ФУНДАМЕНТАЛЬНАЯ И ПРИКЛАДНАЯ МАТЕМАТИКА
1995, ТОМ 1, ВЫПУСК 2, СТР. 471-489
Г.Е.Пунинский
Московский государственный
социальный университет
Кольцо имеет свойство Крулля-Шмидта, если любой конечно представимый модуль над ним разлагается в прямую сумму модулей с локальными кольцами эндоморфизмов. Описаны полуцепные кольца Крулля-Шмидта как полуцепные кольца со слабым условием типа инвариантности. Существенно упрощена классификация неразложимых чисто-инъективных модулей над цепным полуинвариантным кольцом, и дан критерий существования суперразложимого чисто-инъективного модуля. Показано, что над эффективно заданным цепным инвариантным кольцом с бесконечным телом вычетов теория всех модулей разрешима, если вопрос об обратимости элемента кольца может быть эффективно решен.
Главная страница | Редколлегия | Информация для авторов |
Поиск | Содержание журнала | Объявления |
URL страницы: http://mech.math.msu.su/~fpm/rus/95/952/95209.htm
Изменения вносились 21 июня 1997 г.