On a differential inequality II

Georgia Irina Oros

Abstract

We find conditions on the complex-valued function A defined in the unit disc U and the real constants α, β, γ , such that the differential inequality

Re
$$[A(z)p^{2}(z) - \alpha(zp'(z))^{2} + \beta zp'(z) + \gamma] > 0$$

implies Re p(z) > 0, where $p \in \mathcal{H}[1, n]$.

2000 Mathematical Subject Classification: 30C80

1 Introduction and preliminaries

We let $\mathcal{H}[U]$ denote the class of holomorphic functions in the unit disc

$$U = \{ z \in \mathbb{C} : |z| < 1 \}.$$

For $a \in \mathbb{C}$ and $n \in \mathbb{N}^*$ we let

$$\mathcal{H}[a,n] = \{ f \in \mathcal{H}[U], \ f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots, \ z \in U \}$$

and

$$\mathcal{A}_n = \{ f \in \mathcal{H}[U], \ f(z) = z + a_{n+1}z^{n+1} + a_{n+2}z^{n+2} + \dots, \ z \in U \}$$

with $A_1 = A$.

In order to prove the new results we shall use the following lemma, which is a particular form of Theorem 2.3.i [1, p. 35].

Lemma A. [1, p. 35] Let $\psi : \mathbb{C}^2 \times U \to \mathbb{C}$ a function which satisfies

Re
$$\psi(\rho i, \sigma; z) \leq 0$$
,

where
$$\rho, \sigma \in \mathbb{R}$$
, $\sigma \leq -\frac{n}{2}(1+\rho^2)$, $z \in U$ and $n \geq 1$.
If $p \in \mathcal{H}[1, n]$ and

Re
$$\psi(p(z), zp'(z); z) > 0$$

then

Re
$$p(z) > 0$$
.

2 Main results

Theorem. Let $\alpha \geq 0$, $\beta \geq 0$, $\gamma \leq \frac{\alpha n^2}{4} + \frac{\beta n}{2}$ and let n be a positive integer. Suppose that the function $A: U \to \mathbb{C}$ satisfies

(1)
$$\operatorname{Re} A(z) \ge -\frac{\alpha n^2}{2} - \frac{\beta n}{2}.$$

If $p \in \mathcal{H}[1, n]$ and

(2) Re
$$[A(z)p^{2}(z) - \alpha(zp'(z))^{2} + \beta zp'(z) + \gamma] > 0$$
,

then

Re
$$p(z) > 0$$
.

Proof. We let $\psi : \mathbb{C}^2 \times U \to \mathbb{C}$ be defined by

(3)
$$\psi(p(z), zp'(z); z) = A(z)p^{2}(z) - \alpha(zp'(z))^{2} + \beta zp'(z) + \gamma.$$

From (2) we have

(4) Re
$$\psi(p(z), zp'(z); z) > 0$$
, for $z \in U$.

For $\sigma, \rho \in \mathbb{R}$ satisfying $\sigma \leq -\frac{n}{2}(1+\rho^2)$, hence $-\sigma^2 \leq -\frac{n^2}{4}(1+\rho^2)^2$, and $z \in U$, by using (1) we obtain:

$$\operatorname{Re} \psi(\rho i, \sigma; z) = \operatorname{Re} \left[A(z)(\rho i)^{2} - \alpha \sigma^{2} + \beta \sigma + \gamma \right] =$$

$$= -\rho^{2} \operatorname{Re} A(z) - \alpha \sigma^{2} + \beta \sigma + \gamma \leq$$

$$= -\rho^{2} \operatorname{Re} A(z) - \frac{\alpha n^{2}}{4} (1 + \rho^{2})^{2} - \frac{\beta n}{2} (1 + \rho^{2}) + \gamma \leq$$

$$\leq -\rho^{2} \operatorname{Re} A(z) - \frac{\alpha n^{2}}{4} - \frac{\alpha n^{2}}{2} \rho^{2} - \frac{\alpha n^{2}}{4} \rho^{4} - \frac{\beta n}{2} - \frac{\beta n}{2} \rho^{2} \leq$$

$$\leq -\frac{\alpha n^{2}}{4} \rho^{4} - \rho^{2} \left[\operatorname{Re} A(z) + \frac{\alpha n^{2}}{2} + \frac{\beta n}{2} \right] - \frac{\alpha n^{2}}{4} - \frac{\beta n}{2} + \gamma \leq 0.$$

By using Lemma A we have that Re p(z) > 0.

If p = 0 then we obtain the Theorem from [2].

If $\gamma = \frac{\alpha n^2}{4} + \frac{\beta n}{2}$, Theorem can be rewritten as follows:

Corollary. Let $\alpha \geq 0$, $\beta \geq 0$ and let n be a positive integer. Suppose that the function $A: U \to \mathbb{C}$ satisfies

Re
$$A(z) \ge -\frac{\alpha n^2}{2} - \frac{\beta n}{2}$$
.

If $p \in \mathcal{H}[1, n]$ and

Re
$$\left[A(z)p^{2}(z) - \alpha(zp'(z))^{2} + \beta zp'(z) + \frac{\alpha n^{2}}{4} + \frac{\beta n}{2} \right] > 0$$

then

Re
$$p(z) > 0$$
.

If $\beta = 0$ then we obtain the Corollary from [2].

If $\alpha = \frac{1}{2}$, n = 1, $\beta = 3$, A(z) = 1 + z. In this case from Corollary we deduce

Example 1. If $p \in \mathcal{H}[1,1]$ then

Re
$$\left[(1+2z)p^2(z) - \frac{1}{2}(zp'(z))^2 + 3zp'(z) + \frac{13}{8} \right] > 0$$

implies

Re
$$p(z) > 0$$
.

If $\alpha = \frac{1}{2}$, n = 2, A(z) = 1 + 2z. In this case from Corollary 1 we deduce **Example 2.** If $p \in \mathcal{H}[1,2]$ then

Re
$$\left[(1+3z)p^2(z) - 2(zp'(z))^2 + \frac{1}{4}zp'(z) + \frac{9}{4} \right] > 0$$

implies Re p(z) > 0.

References

- [1] S. S. Miller and P. T. Mocanu, *Differential Subordinations. Theory and Applications*, Marcel Dekker Inc., New York, Basel, 2000.
- [2] Georgia Irina Oros, On a differential inequality I, (submitted)

Faculty of Mathematics and Computer Sciences Babeş-Bolyai University 3400 Cluj-Napoca, Romania