Generalized q-Taylor's series and applications ¹

S.D. Purohit, R.K. Raina

Abstract

A generalized q-Taylor's formula in fractional q-calculus is established and used in deriving certain q-generating functions for the basic hypergeometric functions and basic Fox's H-function.

2010 Mathematics Subject Classification: 33D45, 26A33 and 33D90. **Key words and phrases:** Riemann-Liouville fractional q-differential operator, q-Taylor's formula, Basic hypergeometric functions, Basic Fox's H-function.

1 Introduction

In the theory of q-series [3], the q-shifted factorial for a real (or complex) number a is defined by

(1)
$$(a;q)_0 = 1,$$
 $(a;q)_n = \prod_{i=0}^{n-1} (1 - aq^i)$ $(n \in \mathbb{N}; |q| < 1).$

Also, the q-analogue of $(x \pm y)^n$ ([8]) is given by

(2)
$$(x \pm y)^{(n)} = (x \pm y)_n = x^n (\mp y/x; q)_n = x^n \sum_{k=0}^n \begin{bmatrix} n \\ k \end{bmatrix}_q q^{k(k-1)/2} (\pm y/x)^k$$

Accepted for publication (in revised form) 5 April, 2009

¹Received 1 February, 2009

$$(n \in \mathbb{N}; |q| < 1),$$

where the q-binomial coefficient is defined by

(3)
$$\left[\begin{array}{c} n \\ k \end{array} \right]_q = \frac{(q^{-n};q)_k}{(q;q)_k} (-q^n)^k q^{-k(k-1)/2}.$$

For a bounded sequence of real (or complex) numbers $\{A_n\}$, let $f(x) = \sum_{n=-\infty}^{\infty} A_n x^n$, then ([4]; see also [2, p. 502])

(4)
$$f[(x \pm y)] = \sum_{n=-\infty}^{\infty} A_n x^n (\mp y/x; q)_n.$$

The q-gamma function (cf. [3]) is defined by

5)

$$\Gamma_q(a) = \frac{(q;q)_{\infty}}{(q^a;q)_{\infty}(1-q)^{a-1}} = \frac{(q;q)_{a-1}}{(1-q)^{a-1}} \quad (a \neq 0, -1, -2, \dots; |q| < 1),$$

and in terms of (2) and (5), the Riemann-Liouville fractional q-differential operator of a function f(x) is defined by ([1])

(6)
$$D_{x,q}^{\mu} \{f(x)\} = \frac{1}{\Gamma_q(-\mu)} \int_0^x (x - tq)_{-\mu - 1} f(t) d(t;q)$$
$$(\Re(\mu) < 0; |q| < 1).$$

((,)

In particular, for $f(x) = x^p$, (6) gives

(7)
$$D_{x,q}^{\mu} \{x^p\} = \frac{\Gamma_q(1+p)}{\Gamma_q(1+p-\mu)} x^{p-\mu} \quad (\Re(p) > -1; \Re(\mu) < 0).$$

The generalized basic hypergeometric series (cf. Slater [11]) is given by

(8)
$$r\Phi_s \begin{bmatrix} a_1, \cdots, a_r & ; \\ & q, x \\ b_1, \cdots, b_s & ; \end{bmatrix} = \sum_{n=0}^{\infty} \frac{(a_1, \cdots, a_r; q)_n}{(q, b_1, \cdots, b_s; q)_n} x^n ,$$

where for convergence, |q| < 1 (|x| < 1 if r = s + 1; and for any x: if $r \le s$).

Saxena $et\ al\ [9]$ introduced a basic analogue of the H-function in terms of the Mellin-Barnes type basic contour integral in the following manner:

$$H_{A,B}^{m_{1},n_{1}}\left[x;q \middle| \begin{array}{c} (a_{1},\alpha_{1}),\cdots,(a_{A},\alpha_{A}) \\ (b_{1},\beta_{1}),\cdots,(b_{B},\beta_{B}) \end{array}\right]$$

$$=\frac{1}{2\pi i} \int_{C} \frac{\prod\limits_{j=1}^{m_{1}} G(q^{b_{j}-\beta_{j}s}) \prod\limits_{j=1}^{n_{1}} G(q^{1-a_{j}+\alpha_{j}s})\pi x^{s}}{\prod\limits_{j=m_{1}+1}^{B} G(q^{1-b_{j}+\beta_{j}s}) \prod\limits_{j=n_{1}+1}^{A} G(q^{a_{j}-\alpha_{j}s}) G(q^{1-s})sin\pi s} ds,$$

where

(10)
$$G(q^{\alpha}) = \prod_{n=0}^{\infty} \left\{ (1 - q^{\alpha+n}) \right\}^{-1} = \frac{1}{(q^{\alpha}; q)_{\infty}},$$

and $0 \le m_1 \le B$; $0 \le n_1 \le A$; α_j and β_j are all positive integers. The contour C is a line parallel to $\Re(\omega s) = 0$, with indentations, if necessary, in such a manner that all the poles of $G(q^{b_j - \beta_j s})$ $(1 \le j \le m_1)$ are to its right, and those of $G(q^{1-a_j+\alpha_j s})$ $(1 \le j \le n_1)$ are to the left of C. The basic integral converges if $\Re[s \log(x) - \log sin\pi s] < 0$, for large values of |s| on the contour C, that is if $|\{arg(x) - \omega_2 \ \omega_1^{-1}log |x|\}| < \pi$, where |q| < 1, $logq = -\omega = -(\omega_1 + i\omega_2)$, ω_1 and ω_2 being real.

For $\alpha_j = \beta_i = 1$ $(j = 1, \dots, A; i = 1, \dots, B)$, (9) reduces to the q-analogue of the Meijer's G-function [9] defined by

$$G_{A,B}^{m_{1},n_{1}} \left[x; q \middle| \begin{array}{c} a_{1}, \cdots, a_{A} \\ b_{1}, \cdots, b_{B} \end{array} \right]$$

$$= \frac{1}{2\pi i} \int_{C} \frac{\prod_{j=1}^{m_{1}} G(q^{b_{j}-s}) \prod_{j=1}^{n_{1}} G(q^{1-a_{j}+s}) \pi x^{s}}{\prod_{j=m_{1}+1}^{B} G(q^{1-b_{j}+s}) \prod_{j=n_{1}+1}^{A} G(q^{a_{j}-s}) G(q^{1-s}) sin \pi s} ds,$$

where $0 \le m_1 \le B$; $0 \le n_1 \le A$ and $\Re [s \log(x) - \log \sin \pi s] < 0$.

The object of this paper is to derive a generalized q-Taylor's formula in fractional q-calculus using Riemann-Liouville fractional q-differential operator (6). The usefulness of the main result is exhibited by deriving certain q-generating functions for the basic hypergeometric function $_r\Phi_s(.)$ and for the basic analogue of the Fox's H-function.

2 Main result

In this section, we prove the following theorem which may be regarded as a generalization of the q-Taylor's formula.

Theorem 1 Let η be an arbitrary complex number and $\Re(p) > -1$, then

(12)
$$(x+t)_p f[(x+tq^p)] = \sum_{n=-\infty}^{\infty} \frac{q^{(n+\eta)(n+\eta-1)/2} t^{n+\eta}}{\Gamma_q(n+\eta+1)} D_{x,q}^{n+\eta} \{x^p f(x)\},$$

valid for all t where |t/x| < 1, $|tq^p/x| < 1$ and |q| < 1.

Proof. Making use of (4) in conjunction with (2), the left-hand side of (12) (say L) gives

$$L = \sum_{m=0}^{\infty} A_m x^{p+m} (-t/x; q)_p (-tq^p/x; q)_m$$

(13)
$$= \sum_{m=0}^{\infty} A_m x^{p+m} (-t/x; q)_{p+m}.$$

On the other hand, the right-hand side (say R) of (12) leads to

$$R = \sum_{n=-\infty}^{\infty} \frac{q^{(n+\eta)(n+\eta-1)/2} t^{n+\eta}}{\Gamma_q(n+\eta+1)} D_{x,q}^{n+\eta} \left\{ \sum_{m=0}^{\infty} A_m x^{p+m} \right\}.$$

Using the fractional q-derivative formula (6), the right-hand side of (12) becomes

$$R = \sum_{n=-\infty}^{\infty} \frac{q^{(n+\eta)(n+\eta-1)/2} (t/x)^{n+\eta}}{\Gamma_q(n+\eta+1)} \sum_{m=0}^{\infty} A_m \frac{\Gamma_q(p+m+1)}{\Gamma_q(p+m+1-n-\eta)} x^{p+m}.$$

On interchanging the order of summations and carring out elementary simplifications, we get

(15)
$$R = \frac{(1-q)^{-\eta}}{\Gamma_q(\eta+1)} \sum_{m=0}^{\infty} A_m x^{p+m} (t/x)^{\eta} \sum_{n=-\infty}^{\infty} \frac{q^{(n+\eta)(n+\eta-1)/2} (t/x)^n}{(q^{1+\eta};q)_n (q^{p+m+1};q)_{-n-\eta}},$$

which in view of the q-identities [3, pp. 233-234]:

$$(a;q)_{-n} = \frac{(-q/a)^n}{(q/a;q)_n} q^{n(n-1)/2}, \qquad (a;q)_{n+k} = (a;q)_n (aq^n;q)_k$$

yields

(16)
$$R = \frac{(1-q)^{-\eta}}{\Gamma_q(\eta+1)} \sum_{m=0}^{\infty} A_m x^{p+m} (-tq^{p+m}/x)^{\eta} (q^{-p-m}; q)_{\eta}$$
$$\sum_{n=-\infty}^{\infty} \frac{(q^{\eta-p-m}; q)_n (-tq^{p+m}/x)^n}{(q^{1+\eta}; q)_n}.$$

Applying the Ramanujan's summation formula (cf. [3, II.29, p. 239]), viz.

$$(17) \ _1\psi_1(a;b;q,z) = \sum_{n=-\infty}^{\infty} \frac{(a;q)_n}{(b;q)_n} \ z^n = \frac{(q;q)_{\infty}(b/a;q)_{\infty}(az;q)_{\infty}(q/az;q)_{\infty}}{(b;q)_{\infty}(q/a;q)_{\infty}(z;q)_{\infty}(b/az;q)_{\infty}},$$

we find that (16) reduces to

(18)
$$R = \frac{(1-q)^{-\eta}}{\Gamma_q(\eta+1)} \sum_{m=0}^{\infty} A_m x^{p+m} (-tq^{p+m}/x)^{\eta} (q^{-p-m};q)_{\eta}$$
$$\frac{(q;q)_{\infty} (q^{1+m+p};q)_{\infty} (-tq^{\eta}/x;q)_{\infty} (-q^{1-\eta}x/t;q)_{\infty}}{(q^{1+\eta};q)_{\infty} (q^{1+m+p-\eta};q)_{\infty} (-tq^{m+p}/x;q)_{\infty} (-qx/t;q)_{\infty}}$$

which implies that

(19)
$$R = \sum_{m=0}^{\infty} A_m x^{p+m} (-t/x; q)_{p+m} = L.$$

This completes the proof of the theorem.

It may be observed that a generalized Taylor's formula involving the Riemann-Liouville type operator was obtained earlier by Raina [6, p. 81, eqn. (2.1)]. If we set $\eta = 0$ in the above theorem, we get the following corollary (giving a simple form of q-Taylor's formula).

Corollary 1 If $\Re(p) > -1$, then

(20)
$$(x+t)_p f[(x+tq^p)] = \sum_{n=0}^{\infty} \frac{q^{n(n-1)/2} t^n}{\Gamma_q(n+1)} D_{x,q}^n \{x^p f(x)\},$$

valid for all t where |t/x| < 1, $|tq^p/x| < 1$ and |q| < 1.

A similar type of q-Taylor's formula was also given by Jackson [5].

3 Applications of the main result

The generalized fractional q-Taylor's formula established in the previous section would find many applications giving q-generating functions and series summation for the basic functions.

To illustrate the applications, we first apply formula (12) to obtain the series summation (or q-generating function) for the basic hypergeometric function ${}_{r}\Phi_{s}(\cdots)$, defined by (8).

Let us set

$$f(x) = {}_{r}\Phi_{s} \left[\begin{array}{cc} a_{1}, \cdots, a_{r} & ; \\ & q, \rho x \\ b_{1}, \cdots, b_{s} & ; \end{array} \right]$$

in (12), then we get

$$(21) (x+t)_{p} {}_{r}\Phi_{s} \begin{bmatrix} a_{1}, \cdots, a_{r} & ; \\ & q, \rho(x+tq^{p}) \\ b_{1}, \cdots, b_{s} & ; \end{bmatrix} = \sum_{n=-\infty}^{\infty} \frac{q^{(n+\eta)(n+\eta-1)/2} t^{n+\eta}}{\Gamma_{q}(n+\eta+1)}$$
$$D_{x,q}^{n+\eta} \left\{ x^{p} {}_{r}\Phi_{s} \begin{bmatrix} a_{1}, \cdots, a_{r} & ; \\ & q, \rho x \\ b_{1}, \cdots, b_{s} & ; \end{bmatrix} \right\}.$$

Using the result (due to Yadav and Purohit [12]):

(22)
$$D_{x,q}^{\lambda} \left\{ x^{p}{}_{r} \Phi_{s} \begin{bmatrix} a_{1}, \cdots, a_{r} & ; \\ q, \rho x \\ b_{1}, \cdots, b_{s} & ; \end{bmatrix} \right\} = \frac{\Gamma_{q}(p+1)}{\Gamma_{q}(p+1-\lambda)} x^{p-\lambda}$$
$$r+1 \Phi_{s+1} \begin{bmatrix} a_{1}, \cdots, a_{r}, q^{p+1} & ; \\ q, \rho x \\ b_{1}, \cdots, b_{s}, q^{p+1-\lambda} & ; \end{bmatrix},$$

valid for all values of λ , the series relation (21) leads to

(23)
$$(x+t)_{p} {}_{r}\Phi_{s} \begin{bmatrix} a_{1}, \cdots, a_{r} & ; \\ & q, \rho(x+tq^{p}) \\ b_{1}, \cdots, b_{s} & ; \end{bmatrix} = \sum_{n=-\infty}^{\infty} \frac{q^{(n+\eta)(n+\eta-1)/2} t^{n+\eta}}{\Gamma_{q}(n+\eta+1)}$$

$$\frac{\Gamma_q(p+1)}{\Gamma_q(p+1-n-\eta)} x^{p-n-\eta} {}_{r+1}\Phi_{s+1} \begin{bmatrix} a_1, \cdots, a_r, q^{p+1} & ; \\ & q, \rho x \\ b_1, \cdots, b_s, q^{p+1-n-\eta} & ; \end{bmatrix}.$$

On replacing t by -xt in (23), we arrive at the following q-generating function.

provided that both the sides exist.

For $\eta = 0$, (21) yields the q-generating function

(25)
$$(t;q)_{p \ r+1} \Phi_{s} \begin{bmatrix} a_{1}, \cdots, a_{r}, tq^{p} & ; \\ q_{1}, \cdots, b_{s} & ; \end{bmatrix} = \sum_{n=0}^{\infty} \frac{(q^{-p};q)_{n} (tq^{p})^{n}}{(q;q)_{n}}$$

$$r_{+1} \Phi_{s+1} \begin{bmatrix} a_{1}, \cdots, a_{r}, q^{p+1} & ; \\ q_{1}, \cdots, q_{s}, q^{p+1-n} & ; \end{bmatrix} .$$

$$b_{1}, \cdots, b_{s}, q^{p+1-n} & ; \end{bmatrix} .$$

Further, if we put r = s = 0, then (25) yields the following series summation: (26)

$$(t;q)_{p} {}_{1}\Phi_{0} \left[\begin{array}{c} tq^{p} & ; \\ & q, \rho x \\ - & ; \end{array} \right] = \sum_{n=0}^{\infty} \frac{(q^{-p};q)_{n} \ (tq^{p})^{n}}{(q;q)_{n}} {}_{1}\Phi_{1} \left[\begin{array}{c} q^{p+1} & ; \\ & q, \rho x \\ q^{p+1-n} & ; \end{array} \right].$$

The q-extensions of the Fox's H-function and Meijer's G-function defined, respectively by (9) and (11) in terms of the Mellin-Barne's type of basic integrals possess the advantage that a number of q-special functions (including the basic hypergeometric functions) happen to be the particular cases of these functions. For various basic special functions which are deducible from basic analogue of Fox's H-function or Meijer's G-function, one may refer to the paper of Saxena $et\ al\ [10]$. We apply q-Taylor's formula (12) to obtain a series summation (or q-generating function) for the basic Fox's H-function.

Let us choose

$$f(x) = H_{A,B}^{m_1,n_1} \left[\rho x; q \middle| \begin{array}{c} (a,\alpha) \\ (b,\beta) \end{array} \right]$$

in (12), then using the fractional q-derivative formula for H-function of Yadav and Purohit [13], we arrive at the following result:

(27)
$$(x+t)_{p} H_{A,B}^{m_{1},n_{1}} \left[\rho(x+tq^{p}); q \middle| \begin{array}{c} (a,\alpha) \\ (b,\beta) \end{array} \right] = \sum_{n=-\infty}^{\infty} \frac{q^{(n+\eta)(n+\eta-1)/2} x^{p} (t/x)^{n+\eta}}{\Gamma_{q}(n+\eta+1)(1-q)^{n+\eta}}$$

$$H_{A+1,B+1}^{m_{1},n_{1}+1} \left[\rho x; q \middle| \begin{array}{c} (-p,1), (a,\alpha) \\ (b,\beta), (n+\eta-p,1) \end{array} \right],$$

where η is an arbitrary complex number, $0 \le m_1 \le B$; $0 \le n_1 \le A$ and the H-function satisfies the existence conditions as stated with (9).

A generalized Taylor's formula involving Weyl type fractional derivatives was also used (see Raina [7]) to derive generating function relationship for the Fox's H-function.

For $\alpha_j = \beta_i = 1$ $(j = 1, \dots, A; i = 1, \dots, B)$, the result (27) reduces to a q-generating function for the basic analogue of G-function given by

$$(28) (x+t)_p G_{A,B}^{m_1,n_1} \left[\rho(x+tq^p); q \middle| \begin{array}{c} a_1, \dots, a_A \\ b_1, \dots, b_B \end{array} \right]$$

$$= \sum_{n=-\infty}^{\infty} \frac{q^{(n+\eta)(n+\eta-1)/2} x^p (t/x)^{n+\eta}}{\Gamma_q(n+\eta+1)(1-q)^{n+\eta}} G_{A+1,B+1}^{m_1,n_1+1} \left[\rho x; q \middle| \begin{array}{c} -p, a_1, \dots, a_A \\ b_1, \dots, b_B, n+\eta-p \end{array} \right].$$

We conclude this paper by remarking that several series summations and generating functions to various basic (or q-analogue) special functions can be deduced from the results (24) and (27).

References

- [1] R.P. Agarwal, Certain fractional q-integrals and q-derivatives, Proc. Camb. Phil. Soc., **66**, 1969, 365-370.
- [2] T. Ernst, A method for q-calculus, J. Nonlinear Math. Phys., 10(4), 2003, 487-525.

- [3] G. Gasper and M. Rahman, *Basic Hypergeometric Series*, Cambridge University Press, Cambridge, 1990.
- [4] W. Hahn, Beiträge zur theorie der heineschen reihen, Math. Nachr., 2, 1949, 340-379.
- [5] F. H. Jackson, A q-form of Taylor's formula, Mess. Math., 38, 1909, 62-64.
- [6] R. K. Raina, Generalized Taylor's formula and applications, J. Math. Sci., 12-13, 1977-1978, 80-85.
- [7] R. K. Raina and C.L. Koul, On Weyl fractional calculus, Proc. Amer. Math. Soc., 73(2), 1979, 188-192.
- [8] P. M. Rajković, S. D. Marinković, M. S. Stanković, Frcational integrals and derivatives in q-calculus, Applicable Analysis and Discrete Mathematics, 1, 2007, 1-13.
- [9] R.K. Saxena, G.C. Modi and S.L. Kalla, A basic analogue of Fox's H-function, Rev. Tec. Ing. Univ. Zulia, 6, 1983, 139-143.
- [10] R.K. Saxena, R.K. Yadav, S.D. Purohit and S.L. Kalla, Kober fractional q-integral operator of the basic analogue of the H-function, Rev. Tec. Ing. Univ. Zulia, 28(2), 2005, 154-158.
- [11] L.J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, London and New York, 1966.
- [12] R.K. Yadav and S.D. Purohit, Fractional q-derivatives and certain basic hypergeometric transformations, South East Asian J. Math. Math. Sci., 2(2), 2004, 37-46.
- [13] R.K. Yadav and S.D. Purohit, On fractional q-derivatives and transformations of the generalized basic hypergeometric functions, J. Indian Acad. Math., 28(2), 2006, 321-326.

S.D. Purohit

M.P. University of Agriculture and Technology Department of Basic-Sciences (Mathematics) College of Technology and Engineering, Udaipur-313001, India e-mail: sunil_a_purohit@yahoo.com

R.K. Raina

M.P. University of Agriculture and Technology Udaipur- 313001, Rajasthan , India *Present address:* 10/11, Ganpati Vihar, Opposite Sector-5, Udaipur-313002, India . e-mail: rkraina_7@hotmail.com