ФУНДАМЕНТАЛЬНАЯ И ПРИКЛАДНАЯ МАТЕМАТИКА
1996, ТОМ 2, ВЫПУСК 1, СТР. 233-249

О различных определениях сплетения полугрупповых многообразий

А. В. Тищенко

Аннотация

Посмотреть как HTML    Посмотреть как рисунок    Посмотреть в формате LaTeX

Рассмотрены три различных естественных определения операции сплетения полугрупповых многообразий: общее, моноидное и стандартное. Показано, что это три различных операции. Указан алгоритм, позволяющий определить, истинно ли заданное полугрупповое тождество в сплетении полугрупп при условии, что такой алгоритм существует для сплетаемых полугрупп. Как следствия из этого результата получены алгоритмы, позволяющие ответить на подобный вопрос в случае моноидного, общего и стандартного сплетения полугрупповых многообразий. Известно, что моноидное и общее сплетение многообразий ассоциативно. В качестве приложения развитой техники доказано, что стандартное сплетение полугрупповых многообразий неассоциативно даже в случае, если в качестве сплетаемых многообразий брать атомы решетки многообразий. В качестве второго приложения показано, что известное многообразие, порожденное пятиэлементной вполне 0-простой полугруппой A2= ⟨ a,b | a2=a, b2=0, aba=a, bab=b ⟩, разложимо в моноидное сплетение полурешеток и многообразие правых связок. Общее и моноидное сплетение многообразий совпадают, если второе из сплетаемых многообразий состоит не только из групп.

Постскрипт статьи (74Kb)


Главная страница Редколлегия Информация для авторов
Поиск Содержание журнала Объявления

URL страницы: http://mech.math.msu.su/~fpm/rus/96/961/96112h.htm
Изменения вносились 15 апреля 1998