∞) put g(x) = f(
√

x) for x > 0, and 0 elsewhere. Then
Hg(x) = (Hof)(

√
x) [1], and therefore

%({x > 0, |Hof(x)| > λ}) ≤ σ({x ∈ R, |Hg(x)| > λ}) ≤

≤ C
Φ(λ)

∞
∫

0

Φ(Cf(y))%(y) dy. �

Proof of Theorem 3. Necessity. By Theorem 4, % ∈ AΦ and Φ ∈ ∆2 are
necessary even for the weak type inequality. It remains to prove Φ̃ ∈ ∆2. In
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the same way as in Lemma 3 and Lemma 4 we can prove that (4.1) implies

%({ 1
%(x)

|He(f%)(x)| > λ})Φ̃(λ) ≤ C

∞
∫

0

Φ̃(C|f(x)|)%(x) dx.

For the definition of He see (1.7). Putting f = λ
2C χE0 similarly as in the

proof of Lemma 3 we get Φ̃ ∈ ∆2.
Sufficiency. By Lemma 5 and Lemma 2, % ∈ Ao

Φ implies σ ∈ AΦ0 with
i(Φ0) < i(Φ). By Theorem A, σ ∈ AΦ0 and Φ0 ∈ ∆2 imply the weak type
inequality

σ({x ∈ R; Hg(x) > λ})Φ0(λ) ≤ C

∞
∫

−∞

Φ0(Cg(x))σ(x) dx

for every g. Given f on (0,∞), we put g = f(
√

x) ·χ{x>0}, x ∈ R. A change
of variables then gives

%({x > 0; Hof > λ})Φ0(λ) ≤ C

∞
∫

0

Φ0(Cf(x))%(x) dx,

which yields the assertion by the usual interpolation argument. �
Proof of Theorem 5. Necessity. First assume that Φ /∈ B∞. Note that

then SΦ is finite on (0,∞). Fix k ∈ N and an interval I, put Ik = {x ∈
I, x ≤ k%(x)}, and define

h(x) = hk(x) = SΦ

(

ε
x

%(x)
%(I)
ν(I)

)

χIk(x)

with ε to be specified later. Put

βI =
1

ν(I)

∫

I

h dν.

Now, assume that K is the biggest of the constants C from (2.4), (4.3),
and (4.5). We then have from (4.5) that %(I) ≤ K%({|H0h| ≥ (4π)−1βI}).
Therefore, by (4.3) with f = h and λ < (4π)−1βI ,

∫

Ik

Φ̃
(

ε
x

%(x)
%(I)
ν(I)

)

%(x) dx = ε
%(I)
ν(I)

∫

Ik

SΦ
(

ε
x

%(x)
%(I)
ν(I)

)

dν =

= ε%(I)βI ≤ 4πKε%(I) + δI ,
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where δI = 0 if βI ≤ 4πK, and

δI = K2εβI

∫

Ik

Φ
(4πK

βI
h(x)

)

%(x) dx, if βI > 4πK.

In any case, using (2.4) with λ = 4πK/βI we get

∫

Ik

Φ̃
(

ε
x

%(x)
%(I)
ν(I)

)

%(x) dx ≤

≤ 4πKε%(I) + 4πK3ε
∫

Ik

Φ̃
(

ε
x

%(x)
%(I)
ν(I)

)

%(x) dx.

Now, since SΦ is finite, we have

∫

Ik

Φ̃
(

ε
x

%(x)
%(I)
ν(I)

)

%(x) dx = ε
%(I)
ν(I)

∫

Ik

SΦ
(

ε
x

%(x)
%(I)
ν(I)

)

dν ≤

≤ ε%(I)SΦ
(

εk
%(I)
ν(I)

)

< ∞,

and hence we can put ε < (4πK3)−1 and subtract to get
∫

Ik

Φ̃
(

ε
x

%(x)
%(I)
ν(I)

)

%(x) dx ≤ 4πKε
1− 4πK3ε

%(I),

which yields % ∈ Eo
Φ sonce the constant on the right does not depend on k.

If Φ ∈ B∞, then Φ(t) ≤ Ct for all t and therefore, inserting f = χE and
λ = ν(E)/(2πν(I∗)) into (4.3) we obtain

%(I) ≤ C%(E)Φ
(

C
ν(I∗)
ν(E)

)

≤ C%(E)
ν(I∗)
ν(E)

,

that is, % ∈ Ao
1. Therefore, in this case % ∈ Ao

Φ for any Φ (see Remark
above).

Sufficiency. By Lemma 5, % ∈ Eo
Φ implies σ ∈ EΦ , whence, using

Theorem B, we have

σ({Hg > λ}) ≤ C

∞
∫

−∞

Φ(
C|g(x)|

λ
)σ(x) dx.

The same argument as in the proof of Theorem 4 now leads to the
assertion. �



96 LUBOŠ PICK
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