General Mathematics Vol. 18, No. 3 (2010), 19—28

Generalized g-Taylor’s series and applications

S.D. Purohit, R.K. Raina

Abstract

A generalized ¢-Taylor’s formula in fractional g-calculus is established
and used in deriving certain ¢-generating functions for the basic hyper-
geometric functions and basic Fox’s H-function.
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1 Introduction

In the theory of g-series [3], the g¢-shifted factorial for a real (or complex)
number a is defined by

n—1

(1) (asq)o =1, (a;q)n = [J (1 - aq’) (neN; |qf <1).
1=0

Also, the g-analogue of (z £y)" ([8]) is given by

(2) (:C + y>(n) =(z+ y)n _ xn(:Fy/x;q)n — [ n ] qk’(k—l)/Q (:l:y/x)k

L Received 1 February, 2009
Accepted for publication (in revised form) 5 April, 2009

19



20 S.D. Purohit, R.K. Raina
(neN; g <1),
where the g-binomial coefficient is defined by

ol @Dk vk k(-1)/2
(3) [k] @ 10 '

For a bounded sequence of real (or complex) numbers {A,}, let f(z) =

> Apx"™, then ([4]; see also [2, p. 502])

(4) fllzxy)]= Y A" (Fy/z;q)n.

The g-gamma function (cf. [3]) is defined by

(5)
. (Q§Q)oo . <Q;Q)a—1 a 1 e .
MO = gt T gt @70 Th R <)

and in terms of (2) and (5), the Riemann-Liouville fractional g¢-differential
operator of a function f(x) is defined by ([1])

0 DE @) = 5 [ =t 00

q(—
(R(pn) < 0;]q] < 1).

In particular, for f(z) = 2P, (6) gives

(7) D {aP} = - I'y(1+p)

Tip_m © " B> -1 R <0)

The generalized basic hypergeometric series (cf. Slater [11]) is given by

Ay, - ,0r ; 0

(alv"' 7a7“QQ)n
8 (I) ’x — $n7
(8) r®s . ‘q 7;)((]7()17...755;(])”

where for convergence, |¢| <1 (|]z| < 1if r = s+ 1; and for any x: if r < s).
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Saxena et al [9] introduced a basic analogue of the H-function in terms of
the Mellin-Barnes type basic contour integral in the following manner:

L . (ahal)a"' ,(GA,OJA)
AB TR (b, ), (DB, BB)

mi ni
[T G(¢%=P%) T] G(g' %) ma*
. 1

o ]. / ]:1 j= ds
S 2mi Jo B L A o . ’
[T G(g%tas) T G(g%*) G(gt=*)sinms
j:m1+1 j:n1+1
where
(10) G =[[{a-¢™} = ——,
o (4% @)oo

and 0 <my < B; 0 <ny < A; aj and 5 are all positive integers. The contour
C' is a line parallel to R(ws) = 0, with indentations, if necessary, in such a
manner that all the poles of G(¢% %) (1 < j < my) are to its right, and those
of G(q'=%%%) (1 < j < ny) are to the left of C. The basic integral converges
if R [s log(x) — logsinms] < 0, for large values of |s| on the contour C, that is
if [{arg(z) — ws wy tlog | }| < m, where |q| < 1, logg = —w = — (w1 + iws),
wy and wo being real.

Foroj=0=1((=1,---,4; i=1,---,B), (9) reduces to the g-analogue
of the Meijer’s G-function [9] defined by

)

al,---,aA]

Gmh”l x5 q
AB by, L bp

mi n1
(11) [1G(%*) I1 G(g'~***)ma®
N 271 C B A . ’
[ G(g"%) I G(g%*) G(g'~*)sinTs
j=mi+1 j=ni1+1

where 0 < mj; < B; 0 <n; <A and R|[s log(x) — logsinms] < 0.

The object of this paper is to derive a generalized g-Taylor’s formula in
fractional g-calculus using Riemann-Liouville fractional g-differential operator
(6). The usefulness of the main result is exhibited by deriving certain g-
generating functions for the basic hypergeometric function ,®4(.) and for the
basic analogue of the Fox’s H-function.
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2 Main result

In this section, we prove the following theorem which may be regarded as a
generalization of the ¢g-Taylor’s formula.

Theorem 1 Let n be an arbitrary complex number and R(p) > —1, then
(n+n)(n+n—1)/2 £t

T e @)

12)  (z+1), fl(z +tq?)] Z a

n=—oo

valid for all t where |t/x| <1, |t¢P/x| <1 and |q| < 1.

Proof. Making use of (4) in conjunction with (2), the left-hand side of (12)
(say L) gives
L= Apa™(—t/z;q)p(—tq"/7;q)m

m=0

(13) = 3 Ana? "tz )i

On the other hand, the right-hand side (say R) of (12) leads to
(n+n)(nt+n—1)/2 yntn

Z : Ty(n+n+1) W]{ZA ﬂm}'

n=—0oo

Using the fractional g-derivative formula (6), the right-hand side of (12) be-
comes

(14)
O gntn(ntn-1)/2 ntn
R = q (t/l‘) Z Am Fq(p +m + 1) prrm‘
W Lo(n+n+1) L= T Tg(p+m+1-n—n)

On interchanging the order of summations and carring out elementary simpli-
fications, we get

(1 s gAMAn=1)/2 (1 | z)n
APt (¢ ,
Ly( 77+1 Z RCE Z (@ @Qn (P q) ey

n=—0oo

(15) R=

which in view of the g-identities [3, pp. 233-234]:

(a0)-n %W—W, (@5 D = (@ n(ag"; Q)i
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yields

(1-9)" &

(16) r= Ty(n+ 17; D At (=gt [2) (g TP )y

i (" P @n (—tgPT" )"
Mt (@*5q)n

Applying the Ramanujan’s summation formula (cf. [3, 11.29, p. 239]), viz.

o)

b ) — (@ @n n _ (4 9)o0(b/a: @)oo (023 4)oc(9/ a7 G) 0
(7 whilabioz) = 3 (b 9)n (b3 @)oo (4/5 @)oo (25 @)oo (b/ 023 @)oo

we find that (16) reduces to

n=—0oo

19 = gy S Ane s

(@ @)oo (@ TP @)oo (=147 /25 @) oo (—q' "2/ ¢) o
(@7 @)oo (qHT™TP; @)oo (—tq™ P /25 @) oo (—q2 /15 @) 0
which implies that

(19) R=>" Ama”™(~t/z;q)ppm = L.

m=0

This completes the proof of the theorem.

It may be observed that a generalized Taylor’s formula involving the Riemann-
Liouville type operator was obtained earlier by Raina [6, p. 81, eqn. (2.1)].
If we set 7 = 0 in the above theorem, we get the following corollary (giving a
simple form of ¢g-Taylor’s formula).

Corollary 1 If R(p) > —1, then

n(n— 1/2tn

(20) (@ +1), fl(x+tg) Z 1 n Aaf(2)}

n+1

valid for all t where |t/z| < 1, |tgP /x| <1 and |g| < 1.

A similar type of ¢-Taylor’s formula was also given by Jackson [5].
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3 Applications of the main result

The generalized fractional ¢-Taylor’s formula established in the previous sec-
tion would find many applications giving ¢-generating functions and series
summation for the basic functions.

To illustrate the applications, we first apply formula (12) to obtain the series

summation (or g-generating function) for the basic hypergeometric function
r®s(---), defined by (8).

Let us set
ay, Ly Qr
f(l') = P q, px
b17 : abs )
n (12), then we get
A, =5 Gr s (n+n)(n+n—1)/2 gn+n
q t
(21) (z+1)p r s q, p(z + tq¥) Z T
b be n=—eo
A, ,Qr
D;Lj]_n P D q, px
bla ) bS ;

ag, - ,ar
L,(p+1) _
22 D), S 2P, ® o __tdPTY e
) y0s
at, - 7a7‘aqp+1 ;
T+1(I)S+1 q, pT P
blv"' ’b&qp-i-l—)\ ;

valid for all values of A, the series relation (21) leads to

A1, - ,ar

q
(23) (z+1)p r s q, p(z + tq¥) Z
b b neo

(n+n)(n+n—1)/2 tntn

Lyn+n+1)
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1 .
ay, - - 7a7‘7qp+ y
P P q, pr
1-n— .
bl)"' 7b87qp+ e y

L(p+1)
Lyp+1—n—mn)

On replacing t by —zt in (23), we arrive at the following g-generating function.

a17... 7a/T;tqp ; 0o .
: taP ) tn
(24> (t7 Q)p 'r’—‘rl(I)s q, pT — Z (q ’q)7'l+77 ( q )
b.---.b ) W= (¢; @)ntn
) s Us 5
ai, -, ap, gt :
r1 Pt 4Pz |,
b17 e 7b$7 qp+17nin 3

provided that both the sides exist.
For n =0, (21) yields the g-generating function

Ay, -« 7a7“7tqp X o) —p
. t PN
(25) (t@)p r11Ps x| =3 (q ,(q?n)( ")
bla"',bs ; n=0 q;9)n
alj... ’ar,qurl ;
7’+1(I)5+1 q, pT
by, - 7bsjqp-ﬂ-l—n :

Further, if we put r = s = 0, then (25) yields the following series summation:
(26)

) o.9] — )
q P q)n (tgP)"
(t;a)p 1%0 G.pr | =) ( )" U)" g, g, px
(@ 9)n FHon

_ . n=0
)

The g-extensions of the Fox’s H-function and Meijer’s G-function defined,
respectively by (9) and (11) in terms of the Mellin-Barne’s type of basic in-
tegrals possess the advantage that a number of g-special functions (including
the basic hypergeometric functions) happen to be the particular cases of these
functions. For various basic special functions which are deducible from basic
analogue of Fox’s H-function or Meijer’s G-function, one may refer to the pa-
per of Saxena et al [10]. We apply ¢-Taylor’s formula (12) to obtain a series
summation (or g-generating function) for the basic Fox’s H-function.
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(a, )
(b, 5)

n (12), then using the fractional g-derivative formula for H-function of Yadav

Let us choose

fla) = Hy5" [px g

and Purohit [13], we arrive at the following result:

(27)
(n+n)(nt+n—1)/2 .p (t/x)nJrn

q
] Z Lo(n+n+1)(1 —q)"*"

n=—0oo

(x+1)p HAE" |p(x+td");q

mi,ni+1 .
Hp1 B [va q

(_pa 1)a (av Ot)
b,8),(n+n-p,1) |’

where 7 is an arbitrary complex number, 0 < m; < B; 0 < n; < A and the
H-function satisfies the existence conditions as stated with (9).

A generalized Taylor’s formula involving Weyl type fractional derivatives
was also used (see Raina [7]) to derive generating function relationship for the
Fox’s H-function.

Foraj=0p=1(G(=1,---,A; i=1,---,B), the result (27) reduces to a
g-generating function for the basic analogue of G-function given by

0/17 .« .. ,aA

b, b

i gAM (=172 gp (¢ /g)ntn miml |
Ty(n+n+1)(1—q)ntn —A+LBH e

(28) (x+t)p GAE" | p(x +tq")iq

—p,ai,c - ,04
blu”' 7bB7n+77_p

We conclude this paper by remarking that several series summations and
generating functions to various basic (or g-analogue) special functions can be
deduced from the results (24) and (27).
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