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The spectrum of the damped wave operator for a bounded do-
main in R2 is shown to be related to the asymptotic average
of the damping function by the geodesic flow. This allows the
calculation of an asymptotic expression for the distribution of
the imaginary parts of the eigenvalues for a radially symmet-
ric geometry. Numerical simulations confirm the theoretical
model. In addition, we are able to exhibit the beautiful structure
of the spectrum and the close links between the eigenfunctions,
the rays of geometrical optics, and the geometry of the damping
region. The MATLAB code used in this paper is provided.

1. INTRODUCTION

1.1 The Problem

We consider the damped wave equation,

utt − c2Pu+ 2a(x)ut = 0 in Q = Ω× (0, T ) , (1—1)
u = 0 on Γ× (0, T ) ,

u(x, 0) = u0(x), ut(x, 0) = u
1(x) in Ω,

where a(x) ∈ L∞(Ω) is a non-negative potential with
support in ω ⊂ Ω and (u0, u1) ∈ X = H1

0 (Ω)×L2(Ω). If
we choose as the unknown the vector,

U =

}
u

ut

]
,

we can rewrite (1—1) in the form

Ut +AU= 0 in Q = Ω× (0, T ) , (1—2)

U(x, 0) = U0(x) in Ω,

where A : D(A) −→ X is the operator defined by

A =

w
0 −Id

−c2P 2a(x)

W
.

We want to examine the distribution of the eigenvalues

of this operator, in the strip where they are localised, as
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a function of the geometry of the support of the potential

a(x).

The eigenvalue problem for the non-self-adjoint,

quadratic operator pencil generated by (1—1) is obtained

by replacing u in (1—1) by

u(x, t) = eλtφ(x).

We obtain from (1—2) the standard form

(λ Id+A)Φ = 0, Φ =

}
φ

λφ

]
.

The condition for the existence of nontrivial solutions is

that λ ∈ Σ(A) (the spectrum) or, in the finite dimen-
sional case, that det(λ Id + A) = 0. Since A has a com-

pact inverse, its spectrum is discrete and symmetric with

respect to the real axis. The strip of localisation of the

eigenvalues is defined by ξ−(a) ≤ Re(λ) ≤ ξ+(a) where

ξ−(a) = inf{Re(λ) : λ ∈ σ(A)} and ξ+(a) = sup{Re(λ) :
λ ∈ σ(A)}.

1.2 The Applications

There is considerable interest in this problem from the

point of view of the applications. In all real control

problems, the major problem facing engineers and physi-

cists is the placement of sensors and actuators. It is well

known that one should measure and act on regions which

correspond to certain natural frequencies of the domain

(bridge, airfoil, beam, ...). What was not known un-

til now was the connection between the geometry of the

control (damping) region and the modes. The theoret-

ical and numerical results which follow shed some light

on this connection and will hopefully provide useful tools

for industrial applications.

Furthermore, the theoretical study of the spectrum of

non-self-adjoint operators still lags behind that of self-

adjoint operators. Our use of geometrical considerations

has produced a debut of understanding of the structure

of the spectrum. Indeed, in the case of the unit square

(see below), we observe a beautiful structure of successive

bifurcations (seen also by [Freitas 99]) and in the case

of a disc, we obtain an expression for the asymptotic

distribution of the eigenvalues.

1.3 Overview

Section 2 presents a theoretical study of the spectrum of

the damped wave operator. Here, some known results

are recalled and then a model is given which is the base

for the asymptotic expression of Section 2.1 In Section 3,

the numerical method used to study the problem is ex-

plained. Section 4 is a presentation of numerous numeri-

cal simulations which serve both to validate the results of

Sections 2 and 2.1, and to investigate some quite realistic

model geometries.

Previous work on the spectrum of the damped wave

operator was concerned mainly with the determination

of optimal decay rates and was performed mostly in the

one-dimensional case (a vibrating string)–see [Cox and

Zuazua 94] and [Freitas 98]. A more complicated one-

dimensional problem, dealing with exact controllability

was considered in [Shubov et al. 97]. A two-dimensional

problem was treated in [Chen et al. 91], but their re-

sults were only valid for a one-dimensional wave equation.

More recently, [Sjöstrand 00] has proved a result on the

asymptotic distribution of the distribution of eigenval-

ues in the band of localisation. Our theoretical results

(see Theorems 2.2 and 2.3) and examples can be consid-

ered as developments of the main theorem (Theorem 3)

in [Sjöstrand 00].

2. SOME THEORY AND MODELS

In this section, we investigate some theoretical aspects

of the spectrum of (1—1). To avoid the difficulties of the

boundary value problem, we discuss the problem (1—1)

on a Riemannian manifold (M, g) with a damped wave

equation of the form

utt − P2u+ 2a(x)ut = 0 (1—1I)

u(x, 0) = u0(x) , ut(x, 0) = u
1(x) .

Here, P2 is a self-adjoint differential operator of order

two on M , of the form

P2 = Pg − 2P1 (x,Dx) ,

where Pg is the Laplace-Beltrami operator on M and

P1 (x,Dx) is a self-adjoint differential operator of order

one onM . The function a(x) ∈ C∞(M) takes real values.
The spectrum of (1—1I) is the set Σ of λ ∈ C such that

the equation D
λ2 − P2 + 2λa(x)

i
v = 0 (2—1)

admits a nontrivial solution. For λ ∈ Σ, the multiplicity
of λ is the dimension of the generalised eigenspace of

(λ Id+A) with

A =

w
0 −Id
−P2 2a

W
,
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i.e., the rank of the spectral projector,

1

2πi

8
|z−λ|=ε

(z Id+A)−1 dz .

For λ = iω+σ ∈ Σ and v W= 0 such that (2—1) holds true,
we have

Im
aD
λ2 − P2 + 2λa(x)

i
v|v@

L2
= 0,

which implies

2ω

}8
M

a|v|2 + σ

8
M

|v|2
]
= 0 .

Therefore, for ω W= 0, we get

λ = iω+σ ∈ Σ and ω W= 0 =⇒ −max(a) ≤ σ ≤ −min(a) .
(2—2)

Clearly, one has λ ∈ Σ ⇐⇒ λ̄ ∈ Σ since Q = λ2 − P2 +
2λa(x) is Fredholm with zero index and Q∗ = λ̄2 − P2 +
2λ̄a(x). When λ = σ ∈ Σ is real, we get

σ2
8
M

|v|2 + 2σ
8
M

a|v|2 +
8
M

|dv|2 −
8
�P1v|vX = 0 ,

which implies that |σ| is bounded and therefore, Σ∩R is
a finite set.

We are interested in the probability of the distribution

of the damping σ of the spectrum in the high frequency

limit. More precisely, for R > 0, let µR be the probability

on the real line defined by

µR(I) =
# {λ = iω + σ ∈ Σ , σ ∈ I , |ω| ≤ R}

# {λ = iω + σ ∈ Σ , |ω| ≤ R} (2—3)

where the λ are repeated according to their multiplicities.

The µR are a finite linear combination of Dirac measures

and by (2—2) are supported in [−max(a) , −min(a) ].
Our main interest is to understand the behaviour of µR

for R large, and its relation with the average of the damp-

ing a(x) on the geodesic flow.

Let

S∗M = {(x, ξ) ∈ T ∗M, ,ξ,x = 1}
be the unit cotangent vector bundle on M , and let us

denote by φ(t, ρ) , t ∈ R , ρ ∈ S∗M the geodesic flow on

S∗M . Let a(t, ρ) , t ∈ R , ρ ∈ S∗M be the average of

a(x) at time t by the geodesic flow

a(t, ρ) =
1

t

8 t

0

a(x(φ(s, ρ))) ds .

The Liouville measure dλ on S∗M (normalized by

λ(S∗M) = 1) is invariant by the geodesic flow φ, so by

the Birkhoff Ergodic Theorem (see [Cornfeld 82]), the

Borel subset of S∗M ,

E = {ρ ; the limits lim
t→±∞ a(t, ρ) exist and are equal},

is of full measure on S∗M . (More precisely, one has

ν(E) = 1 for any probability on S∗M invariant by the

geodesic flow.)

We define the Birkhoff function Bir(ρ) on E by

Bir(ρ) = lim
t→±∞ a(t, ρ) .

We can therefore introduce a “geometric” damping prob-

ability associated to the damping function a,

µgeom(I) =

8
Bir(ρ)∈−I

dλ (I a Borel subset of R).

One may expect a close link between the asymptotic

(R → ∞) of the probability of distribution of the eigen-
values and the Birkhoff function Bir(ρ). In this direction,

the most optimistic result would be

“There exists a unique weak limit µ∞ of the family

{µR}R→∞ and µ∞ = µgeom”

(2—4)

We shall see below that (2—4) is not true in general and

we present some numerical experiments in the sequel.

To our knowledge, there exist two results which show

a link between the measures µR and the asymptotic for

t large of the average a(t, ρ). The first result is due to

J. Sjöstrand [Sjöstrand 00]. Let us denote by b+ (respec-

tively, b−) the essential supremum (respectively, mini-

mum) of the Birkhoff function Bir(ρ) with respect to the

Liouville measure on S∗M . Then we have the following
theorem.

Theorem 2.1. (Sjöstrand.) The support of any weak

limit of the sequence µR is contained in the interval

[−b+ , −b−].

Notice that if the geodesic flow is ergodic on S∗M ,
we have Bir(ρ) =


M
a (Liouville almost everywhere), so

by Sjöstrand’s result, (2—4) is true in this case and more

precisely

w- lim
R→∞

µR = δ[−σ= M
a],

so the spectrum accumulates on the average of the damp-

ing function a(x). This result was first proved in the

one-dimensional case by S. Cox and E. Zuazua [Cox and

Zuazua 94].
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The second result gives some information on the pos-

sible values of σ for which there exists a sequence λn =

iωn+σn in the spectrum such that ωn →∞ and σn → σ.

Let vn ∈ L2(M), normalized by |vn|L2 = 1, be a solution
of

[λ2n − P2 + 2λna(x)] vn = 0 . (2—5)

Let h = hn = 1/ωn . Multiplying (2—5) by h
2
n, one gets

the semiclassical equation for vnJ−(1 + h2P2) + 2ih(a+ σn) + h
2(σ2n + 2aσn)

o
vn = 0 .

(2—6)

Let ν be any semiclassical measure on T ∗M associated

with the sequence {vn} (see P. Gerard [Gérard and Le-
ichtman 93] for an exposition of semiclassical measures);

the weak limit of {vn} is zero and up to extraction of a
subsequence, ν is characterized by8

T∗M
q(x, ξ) dν = lim

n→∞ �q(x, hD)vn | vnXL2(M) ,

q(x, ξ) ∈ C∞0 (T ∗M) .

Then ν is a probability on T ∗M and the assumptions

P2 = Pg+order(1) and (2—6) imply that the support of
ν is contained in the unit cosphere bundle S∗(M). More-
over, (2—6) implies that ν satisfies the propagation equa-

tion 8
T ∗M

J{ξ2 − 1, q}+ 4(a+ σ)q
o
dν = 0 .

In other words, ν is a probability on S∗M such that for

any Borel subset A of S∗M and any t, one has

ν(φt(A)) =

8
A

e2t[σ+a(t,ρ)] dν(ρ),

where φt(A) = {φ(t, ρ) ; ρ ∈ A}. By Fatou’s lemma, we
get 8

A

lim inf
t→±∞ e

2t[σ+a(t,ρ)] dν(ρ) < +∞,

which implies

ν({ρ ; σ + lim inf
t→+∞ a(t, ρ) > 0}) = 0 , (2—7)

ν({ρ ; σ + lim sup
t→−∞

a(t, ρ) < 0}) = 0 .

For ρ ∈ S∗M , let Jρ ⊂ R be the closed interval,

Jρ =


[lim inf
t→+∞ a(t, ρ) , lim supt→−∞

a(t, ρ) < 0]

if lim inf
t→+∞ a(t, ρ) ≤ lim supt→−∞

a(t, ρ)

∅ otherwise.

One has Jρ = {Bir(ρ)} if ρ ∈ E and from (2—7) we get

the following theorem.

Theorem 2.2. If λn = iωn + σn is a sequence in the

spectrum such that limσn = σ, then

∃ ρ ∈ S∗M, −σ ∈ Jρ . (2—8)

Notice that if ρ = (x, ξ) and −ρ def
= (x,−ξ), then

a(t,−ρ) = a(−t, ρ) so if Jρ = ∅, then J−ρ W= ∅ .
We next turn to the study of the very special case

where M is the sphere S2 ⊂ R3. In this case, the geo-
desic flow is periodic with period 2π and the quotient

of S∗(S2) by the flow, the space θ of orbits, is the space
of oriented great circles. Thus, θ is also a sphere S2.
Here, the Birkhoff function is defined everywhere: It is

the Radon transform of the damping a,

Bir(ρ) =

-
Cρ

a ; Cρ = great circle through ρ.

One has Bir(ρ) = Bir(−ρ) for any ρ. Theorem 2.3 can

now be proved.

Theorem 2.3. Let us assume that the coefficients of

P1(x,Dx) and the function a(x) are analytic on the

sphere S2. Let p1(x, ξ) be the principal symbol of P1 and
q(ρ) =


Cρ
p1(x, ξ) , ρ ∈ θ , be the average of p1 on the

orbit Cρ.

Let us assume that the following generic hypotheses

on Bir(ρ) and q(ρ) hold true: Bir(θ) = [b− , b+] and

Bir−1{b±} is finite; dq(ρ) W= 0 if ρ ∈ Bir−1{b−} ∪
Bir−1{b+}.
Then there exists an ε > 0 such that the support of

any weak limit of the sequence {µR} is contained in the
interval [−b+ + ε , −b− − ε] .

Remark 2.4. This shows that (2—4) is not true in gen-
eral and that the density of the spectrum may vanish

in the neighbourhood of (-) the (essential) extrema of

the Birkhoff function. This fact is by no means surpris-

ing: The Birkhoff function is defined as the average of

ImA = (A − A∗)/2i, A = ∂2t − P2 + 2a(x)∂t on the tra-
jectories of ReA = (A+A∗)/2, so depends on the Hilbert
structure of the space H on which A acts, while the spec-

trum defined by (2—1) is free of a deformation Hσ of H,
σ ∈ [0, 1], H0 = H if A acts on Hσ and any solution v

of (2—1) belongs to ∩Hσ . Of course, here it is the very

special structure of the geodesic flow on S2 which allows
the construction of such a deformation.

Proof: By the assumptions of analyticity of P1 and a,

there exists a fixed complex neighbourhood X of S2, such
that any solution of (2—1) is the restriction to S2 of a holo-
morphic function on X . Let J be a zero-order complex
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Fourier integral operator, close to the Id, such that

JP J−1 = P+R

where R is a zero-order pseudodifferential operator.

Let X be the complex canonical transformation asso-

ciated with J ; X is a holomorphic, homogeneous sym-

plectomorphism of T ∗X defined near T ∗S2 \ 0. Let θC
be a complex neighbourhood of the orbit space θ. We

have ξ(X (ρ))2 = ξ(ρ)2, so X maps any subvariety {ξ2 =
const.} of T ∗X into itself and therefore induces a holo-

morphic map f : θC → θC defined near θ.
Let now λn ∈ Σ and vn such that (2—1) holds true. Let

Q0 and Q1 be the analytic pseudodifferential operators

on the sphere defined by J aJ−1 = Q0 , J P2 J
−1 =

P−2Q1 . Let un = J(vn) . Then un ∈ L2(S2) and satisfiesJ
λ2n − (P+R− 2Q1) + 2λnQ0

o
un = 0.

Let q0(x, ξ), q1(x, ξ) be the principal symbols of Q0, Q1,

let α(x, ξ) = q0(x, ξ) +
1
i
q1(x, ξ)

ee
|ξ|=1, and let α(ρ) =

Cρ
α for ρ ∈ θ. Then, if λn = iωn+σn and limn→∞ σn =

σ, the above calculation (2—5 — 2—8) implies that

−σ ∈ (Reα)(θ) .

By construction, we have

α(X (ρ)) = Bir(ρ) + q(ρ)
i
.

If we choose X close to the Id, such that X−1 = Id +

iετ+O(ε2) with τ : S2 → R3 such that τ(y) ·y ≡ 0. Then
we get

(Reα)(ρ) = Bir(ρ) + ε dq(ρ)[τ (ρ)] +O(ε2)

so the result follows from the fact that we can choose

τ such that dq(ρ)[τ (ρ)] < 0 if ρ ∈ Bir−1{b+} and
dq(ρ)[τ (ρ)] > 0 if ρ ∈ Bir−1{b−}.

2.1 Asymptotic Distribution of the Eigenvalues

The most well-known asymptotic for the distribution of

eigenvalues is Weyl’s formula for the Laplacian operator.

Let N(t) =
�

λj≤t 1 be the number of eigenvalues less
than t, then

N(t) ∼ µ2(Ω)
4π

t , Ω ⊂ R2,

N(t) ∼ µ3(Ω)
6π2

t3/2 , Ω ⊂ R3

as t→∞ where µn(Ω) is the area of Ω, a bounded open

set in Rn, n = 1, 2. Ideally, one would like to invert

this formula in order to obtain an effective asymptotic

expression for the j-th eigenvalue itself. However, even

for a region where the eigenvalues are known explicitly

(such as a square or a circle in R2), it is difficult to obtain
such a formula directly [Kuttler and Sillito 84].

In the case of a disc with a rotationally invariant

damping region, we find (by separation of variables and

reduction to a one-dimensional semiclassical equation)

the following expression for the asymptotic distribution:

P (Re(λ) ∈ −I) = 4

π

8
m(t)∈I

0
1− t2dt (2—9)

where

m(t) =
1

2
√
1− t2

8 1

t

ra(r)√
r2 − t2 dr .

Indeed, in this case, the result (2—4) is true.

Example 2.5. If a = a0 is constant, then m = a0/2 and

a0 /∈ −I implies P = 0, whereas a0 ∈ −I implies P = 1.

Example 2.6. If

a =

F
1 for 0 ≤ r < r0
0 for r0 ≤ r ≤ 1

then

m(t) =

0
r20 − t2

2
√
1− t2

for t < r0 and m(t) = 0 for t > r0. We thus obtain the

following integral formula for the distribution function

P ([−r, 0]) = 4

π

8 1

r0

0
1− t2dt

+
16

π

8 1

r0

(1− r0)3/2 s0
r20 − 4s2 (4s2 − 1)2

ds , r ≤ r0/2 .
(2—10)

3. THE DISCRETISATION OF THE
EIGENVALUE PROBLEM

3.1 Formulation

The domain, Ω, is approximated by a net of equidistant,

discrete points Ωh = Mij with i, j = 1, 2, . . . , N and

N = (1/h) + 1. The Laplacian operator, (∂xx + ∂yy)u

is approximated in a standard way by a second order

accurate, centred difference scheme,

Phu = (ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j) / h2,
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where ui,j = u(xi, yj). We thus obtain a nonsymmet-

ric block matrix, A, the discrete approximation of the
operator A, of the form

A =
}

0 −Id
−c2Ph 2ah

]
, (3—1)

where

Id =


1 0 0 . . . 0

0 1 0 . . . 0

. . . . . . . . . . . .

0 0 0 . . . 1

 , Ph =

−4 1 0 . . . 0

1 −4 1 . . . 0

. . . . . . . . . . . . . . . . . . .

0 0 . . . 1 −4


and ah is a diagonal matrix with akk = a(xi, yj). The

value of k is determined by the numbering of the discrete

points Mij .

3.2 Numerical Method

We employ the most powerful numerical method avail-

able in order to compute the eigenvalues of the matrix

A: the implicitly restarted Arnoldi-Lanczos method of
Sorenson [Sorenson 95]. This method is particularly well

suited to large sparse matrices which in our computations

can have dimensions of up to 10,000. This method is a

generalisation of an inverse power method with subspace

iteration. The restarting ensures the smallest possible

memory requirements. In fact, one can approximate k

eigenvalues in a space proportional to nk where n is the

dimension of the matrix.

All of our computations were perfomed with

MATLAB cs. The code is freely available–see Section 5.

4. RESULTS OF THE NUMERICAL SIMULATIONS

Preliminary computations reveal that the distance of the

strip from the imaginary axis is related to the diameter of

ω. We also verified the Weyl asymptotic. Subsequently,

we examined a number of geometrical configurations (see

below): squares, discs, and a few realistic cases (“dog-

bone,”“football jersey”). In all the computations, we set

a(x) = 1.

4.1 Unit Square with a(x) = c on the Half Square

We compute the spectrum of the damped wave equation

for a(x) = c on half the unit square. The spectrum aligns

itself along the vertical Re(λ) = − 12
$
a(x)dx. In addi-

tion, we observe bifurcations on two branches (see Fig-

ure 1) corresponding to eigenvalues that are strongly or

weakly damped. The successive bifurcations correspond

to increasing frequencies of the eigenfunctions. This phe-

nomenon has also been observed by P. Freitas [Freitas 99]

and can be explained by means of a Fourier decomposi-

tion of the solution of (1—1).

We note that eigenfunctions corresponding to eigen-

values on the branch that is close to the imaginary axis

(less damped) have their support in the part of the do-

main where a(x) = 0 (see Figure 2(a)), whereas eigen-

functions corresponding to eigenvalues on the branch

that is furthest from the imaginary axis (more strongly

damped) have their support in the part of the domain

where a(x) W= 0 (see Figure 2 (b) ). We have effectively
separated the spectrum of the non-self-adjoint operator

A. The eigenfunctions corresponding to eigenvalues in

the central trunk spread their energy over the entire do-

main as we can see in the Figure 2 (c). Note that there

are two graphic representations for each eigenvector: a

surface plot (upper part) and a contour plot (lower part).

The gap that can be seen in the central trunk of the

eigenvalue plot (uppermost plot of Figure 1) is a conse-

quence of the discretisation: Reducing the spatial dis-

cretisation from h to h/2 reduces the size of the gap by

one half.

4.2 Damping on a Disc

In this section, we present graphic results for the spec-

trum over a disc. Three cases are treated (see Figure

3): damping in the interior, damping on an annulus, and

damping on an offset disc. The first two cases satisfiy the

hypotheses of the asymptotic formula (2—9) and compar-

isons can be made between the theoretical and numerical

results.

4.2.1 Damping in an interior disc. In this case, we

observe (as was the case for the square) the localisation

of the strongly damped eigenfunctions in the region of

damping. In addition, we reproduce numerically the as-

ymptotic formula (2—10) for the distribution of the eigen-

values with r0 = 0.5. We note that the asymptotic is

attained relatively quickly. In Figures 4 and 5, we took

N = 64, and computed the first 620 eigenvalues of the re-

sulting matrix with Im(λmax) ≈ 60. We observe that the
cumulative distribution function (antiderivative of the

probability distribution) is of the right form. The proba-

bility distribution function itself is quite innacurate, but

computations show that this can be improved by means

of a finer discretisation. However, the computations then

become extremely costly.

This comparison provides preliminary evidence in fa-

vor of the more general result (2—4) concerning the rela-

tion between the geometry and the spectrum.
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FIGURE 1. Distribution of eigenvalues for a(x) = 1 on the left half of the unit square.
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(a) Eigenfunction corresponding to lightly

damped eigenvalue λ = −0.13 + i 32.
(b) Eigenfunction corresponding to strongly

damped eigenvalue λ = −0.89 + i 31.

(c) Eigenfunction corresponding to an eigenvalue on the central trunk λ = −0.5 + i 21.

FIGURE 2. Eigenfunctions for damping on the left half of the unit square.

FIGURE 3. Damping geometries for the disc (a(x) > 0

in shaded region): (a) damping in an interior disc; (b)

damping in exterior annulus; (c) damping in an offset
disc.

4.2.2 Damping on an annulus. In this case, we again

observe the phenomenon of localisation of the eigenfunc-

tions correponding to strongly damped eigenvalues in the

region where a(x) > 0. Damped eigenvalues correspond

to whispering gallery modes whereas undamped modes

are concentrated in the center of the disc. Numerical re-

sults are not shown here, but can be easily reproduced

by the interested reader with the aid of the MATLAB

code provided (see Section 5.). One could also verify the

asymptotic formula (2—9).

4.2.3 Damping on an offset disc. When the damping

is localised in an offset disc, we cannot expect the eigen-

functions corresponding to the strongly damped eigen-

values to be concentrated in the region of damping as in

the other cases. This is due to the fact that rays can-

not be trapped in such a region. However, we clearly

observe the effect of the damping. The damped eigen-

functions are either whispering modes (see Figure 6(a))

or they are oriented towards the damping region as in

Figure 6(c), whereas the undamped eigenfunctions are

concentrated in the interior (see Figure 6(b)) or are ori-

ented in such a way as to avoid the damping region as

in Figure 6(d). This is precisely what one would expect

from the point of view of the geometrical optics: Trajec-

tories of undamped rays avoid the damping region. Once

again, we seem to have a (qualitative) confirmation of

the general result (2—4).
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FIGURE 4. Cumulative distribution functions for damping in an interior disc of radius r = 0.5: comparison of the
geometrical and numerical calculated distributions.
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FIGURE 5. Probability distribution functions for damping in an interior disc of radius r = 0.5: comparison of the
geometrical and numerically calculated distributions.
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(a) Eigenfunction corresponding to strongly
damped eigenvalue λ = −0.04 + i 10.

(b) Eigenfunction corresponding to lightly
damped eigenvalue λ = −0.005 + i 10.

(c) Eigenfunction corresponding to strongly
damped eigenvalue λ = −0.021 + i 20.

(d) Eigenfunction corresponding to lightly
damped eigenvalue λ = −0.0005 + i 20.

FIGURE 6. Eigenfunctions for damping on an offset disc of radius r = 0.2 centred at (−0.8, 0).

FIGURE 7. Damping geometries for the dog-bone (a(x) > 0 in shaded region): (a) damping in left disc; (b) damping in
both discs; (c) damping in shaft.

4.3 Damping on a Dog Bone Shape

Here we take the famous dumbbell (or dog bone) shape.

We consider several cases (see Figure 7) for the support

of the damping function a(x). This is an attempt to

simulate “realistic” geometries.

First, we place the damping in the left-most disc

(see Figure 8). The plots of the eigenfunctions are

shown below in Figure 9 for different eigenvalues. We

clearly observe that the eigenfunctions corresponding to

strongly damped eigenvalues are concentrated in the left-
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FIGURE 8. The dog-bone region with a(x) = 1 in the left-most disc: mesh, damping, eigenvalues.

most disc (see Figures 9(a), 9(c)), whereas the slightly

damped ones concentrate in the shaft and the right-

most disc as can be seen in Figures 9(b) and 9(d).

The eigenfunction corresponding to an eigenvalue in the

midrange, spreads its energy over the entire domain–see

Figure 9(e).

When we damp in both extremities (see Figure 11), we

observe the localisation of the eigenfunctions as expected;

that is, localisation in the two discs of the strongly

damped eigenfunctions (see Figures 10(a), 10(c)) and lo-

calisation in the shaft of the slightly damped ones (see

Figure 10(b)). Averagely damped eigenfunctions spread

their energy over the whole domain–see Figures 10(d)

and 10(e). When the damping is concentrated in the

shaft, we obtain the inverse effect.

4.4 Damping in the Sleeves of a Football Jersey

This geometry is composed of a half ellipse with two

rectangles (the “sleeves”) and a trapezoid (the bodice)

placed below it (see Figure 13). The physical problem

from which it is arises is the following: If one lights a

candle (or makes a sound) in one of the sleeves, can it

be seen (or heard) in the bodice area? From geometrical

considerations, the half ellipse will reflect any rays ema-

nating from the sleeves in such a way as to always avoid

the bodice area. Thus, the answer to the above question

is “no” (ignoring all diffraction effects).

Our numerical simulations reproduce this phenom-

enon. We place the damping in the two sleeves and plot

the eigenvectors corresponding to strongly damped and

to undamped eigenvalues. In Figure 12, we clearly see

how the energy of the damped modes is concentrated on

rays that do not reflect into the central area at all (Figure

12(a), 12(c)), whereas the energy of an undamped mode

is confined to the half-ellipse and does not penetrate the

sleeves (Figure 12(b)).

According to the geometrical optics, we would expect

to find a gap in the spectrum between the modes confined

to the sleeves and the modes confined in the half-ellipse.

This is borne out by the simulations, where the eigenval-

ues are concentrated in two vertical strips (one close to

the imaginary axis, one further to the left) and the few



238 Experimental Mathematics, Vol. 12 (2003), No. 2

-1
-0. 5

0
0.5

1

-1
-0. 5

0
0.5

1
0

0.005

0.01

0.015

x

Eigenvector, φ
2
, of damped wave operator

y

|φ
(x

,y
)|

 -1  -0.5 0 0.5 1
 -1

 -0.5

0

0.5

1

λ= 0.49 + 8.9i

(a) Eigenfunction corresponding to strongly
damped eigenvalue λ = −0.49 + i 8.9.
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(b) Eigenfunction corresponding to lightly
damped eigenvalue λ = −4× 10−9 + i 8.9.
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(c) Eigenfunction corresponding to strongly
damped eigenvalue λ = −0.5 + i 14.4.
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damped eigenvalue λ = −0.0012 + i 13.4
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value on the central trunk λ = −0.15+i 17.8.

FIGURE 9. Eigenfunctions for damping on the left disc of the dog-bone.
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(a) Eigenfunction corresponding to strongly
damped eigenvalue λ = −0.5 + i 14.

-

(b) Eigenfunction corresponding to lightly
damped eigenvalue λ = −0.077 + i 15.

-

(c) Eigenfunction corresponding to strongly
damped eigenvalue λ = −0.5 + i 19.

-

(d) Eigenfunction corresponding to light av-
eragely damped eigenvalue λ = −0.12+ i 16.

-

(e) Eigenfunction corresponding to averagely
damped eigenvalue λ = −0.29 + i 18.

FIGURE 10. Eigenfunctions for damping on both discs of the dog-bone.
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FIGURE 11. The dog-bone region with a(x) = 1 in both discs: mesh, damping, eigenvalues.

-

(a) Eigenfunction corresponding to strongly
damped eigenvalue λ = −1.5 + i 20.

-

(b) Eigenfunction corresponding to lightly
damped eigenvalue λ = −0.013 + i 20.

-

(c) Eigenfunction corresponding to strongly
damped eigenvalue λ = −1.4 + i 40.

FIGURE 12. Eigenfunctions for damping in both sleeves of the football jersey.
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FIGURE 13. The football jersey geometry with a(x) = 1 in both sleeves (actual computations performed on the right-most
case).

eigenvalues situated in the gap correspond to diffracted

modes (exactly as one might expect from the physics.)

5. CONCLUSION

In conclusion, the numerical experiments have borne out

our optimism concerning the strong links between the as-

ymptotic distribution of the eigenvalues and the geomet-

ric damping. We have observed that “tracing the rays”

of geometrical optics effectively leads to a very good ap-

preciation of the eigenvalue distribution.

The MATLAB code used in this paper is freely

available (as is) on the first author’s web site at

http://www.univ-tln.fr/~marka/damp. Full color graph-

ics of all numerical results may also be found at this URL.
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