
New Computations Concerning

the Cohen-Lenstra Heuristics
Herman te Riele and Hugh Williams

CONTENTS

1. Introduction
2. Determination of the Regulator R2 from an Integral

Multiple M of R2

3. A Modification of Bach’s Result
4. Finding a Divisor of h
5. Implementation and Computational Results
Acknowledgments
References

2000 AMS Subject Classification: Primary 11R29; Secondary 11Y40

Keywords: Distribution of class numbers, Cohen-Lenstra
heuristics, Hooley’s conjecture

Let h(p) denote the class number of the real quadratic field
formed by adjoining

√
p , where p is a prime, to the rationals.

The Cohen-Lenstra heuristics suggest that the probability that
h(p) = k (a given odd positive integer) is given by Cw(k)/k,
where C is an explicit constant and w(k) is an explicit arith-
metic function. For example, we expect that about 75.45%
of the values of h(p) are 1, 12.57% are 3, and 3.77% are 5.
Furthermore, a conjecture of Hooley states that

H(x) :=

p≤x
h(p) ∼ x/8,

where the sum is taken over all primes congruent to 1 modulo
4. In this paper, we develop some fast techniques for evaluating
h(p) where p is not very large and provide some computational
results in support of the Cohen-Lenstra heuristics. We do this
by computing h(p) for all p (≡ 1 mod 4) and p < 2 · 1011. We
also tabulate H(x) up to 2 · 1011.

1. INTRODUCTION

Let D denote a square-free positive integer and let K =
Q(
√
D) be the quadratic field formed by adjoining

√
D

to the rationals Q. Set

r =
2 when D ≡ 1 mod 4,
1 otherwise.

If ω = (r− 1+√D)/r, then O = Z+ ωZ is the maximal
order (the ring of algebraic integers) of K. Let 6 (> 1)

be the fundamental unit of K, R = log 6 be the regulator
of K, and h = h(D) be the class number of K.
In [Cohen and Lenstra 84a, Cohen and Lenstra 84b],

Cohen and Lenstra developed some heuristics to explain

the distribution of the odd part of the class groups of

quadratic fields. In particular, they gave reasons to ex-

pect that the probability that h∗(D) (the odd part of
h(D)) is equal to a given positive odd integer k is given

by

Prob(h∗(D) = k) = Cw(k)/k := P (k), (1—1)

cs A K Peters, Ltd.
1058-6458/2001 $0.50 per page

Experimental Mathematics 12:1, page 99

100 Experimental Mathematics, Vol. 12 (2003), No. 1

where C = .754458173... and

w(k)−1 =
pα||k

pα 1− p−1 1− p−2 ... 1− p−α .

If D is a prime, then h∗(D) = h(D). Also, it is not

unreasonable to expect that quadratic fields with prime

values of D behave like any others with respect to the

odd part of the class group; thus, we would expect that

Prob(h(p) = 1) = C,

when p is a prime. This suggests that for at least 3/4

of all primes we have h(p) = 1; it must, however, be

stressed here that it is not even known that there ex-

ists an infinitude of values of D for which h(D) = 1.

Nevertheless, computations performed by Stephens and

Williams [Stephens and Williams 88]; Jacobson, Lukes,

and Williams [Jacobson et al. 95]; and Jacobson [Jacob-

son 98] provide much numerical evidence in support of

the Cohen-Lenstra heuristics.

We also mention that with some additional assump-

tions, Cohen was able to show (assuming the Cohen-

Lenstra heuristics) that

H(x) :=
p≤x

p≡1 mod 4

h(p) ∼ x/8,

a result conjectured by Hooley [Hooley 84]. This conjec-

ture and (1—1) were tested for all primes p ≡ 1 mod 4 up
to 109 in [Jacobson et al. 95]. It was found that H(x)/x

seemed to be increasing at such a slow rate that it is

hard to predict whether it would reach 1/8, but that for

small values of k, (1—1) gives a quite accurate prediction

of what actually happens for p < 109.

In van der Poorten, te Riele, and Williams [van der

Poorten et al. 01], some very fast methods were devel-

oped for computing in real quadratic fields when D is not

very large. These were used to verify the Ankeny-Artin-

Chowla conjecture for all primes p (≡ 1 mod 4) such that
p < 1011. In this paper, we will show how these ideas

can be extended to the problem of testing the Cohen-

Lenstra heuristics for the same (and also larger) values

of p and for testing Hooley’s conjecture for these p. As

there are 4 003 548 492 primes congruent to 1 modulo 4 up

to 2 · 1011, it was necessary to develop very fast methods
to compute h(p) for p in this range.

We make use of the analytic class number formula

2h(p)R =
√
pL(1,χp), (1—2)

where L(1,χp) is the Dirichlet L-function of the charac-

ter χp evaluated at s = 1. We will let R2 = log2 6 =

(log2 e)R. We will also assume the truth of the Extended

Riemann Hypothesis (ERH) for L(s,χp). Broadly speak-

ing, our algorithm to compute h(p) consists of two main

components:

1. Computation of R2.

(a) Find an integral multiple M of R2. This step

is fully described in [van der Poorten et al. 01].

(b) Compute R2 fromM or prove that R2 > M/P ,

where P is some small prime (e.g. 11 or 13).

(c) Given that R2 > M/P , find R2.

2. Find h = h(p).

(a) We use the approximation S(T, p) (for suitable

T) of logL(1,χp), computed in Step 1(a). This

satisfies, on the assumption of the ERH,

| logL(1,χp)− S(T, p)| < A(T, p),

where A(T, p) is an error bound discussed in

Section 3.

Let Ne(x) denote the nearest odd integer

to x, and put

h̃ := Ne

√
p exp(S(T, p))

R2 log 4
∈ N,

δ :=

√
p exp(S(T, p))

R2 log 4
− h̃ (|δ| < 1).

(b) Try to compute h from h̃.

Put h1 = 1.

Suppose h1 ≥ |g − δ|/2, where g ∈ Z.
If h̃+ g = h1 and

exp(A(T, p)) < 3h1/(h̃+ δ), (1—3)

then h = h̃+ g.

If h̃+ g ≥ 3h1 and

exp(A(T, p)) < min
h̃+ g + 2h1

h̃+ δ
,

h̃+ δ

h̃+ g − 2h1
,

(1—4)

then h = h̃+ g.

If this procedure does not find h, then find some

h1 > 1 such that h1|h̃+ g, h1|h, h1 > |g − δ|/2
and try again.

(c) If h cannot be found in Step 2(b), treat it as a

separate case, to be dealt with later.

te Riele and Williams: New Computations Concerning the Cohen-Lenstra Heuristics 101

Evidently, this method is a variant of Lenstra’s [Lenstra

82] algorithm for evaluating R and h(p). This is of com-

putational complexity O(p1/5+6) under the ERH. What
we need to do here is make the process execute as rapidly

as possible for values of p that are relatively small, in our

case p < 2 · 1011.

2. DETERMINATION OF THE REGULATOR R2

FROM AN INTEGRAL MULTIPLE M OF R2

For the sake of brevity, we will make use of the same

notation as that used in [van der Poorten et al. 01], as

well as several results used there. If b is any reduced

principal integral ideal of O, we let

b1(= b), b2, b3, . . . , bm, . . . (2—1)

be the sequence of reduced principal ideals produced by

applying the continued fraction algorithm to b (see [van

der Poorten et al. 01]). We let Ψ1 = 1 and

Ψj =

j−1

i=1

ψi

have the same meaning as that assumed in [van der

Poorten et al. 01] and we have bj = (Ψj)b1. We de-

fine ζj = ζ(bj), ρj = ρ(bj) by

2ζj−1 < Ψj < 2ζj , ρj = 2ζj/Ψj .

Lemma 2.1. 1 < ρj < 2.

Proof: Follows easily from the definition of ρj .

Lemma 2.2. If b1 = (1) and m is the least positive integer

(> 1) such that bm = (1), then

R2 = ζm − log2 ρm.

Proof: Follows from the fact that Ψm = 6 and the defin-

ition of ζj and ρj .

If x ≥ 0 is a real number, we define b(x) to be that
ideal in the sequence (2—1) such that Ψj ≤ 2x and

Ψj+1 > 2
x. We also define ρ(x) = 2x/Ψj .

Let B = log2(2
√
D/r) and recall from [van der

Poorten et al. 01] that log2(L(bi)ψi) < B and

log2(L(b(x))ρ(x)) < B. Here, L(b) denotes the least

positive rational integer in the ideal b. If b is a reduced

ideal, then L(b) = N(b), where N(b) is the norm of b.

Let t be any positive real such that t ≥ 2B + 1 and let
L be the list of ideals

{b1, b2, . . . , bm−1}, (2—2)

where m is the least positive integer such that ζm >

t+ B + 1. Assume that b1 is the only ideal b in L such
that b = (1). Under these circumstances, we have the

following lemma and theorems.

Lemma 2.3. 6 > 2t.

Proof: We know that 6 = Ψr and r ≥ m, so that 6 =

Ψr ≥ Ψm > 2ζm−1 > 2t+B .

Theorem 2.4. There must exist some i ≥ 1 such that

either b(2it) ∈ L or b(2it) ∈ L.

Proof: Since 6 > 2t, there is a unique n ∈ Z such that
n ≥ 2 and

2(n−1)t < 6 < 2nt.

If 2|n, put i = n/2 and bk = b(nt) = b(2it). Here, we

may assume that bk = (Ψk) where Ψk ≤ 2nt,Ψk+1 > 2nt.
It follows that since 6 = Ψr and Ψr < 2

nt, we must have

r ≤ k; hence, 6 ≤ Ψr. If we consider θ = Ψk6−1, we have
θ ≥ 1 and

θ < 2−(n−1)t2nt = 2t.

Since bk is a reduced ideal, so is (θ) (= bk). Hence,

(θ) = bj and bj = (Ψj), where

1 ≤ Ψj < 2t ⇒ 2ζj−1 < 2t ⇒ ζj < t+ 1⇒ bj ∈ L.

If 2 n, put i = (n− 1)/2 and bk = b(2it). Now consider
θ = 6|Ψk|. We know that Ψk|Ψk| = L(b(2it)) := Lk ∈
Z+. Hence,

θ = 6Lk/Ψk >
2(n−1)tLk
22it

= Lk > 1.

Also,

θ <
2ntLk

22it
ψk < 2

t(2
√
D/r), (Lkψk < 2

√
D/r).

Now (θ) = bk is reduced; thus, (θ) = bj = (Ψj) and

1 < Ψj < 2
t(2
√
D/r). Also,

2ζj−1 < Ψj ⇒ ζj −1 < t+B ⇒ ζj < t+B+1⇒ bj ∈ L.

102 Experimental Mathematics, Vol. 12 (2003), No. 1

Theorem 2.5. Let i be the least integer (≥ 1) such that
either b(2it) ∈ L or b(2it) ∈ L.
If b(2it) ∈ L and b(2it) = bj , then

R2 = 2it− ζj − log2(ρ(2it)/ρj).

If b(2it) ∈ L and b(2it) = bj , then

R2 = 2it+ ζj − log2(ρ(2it)ρjL(b(2it))).

Proof: As before, define n (≥ 2) by

2(n−1)t < 6 < 2nt.

We use the same notation as in Theorem 2.4. Put

iI =
n/2 if 2|n
(n− 1)/2 if 2 n.

We know that either b(2iIt) or b(2iIt) ∈ L by Theorem
2.4. Hence, i ≤ iI. If i = iI, then 6 = Ψk/Ψj when

b(2iIt) = bj ∈ L, or 6 = ΨkΨj/Lk when b(2iIt) = bj ∈ L.
Thus, we may assume that i ≤ iI − 1⇒ n− 1 ≥ 2i.
If b(2it) ∈ L, then η = Ψk/Ψj ≤ 22it is a unit and

η =
Ψk

Ψj
>

22it

ψkΨj
> 22it−B−ζj

≥ 22t−B−ζj > 22t−B−(t+B+1) = 2t−2B−1 ≥ 1.

Thus, η = 6l (l ≥ 1). If l = 1, we are done. If l > 1, then
η ≥ 62 and

22it ≥ 22(n−1)t ≥ 24it, which is a contradiction.

If b(2it) ∈ L, then η = ΨkΨj/Lk is a unit and

η = ΨkΨj/Lk > Ψj2
2it/Lkψk > 2

2it−B > 1.

Again, we have η = 6l (l ≥ 1). If l > 1, then η ≥ 62 and

Ψj2
2it ≥ η ≥ 22(n−1)t ≥ 24it.

Since Ψj < 2
ζj < 2t+B+1, we get t ≤ B + 1, a contradic-

tion. Thus, in the first case, we get

6 = Ψk/Ψj = 2
2it 1

ρ(2it)
2ζj

1

ρj

⇒ R2 = 2it− ζj − log2(ρ(2it)/ρj).

In the second case, we get

6 = ΨkΨj/Lk ⇒ R2 = 2it+ ζj − log2(ρ(2it)ρjL(b(2it)).

The following corollary to Theorem 2.5 will be useful

in a subsequent section.

Corollary 2.6. If n, i, iI are defined as in the theorem,
then i = iI when 2 n, and i = iI or iI − 1 if 2|n.

Proof:

Case 1. (2|n.) In this case, we have n = 2iI and 6 ≥
2(2i

I−1)t. Now if 6 = Ψk/Ψj, we get

6 ≤ Ψk ≤ 22it.

It follows that 2it ≥ (2iI − 1)t; hence,

2i ≥ 2iI − 1⇒ i ≥ iI ⇒ i = iI;

recall that i ≤ iI. If 6 = ΨkΨj/Lk, then

6 < 22it+t+B+1.

We get

(2iI − 1)t < (2i+ 1)t+B + 1
and

2iI − 1 < 2i+ 1 + B + 1
t

< 2i+ 2.

Thus,

2iI − 1 ≤ 2i + 1
and

iI ≤ i+ 1⇒ i = iI or iI − 1.
Case 2. (2 n.) In this case, we have n = 2iI + 1 and
6 > 22i

It. If 6 = ΨkΨj/Lk, then

2it+ t+B + 1 > 2iIt

and

2i+ 2 > 2iI ⇒ i+ 1 > iI ⇒ i ≥ iI ⇒ i = iI.

If 6 = Ψk/Ψj , then

22it > 6 ≥ 22iIt ⇒ i ≥ iI ⇒ i = iI.

We can now make use of the following algorithms to

find R2, given an integral multiple M of R2.

(1) Select a prime P such that P 2B < M . In our com-

putations, we used P = 11.

(2) Put K = M/P , t = fc (see [van der Poorten et al.

01, page 1325].

Algorithm 2.7. (Compute R2 or prove that R2 > K.)

(1) Compute the list L (2—2). If bj = (1) for bj ∈ L,
compute R2 = ζj − log2 ρj and terminate.

te Riele and Williams: New Computations Concerning the Cohen-Lenstra Heuristics 103

(2) For i = 1, 2, . . . , {(K + 2B + 1)/2tQ, compute b(2it).
If b(2it) = bj ∈ L, then R2 = 2it− ζj
− log2(ρ(2it)/ρj) and terminate.
If b(2it) = bj ∈ L, then R2 = 2it+ ζj
− log2(ρ(2it)ρjL(b(2it))) and terminate.

End for

R2 > K.

Proof (of correctness): Clearly, when R2 is computed, it

is correct by Lemma 2.2 and Theorem 2.5. Suppose R2 is

not computed by the algorithm; we know that for some

i, we must have either

R2 = 2it− ζj − log2(ρ(2it)/ρj)

or

R2 = 2it+ ζj − log2(ρ(2it)ρjL(b(2it)))
and i > {(K + 2B + 1)/2tQ. In the first case, we have

R2 >
K + 2B + 1

2t
2t+ 2t− (t+B + 1)−B > K.

In the second,

R2 > 2t
K + 2B + 1

2t
−B + 1 > K.

We let {p1(= 3), p2, p3, . . . , pj} be the ordered set of all
primes < P . Then pj+1 = P . We can now use the

following algorithm to compute R2 when Algorithm 2.7

fails to do so.

Algorithm 2.8. (Given that R2 > K, find R2.)

(1) b1 = (1), i← 1,M I ←M.

(2) while i ≤ j
compute b(M I/pi)
if b(M I/pi) = b1
M I ←M I/pi

else

i← i+ 1

end if

end while

R2 =M
I.

Proof (of correctness): We first note that if M I is an
integral multiple of R2, sayM

I = sR2, and b(M I/p) = b1
for some prime p < P , then bk = (Ψk) = b(M

I/p), where
Ψk = 6t (t ≥ 0), 6t ≥ 2M I/p and 6t < (2

√
D/r)2M

I/p.

It follows that 6pt ≥ 2M I = 6s and pt ≥ s. Furthermore,

since 6pt < (2
√
D/r)p6s, we get (2

√
D/r)p > 6pt−s. If

pt − s ≥ 1, then pB > R2 and PB > K = M/P , a

contradiction. Thus, we must have tp = s, which means

that M I/p is an integral multiple of R2.
We also note that at the end of the algorithm, we have

M I = sR2, s ∈ Z and pi s for all i ≤ j. Then, M I = R2
or s ≥ pj+1 = P . Now,

M ≥M I = sR2 ⇒ R2 ≤M/P = K,
a contradiction. Thus, R2 =M

I.

3. A MODIFICATION OF BACH’S RESULT

In [Bach 95], Bach provided (under the ERH) explicit

constants A,B such that if

AI(T, p) = (A log p+B)/(
√
T logT), (3—1)

then

logL(1,χp)−
T−1

i=0

ai logB(T + i) < A
I(T, p),

where ai = (x + i) log(x + i)/S(x), S(x) =
x−1
i=0 (x +

i) log(x+ i), and B(x) = q<x(1− χp(q)/q)−1. This al-
lows us to get an estimate for L(1,χp) which is very useful

for determining h(p) once R2 has been computed. Since

most of the values of h(p) tend to be small, we found

it useful to try to improve Bach’s results. Our improve-

ment is only a very slight one, but it proved to be very

effective for determining h(p) for many values of p. As

the technique of deriving this improvement is analogous

to the treatment given by Jacobson and Williams [Jacob-

son and Williams 03] for estimating L(2,χ), we will only

sketch it here.

As in [Bach 95], we put

B(x,χ) =

q≥x

q

q − χ(q) , B(x,χ) =
q<x

q

q − χ(q) ,

where the products are taken over prime values of q and

χ is a nonprincipal character modulo m. Since

logL(1,χ) =

x−1

i=0

ai logL(1,χ)

=

x−1

i=0

aiB(x+ i,χ) +

x−1

i=0

aiB(x+ i,χ),

we need to bound the value of

E(x,χ) =

x−1

i=0

ai logB(x+ i,χ).

104 Experimental Mathematics, Vol. 12 (2003), No. 1

As in [Bach 95], we get

|E(x,χ)| ≤
x−1

i=0

ai
Ψ(x+ i− 1,χ)
(x+ i) log(x+ i)

+

x−1

i=0

ai
Ψ1(x+ i,χ)(log(x+ i) + 1)

(x+ i)2(log(x+ i))2

+

x−1

i=0

ai

∞

x

Ψ1(t,χ)

t3
2

log t
+

3

(log t)2
+

2

(log t)3
dt

+

x−1

i=0

aiT (x+ i,χ) .

The method of Lemma 5.1 of [Bach 95] can be used to

prove that

|T (x,χ)| ≤ 2C 2

x1/2 log x
+
3/2

log 2
x−2/3 ,

where C = 1.25506. Hence,

x−1

i=0

aiT (x+ i,χ)

≤ 4C
x−1

i=0

ai

(x+ i)1/2 log(x+ i)
+
3C

log 2
x−2/3

≤ 4C

S(x)

x−1

i=0

(x+ i)1/2 +
3C

log 2
x−2/3.

As noted in [Jacobson and Williams 03],

x−1

i=0

(x+ i)1/2 < λx3/2,

where λ = 2(23/2 − 1)/3 ≈ 1.2189514; hence,
x−1

i=0

aiT (x+ i,χ) ≤ 4C

S(x)
λx3/2 +

3C

log 2
x−2/3.

Also,

S(x) > U(x) :=
x−1

0

(t+ x) log(t+ x)dt

=
1

2
(2x− 1)2 log(2x− 1)− 1

2

−x2 log x− 1
2

.

Since, under the ERH, we have

Ψ1(x,χ) ≤ c(m)x3/2 + h(x),

where

c(m) =
2

3
logm+

5

3

and

h(x) = x log x+ 2(c(m) + 1)x+ 3c(m) + 1,

we can use the reasoning of [Bach 95] to find that

x−1

i=0

ai
Ψ(x+ i− 1,χ)
(x+ i) log(x+ i)

<
(1 + 23/2)c(m)x3/2

U(x)

+
h(x) + h(2x)

x2 log x
,

x−1

i=0

ai
Ψ1(x+ i,χ)(log(x+ i) + 1)

(x+ i)2(log(x+ i))2
≤ c(m)λx

3/2

U(x)

+
c(m)λ

x1/2(log x)2
+
h(x)(1 + log x)

x2(log x)2
,

x−1

i=0

ai

∞

x

Ψ1(t,χ)

t3
2

log t
+

3

(log t)2
+

2

(log t)3
dt

<
2c(m)λx3/2

U(x)
2 +

3

log x
+

2

(log x)2

+
∞

x

h(t)

t3
2

log t
+

3

(log t)2
+

2

(log t)3
dt.

We can next deduce (again using the reasoning in [Bach

95]) that

h(x) + h(2x)

x2 log x
+
h(x)(1 + log x)

x2(log x)2

+
∞

x

h(t)

t3
2

log t
+

3

(log t)2
+

2

(log t)3
dt

≤ c(m) 12

x log x
+

8

x(log x)2
+

4

x(log x)3
+

12

x2 log x

+
15

2x2(log x)2
+

3

x2(log x)3

+
6

x
+
10 + 2 log 2

x log x
+

6

x(log x)2
+

2

x(log x)3
+

4

x2 log x

+
5

2x2(log x)2
+

1

x2(log x)3
.

On combining our previous results, we see that

logL(1,χ)−
T−1

i=0

ai logB(T + i,χ) < A(T,m),

where

A(T,m) = c(m)G(T) +H(T), (3—2)

te Riele and Williams: New Computations Concerning the Cohen-Lenstra Heuristics 105

G(x) =
x3/2

U(x)
1 + 23/2 + 5λ+

7λ

log x
+

4λ

(log x)2

+
12

x log x
+

8

x(log x)2
+

4

x(log x)3
+

12

x2 log x

+
15

2x2(log x)2
+

3

x2(log x)3
,

H(x) =
4Cλx3/2

U(x)
+

3C

(log 2)x2/3
+
6

x
+
10 + 2 log 2

x log x

+
6

x(log x)2
++

2

x(log x)3
+

4

x2 log x
+

5

2x2(log x)2

+
1

x2(log x)3
,

and U(x), C, λ, c(m) have been defined above.

In our case, we have m = p and we set

B(T + i) = B(T + i,χp),

S(T, p) =

T−1

i=0

ai logB(T + i).

Putting E(T, p) = logL(1,χp)− S(T, p), we get
|E(T, p)| < A(T, p).

Since

exp(E(T, p) + S(T, p)) = L(1,χp),

we have by (1—2)

eE(T,p)(h̃+ δ) = h(= h(p)),

where

h̃ = Ne

√
peS(T,p)

R2 log 4

and

δ =

√
peS(T,p)

R2 log 4
− h̃.

Suppose we suspect that h̃ + g (odd) is the value of h,

where |g| is a small even integer (we used |g| ≤ 4). We
also assume that we have an odd factor h1 (≥ 1) of h̃+ g
which must also divide h. This will be explained in the

next section. Assume further that h1 ≥ |g−δ|/2 and put
h2 = h/h1. Evidently,

eE(T,p)
h̃+ δ

h1
= h2. (3—3)

We consider two cases.

Case 1. (E(T, p) > 0.) In this case, we see from (3—3)

that

h2 >
h̃+ δ

h1
=
h̃+ g

h1
− g − δ

h1
.

If

eA(T,p) <
h̃+ g + 2h1

h̃+ δ
,

then

eE(T,p) <
h̃+ g + 2h1

h̃+ δ

and from (3—3)

h2 <
h̃+ g

h1
+ 2.

Since (g − δ)/h1 ≤ 2, we get
h̃+ g

h1
− 2 < h2 < h̃+ g

h1
+ 2.

It follows that, because h2 must be odd, h2 = (h̃+ g)/h1
or h = h̃+ g.

Case 2. (E(T, p) < 0.) In this case, we get

h2 <
h̃+ g

h1
− g − δ

h1

from (3—3). Suppose (h̃+ g)/h1 ≥ 3. If

eA(T,p) <
h̃+ δ

h̃+ g − 2h1
,

then

e−A(T,p) >
h̃+ g − 2h1
h̃+ δ

and

h̃+ g

h1
− 2 < e−A(T,p) h̃+ δ

h1
< eE(T,p)

h̃+ δ

h1
= h2.

Since (g − δ)/h1 ≥ −2, we get
h̃+ g

h1
− 2 < h2 < h̃+ g

h1
+ 2

and h = h̃ + g. If (h̃ + g)/h1 < 3, then h̃ + g = h1. If

h2 ≥ 3, then

eE(T,p) ≥ 3h1

h̃+ δ
=

3h1

h1 − g + δ
≥ 1,

a contradiction. Hence, h2 = 1 and h̃+ g = h.

Recapitulating, we have shown that if h̃ + g ≥ 3h1,

|g − δ| ≤ 2h1, and

eA(T,p) < min
h̃+ g + 2h1

h̃+ δ
,

h̃+ δ

h̃+ g − 2h1
,

then h = h̃+ g. Also, if h̃+ g = h1, |g − δ| ≤ 2h1 and

eA(T,p) <
3h1

h̃+ δ
,

106 Experimental Mathematics, Vol. 12 (2003), No. 1

then h = h̃+ g. Thus, as long as we have some h1 such

that 2h1 ≥ |g − δ| and some T such that exp(A(T, p)) is
sufficiently small, we can find the value of h. As we wish

to limit the amount of work to evaluate S(T, p) (that is,

keep T as small as possible), it is important to be able

to have the smallest possible bound on E(T, p). Notice

that while our formula for A(T, p) is rather complicated,

it is easy to compute because the values of G(T) and

H(T) can be easily tabulated for various values of T in

advance.

In Table 1, we compare our error bound A(T, p) on

| logL(1,χp) − S(T, p)| (given below (3—2)) with Bach’s
error bound AI(T, p) (given in (3—1) and in Table 3 of
[Bach 95], with A and B taken from the third and fourth

column of that table). The ratio A(T, p)/AI(T, p) varies
slowly (with p and T) near 0.78 so we conclude that

our error bound is about 22% sharper than Bach’s er-

ror bound.

p T AI(T, p) A(T, p) A(T, p)/AI(T, p)
9 999 999 937 100 4.5704 3.5820 0.7837

500 1.3418 1.0476 0.7808

1000 0.8256 0.6450 0.7813

5000 0.2841 0.2224 0.7827

99 999 999 977 100 4.9685 3.8766 0.7802

500 1.4596 1.1332 0.7764

1000 0.8983 0.6978 0.7768

5000 0.3094 0.2407 0.7779

199 999 999 949 100 5.0884 3.9653 0.7793

500 1.4950 1.1590 0.7752

1000 0.9201 0.7136 0.7756

5000 0.3169 0.2462 0.7767

TABLE 1. Comparison of AI(T, p) and A(T, p).

In order to test the effect of this improvement on

the efficiency of our algorithm, we compared the use

of both bounds for the computation of the class num-

bers of the 157 987 primes ≡ 1 mod 4 in the interval

[5 000 000, 10 000 000]. For T = 1000 and f = 10, in the

case of our bound, our algorithm determined the class

number h(p) = 3 with Step 2(b) (see Section 1), from

h̃ = 3, h1 = 1 in 18 169 cases, because (1—4) was satis-

fied. For these 18 169 cases, this inequality was not sat-

isfied with the use of Bach’s error bound AI(T, p). Most
of these cases were handled in the follow-up of Step 2(b),

namely where a divisor h1 of h is found, but this in-

creased the CPU time. In the case of our bound, our

algorithm took 115 CPU seconds while 516 cases were

left undetermined (those are treated with higher values

of T and f ; see Section 5). In case of Bach’s bound, our

algorithm took 149 CPU seconds, while 3070 cases were

left undetermined. We conclude that the use of our er-

ror bound A(T, p) increases the efficiency of our program

with at least 20% compared with the use of Bach’s error

bound.

4. FINDING A DIVISOR OF h

In this section, we will explain how to find a divisor of

the class number h when we have an expectation as to

what h is. In order to do this, we must first derive a

technique for detecting whether or not a given reduced

ideal is principal.

We define, as before,

L = {b1(= (1)), b2, . . . , bm−1},
where ζm > t+B + 1 and ζm−1 ≤ t+B + 1. Suppose a
is any reduced ideal. We define

L(a) = {a1(= (a)), a2, . . . , amI−1}
where ai+1 is obtained from ai by the continued fraction

algorithm. Here, ζ ImI > 2t+B + 1, ζ
I
mI−1 ≤ 2t+B + 1.

Lemma 4.1. If a is a reduced principal ideal and a = (α)
with 1 ≤ α < 6, then if b1 W∈ L(a), we have 6 > α22t.

Proof: We have ai = (ΨIi)a1, where a1 = a = (α) with

1 ≤ α < 6. Since a is principal and reduced, so are all

the ideals in L(a),
⇒ a1 = bk, a2 = bk+1, . . . , amI−1 = bk+mI−2,

for some k ∈ Z+. If 6 = ΨIiα, we must have ai = b1 =

(6) = (1). Since b1 W∈ L(a), it follows that i > mI− 1 and
6 > αΨImI−1 = αΨmI/ψ

I
mI−1 ≥ α2ζ

I
mI−1/ψImI−1

> α22t+B/ψImI−1 > α22t

(ψImI−1 < 2
B).

Now suppose that a is principal. Without loss of gener-

ality, a = (α) (1 ≤ α < 6). Suppose also that a W∈ L. In
this case, we must have α > 2t. We can define k ∈ Z
(k ≥ 2) by

2(k−1)t ≤ α < 2kt.

Since

2(n−1)t ≤ 6 < 2nt,

we get

2(n−k−1)t < 6/α < 2(n−k+1)t.

If b1 W∈ L(a), we see by Lemma 4.1 that 6/α > 22t; hence,
2t < (n− k + 1)t⇒ n− k + 1 > 2⇒ k ≤ n− 1.

Theorem 4.2. If j = k
2 , then b(2jt) ∈ L(a).

te Riele and Williams: New Computations Concerning the Cohen-Lenstra Heuristics 107

Proof: Let b(2jt) = (Ψl), where

Ψl ≤ 22jt, Ψl+1 > 2
2jt.

Consider Ψl/α. We know that α = Ψq for some q (we

are assuming that a is principal and reduced) and since

2(k−1)t < α < 2kt ≤ 22jt,
we see that

Ψq ≤ 22jt ⇒ q ≤ l⇒ Ψl/α = Ψl/Ψq ≥ 1.
Also,

Ψl/α ≤ 22jt/2(k−1)t = 2(2j−k)t+t < 22t.
Now Ψl = αΨIs and 1 ≤ ΨIs < 22t; consequently,

as = (Ψ
I
s)a1 = (Ψ

I
sα) = (Ψl) = b(2jt).

Also, since 1 ≤ ΨIs < 22t, we have as ∈ L(a).
We note that if 2|n, then k = n− 2 means that k is even;
thus,

j =
k

2
=
n

2
− 1 = iI − 1 ≤ i,

by Corollary 2.6. If k < n− 2, then k ≤ n− 3; hence,
k

2
+
1

2
≤ n
2
− 1

and

j =
k

2
≤ n
2
− 1 ≤ i.

If 2 n, then k ≤ n− 2 = 2iI − 1 so we get
k

2
≤ iI − 1

2
⇒ j =

k

2
≤ k
2
+
1

2
≤ iI = i,

by Corollary 2.6. Thus, if we put B = {b1(=
b(0)), b(2t), b(4t), . . . , b(2it)}, we have Theorem 4.3.

Theorem 4.3. If a is any reduced ideal and a W∈ L, then a
is principal if and only if

B ∩ L(a) W= ∅.
Proof: Certainly, if a is not principal, then B ∩L(a) = ∅.
If a is principal and a W∈ L, we have seen already that
b(2jt) ∈ L(a) for some j such that 0 ≤ j ≤ i. Hence,

B ∩ L(a) W= ∅.
We now have our algorithm for principality testing.

Algorithm 4.4. (Determine whether or not a given re-
duced ideal a is principal.)

1. If a ∈ L, then a is principal and the algorithm ter-

minates.

2. Compute a1, a2, . . . and check whether aq ∈ B (q =
1, 2, . . . ,mI−1). (Note that when we need to execute
this algorithm, we usually have R2 < M/P ; hence

B has been computed previously in Algorithm 2.7.)

3. If aq ∈ B, then a is principal. If B ∩ L(a) = ∅, then
a is nonprincipal.

Suppose q is a prime and qα , h̃+ g. We can produce
an algorithm which often determines a nontrivial divisor

of h.

Algorithm 4.5. (Determine that h̃+ g = h or find a
nontrivial divisor of h.)

1. Select a new ideal s from a stock S (to be described
later) of reduced ideals.

2. Test if s is principal. If so, return to Step 1. If a

reduced ideal t equivalent to sh̃+g is not principal, we

know that h W= h̃+g and we terminate the algorithm.
(Of course, if sh̃+g is principal, this causes us to

suspect even more that h = h̃+ g.)

3. If s(h̃+g)/q
α

is principal, go back to Step 1.

4. Compute the least value of β(> 0) such that

s(h̃+g)/q
β

is not principal. Then qα−β+1 is a non-
trivial divisor of h.

Proof (of correctness): Clearly, if t is not principal, then

h W= h̃ + g. If sh̃+g is principal, we let ω be the least

positive integer such that sω is principal (ω > 1). We

know that since sh is principal, we must have ω|h. Now
ω|(h̃+ g)/qβ−1 and ω W |(h̃+ g)/qβ . Hence, qγ ||ω, where
qγ ||(h̃ + g)/qβ−1. Since γ ≥ α − β + 1 and α ≥ β, we

have proved the correctness of Algorithm 4.5.

The ideals in the stock S can be easily developed from
a table of small odd primes R = {r1, r2, . . . , rn}, r1 =
3, r2 = 5, (In the computations described in Section

5, we used n = 34.) For each r ∈ R, the table should
contain a list of all the quadratic residues a of r and the

odd square root x of a mod r which is between 0 and r.

To create S for a given p, we need only find the value
of r such that p ≡ a mod r. Then s = r,

x+
√
p

2 is an

ideal of Q(√p) and since r < √p/2, s is reduced already.

108 Experimental Mathematics, Vol. 12 (2003), No. 1

Although, in principle, Algorithm 4.5 might not find a

divisor of h (this would certainly be the case if h̃+g W= h);
in practice, we found that it worked very well. Thus, if

we know the primes that divide h̃+ g, we can often find

a nontrivial divisor h1 of h. If we are unsuccessful in this

effort, we change the value of g and try again. If this fails

for all even |g| ≤ 4, we put the prime p into a special set
of primes P and deal with them separately.

5. IMPLEMENTATION AND
COMPUTATIONAL RESULTS

5.1 Implementation

We implemented our algorithm for computing h(p) for

primes p ≡ 1 mod 4 in Fortran 771 and we tested and ran
it on one processor of CWI’s SGI Origin 2000 computer

system.2 Here, we describe the six different steps.

1. Step 1(a). (Find an integral multiple M of R2.)

This step is fully described in [van der Poorten et

al. 01]. First, an approximation S(T, p) of L(1,χp)

is computed, for suitable T , and then an approxi-

mation of a multiple of R2 using the analytic class

number formula (1—2). Next, with Algorithm 5.4 of

[van der Poorten et al. 01], an integral multiple M

of R2 is computed from this approximation.

2. Step 1(b). (Compute R2 fromM or prove that R2 >

M/P , where P is some small prime.)

This step is carried out with help of Algorithm 2.7 as

given in Section 2, for suitable f . Some experiments

revealed that P = 11 was sufficient for our purpose.

3. Step 1(c). (Given that R2 > M/11, find R2.)

This step is carried out with help of Algorithm 2.8

as given in Section 2.

4. Step 2(a). (Compute an approximation h̃ of h.)

This is done with the help of the approxi-

mation S(T, p) of logL(1,χp) as computed in

Step 1(a), and the class number formula (1—2).

We take h̃ to be the nearest odd integer to√
p exp(S(T, p))/(R2 log 4) and δ to be the difference√
p exp(S(T, p))/(R2 log 4)− h̃, with |δ| ≤ 1.

5. Step 2(b). (Try to compute h from h̃.)

This is the crucial step in our algorithm. We start to

1This program is available via ftp://ftp.cwi.nl/pub/herman

/CLheuristics/program.f.
2This system consists of 16 R10000/250 MHz processors and 16

R12000/300 MHz processors. In our runs, we did not distinguish

between the two types of processors so fluctuations of about 20%

in CPU times in comparable jobs were accepted as being caused by

the two different types of processors.

carry out this step, as described in Section 1, with

g = 0. If this does not lead to the conclusion that

h = h̃+g, we repeat Step 2(b) with g = 2. The next

tries, as long as we do not find the value of h, are

done for, successively, g = −2, g = 4, and g = −4.
If unsuccessful at this stage, we turn to Step 2(c).

In Step 2(b), an odd divisor h1 > 1 of h̃ + g has to

be found. This is done with the help of Algorithm

4.5, described in Section 4. This, in turn, needs

to test whether a given reduced ideal is principal.

Algorithm 4.5, described in Section 4, does this job.

6. Step 2(c). (Treat the remaining primes.)

For these “stubborn” cases, we resort to the PARI-

GP package, namely, the function quadclassunit.

This is much slower than our algorithm, but the

number of primes left to be treated here is so small

compared with those for which our algorithm could

compute the class number, that the total CPU time

needed for Step 2(c) remains small compared with

the CPU time needed for our algorithm.

5.2 Results

5.2.1 Class Number Computations. We computed

h(p) for all the primes p ≡ 1 mod 4 below the bound

2 · 1011. We made 200 runs, each covering an interval of
length 109. In each run, we first applied our algorithm

with T = 3000, f = 3. For the 200 intervals which we

checked, this was always successful for more than 99% of

the primes and consumed a corresponding portion of the

total CPU time for this run. For the remaining primes,

we repeated our algorithm nine times with increasing val-

ues of T and f , namely with T = 3000+500j, f = 3+5j,

for j = 1, 2, . . . , 9. This further decreased the number of

primes for which our algorithm could not compute the

class number. For example, the interval [199·109, 200·109]
contains 19 217 740 primes which are ≡ 1 mod 4. The

numbers of primes left after each of the above ten steps

was: 99 309, 35 016, 31 396, 28 690, 25 193, 23 366, 21 808,

20 566, 16 060, and 3 677, respectively. The CPU times

for these ten steps were: 63 663, 590, 319, 362, 410, 415,

441, 468, 483, and 1 116 seconds, respectively. The 3 677

primes left after the tenth step were treated with the

PARI-GP package and this required 2 650 CPU seconds.

The total CPU time per run varied between 10 CPU

hours for the 25 423 491 primes which are ≡ 1 mod 4 in
the interval [1, 109] and 20 CPU hours for the 19 217 740

primes which are ≡ 1 mod 4 in the interval [199·109, 200·
109]. Total CPU time was about 3000 CPU hours. Usu-

ally, we executed four runs in parallel on four proces-

te Riele and Williams: New Computations Concerning the Cohen-Lenstra Heuristics 109

x π4,1(x) r1(x) r3(x) r5(x) r7(x) r9(x) r11(x)

109 25423491 1.00976 0.95830 1.00239 1.00646 0.93604 1.00508

2 · 109 49109660 1.00865 0.96285 1.00125 1.00561 0.94171 1.00521

5 · 109 117474981 1.00739 0.96765 1.00110 1.00501 0.94989 1.00530

1010 227523275 1.00654 0.97103 1.00108 1.00426 0.95473 1.00472

2 · 1010 441101890 1.00578 0.97417 1.00128 1.00371 0.95981 1.00415

5 · 1010 1059822165 1.00494 0.97768 1.00128 1.00317 0.96569 1.00363

1011 2059020280 1.00437 0.98001 1.00139 1.00319 0.96930 1.00303

2 · 1011 4003548492 1.00387 0.98214 1.00143 1.00289 0.97265 1.00306

r13(x) r15(x) r17(x) r19(x) r21(x) r23(x) r25(x) r27(x) r29(x)

1.00583 0.95228 1.00483 1.01174 0.95320 1.00873 0.99246 0.92706 1.01402

1.00835 0.95546 1.00647 1.01194 0.95647 1.00717 0.99228 0.93598 1.01220

1.00554 0.96120 1.00602 1.00765 0.96160 1.00750 0.99597 0.94677 1.01042

1.00515 0.96590 1.00650 1.00676 0.96732 1.00639 0.99816 0.95184 1.01074

1.00503 0.96923 1.00535 1.00444 0.97047 1.00575 0.99828 0.95707 1.00800

1.00420 0.97349 1.00465 1.00396 0.97573 1.00488 0.99909 0.96238 1.00642

1.00411 0.97681 1.00434 1.00410 0.97814 1.00506 0.99937 0.96578 1.00434

1.00362 0.97972 1.00368 1.00382 0.98074 1.00403 1.00019 0.96932 1.00348

TABLE 2. Comparison of class number frequencies with the Cohen-Lenstra heuristics.

sors of CWI’s Origin 2000 system. The number of

primes treated in Step 2(c) with the PARI-GP func-

tion quadclassunit was about 2000 for the (first) in-

terval [1, 109] and about 3 700 for the (last) interval

[199 · 109, 200 · 109]. The CPU times for these primes

varied between 500 and 2 700 CPU seconds. Total CPU

time with PARI-GP for Step 2(c) was about 120 CPU

hours. For the last interval [199 · 109, 200 · 109], the aver-
age CPU time per prime for the primes treated in Steps

1(a)—2(b) was 3.5 msec. and the average CPU time per

prime treated in Step 2(c) (with PARI-GP) was 0.72 sec-

onds (slower by a factor of about 200).

5.2.2 Comparison with the Cohen-Lenstra Heuristics.
Let

π4,1(x) = #{p ≤ x | p ≡ 1 mod 4, p prime}

and

π4,1,n(x) = #{p ≤ x | p ≡ 1 mod 4, p prime, h(p) = n}.

For the class numbers h(p) ≤ 29, in Table 2, we compare
their frequencies of occurrence with those “predicted” by

the Cohen-Lenstra heuristics, namely, by listing the val-

ues of

π4,1(x) and rh(x) :=
π4,1,h(x)

π4,1(x)
/P (h) ,

for various choices of x (where P (h) is defined in (1—1)).

The ratios rh(x) seem to tend to 1 with growing x,

so Table 2 provides numerical support for the Cohen-

Lenstra heuristics. Notice that for values of h which are

not a multiple of 3 (except for h = 25), the frequencies

π4,1,h(x)/π4,1(x) seem to tend to their Cohen-Lenstra

limit P (h) from above, whereas for the other values of h

in Table 2, this pattern is reversed. Moreover, the speed

of convergence is notably slower for values of h which are

divisible by 3 than for the other values of h in Table 2.

However, we should mention that this slower rate of con-

vergence measured by rk(x) does not take into considera-

tion the number of values of p for which h < k. For exam-

ple, if we take x = 2·1011, we have π4,1(x) = 4003548492,
π4,1,1(x) = 3032210141, and π4,1,3(x) = 494428047. Now

the predicted value of π4,1,3, given the value of π4,1,1,

would be

P (3)

1− P (1) (π4,1(x)− π4,1,1(x)) = 497426558.277

When we compute π4,1,3(x)/497426558.227, we get

0.99397, a result which is closer to 1 than the value

0.98217 we get for r3(x). The authors are indebted to

Carl Pomerance for this observation.3

3Extending this to values of π4,1,h for h > 3, we find better

ratios (i.e., closer to 1) for values of h divisible by 3 but worse ratios
for values of h which are not divisible by 3. For example, for the
quotient of the actual number of primes p for which h(p) = k and
the predicted number, we find 1.00712, 1.01190, and 0.98467 for k =
5, 7, 9, respectively, whereas Table 2 gives rk(x) = 1.00143, 1.00289,
and 0.97265, respectively.

110 Experimental Mathematics, Vol. 12 (2003), No. 1

0.8

0.81

0.82

0.83

0.84

0 5e+10 1e+11 1.5e+11 2e+11

FIGURE 1. Plot of 8H(x)/x and its local contributions for x = i · 109, i = 1, 2, . . . , 200.

As suggested by the referee, we have made a least

squares approximation of the r1- and the r3-data in Table

2 with a function of log x with basis {1, 1/x}. For the
constants in these approximations, we found 0.9807 and

1.076 for r1 and r3, respectively (which are the limits of

these approximations for x→∞).
5.2.3 Comparison with Hooley’s Conjecture. To-

gether with the class numbers, we computed the function

H(x). Table 3 tabulates H(x) for various values of x,

together with 8H(x)/x, which should tend to 1, accord-

ing to Hooley’s conjecture. Figure 1 plots the function

8H(x)/x for x = i · 109, i = 1, 2, . . . , 200. The scattered
points show the “local contributions” to this function,

namely the values

8
H(i · 109)−H((i− 1)109)

109
, for i = 1, . . . , 200.

Table 3 and Figure 1 confirm that the function 8H(x)/x

increases on the interval where we have computed it. The

majority of the local contributions lie above the “average”

8H(x)/x, and Figure 1 does not give any clue that this

“behaviour” would change after our bound 2·1011. Figure
1 also illustrates that if the function 8H(x)/x converges

to 1, it converges extremely slowly. A least squares ap-

proximation to the 8H(x)/x-data in Table 3, similar to

the one which we computed for r1 and r3 in Table 2,

yielded a constant term 0.9233.

To give some explanation of why H(x)/x seems to

converge so slowly to 1/8, we first note that we can write

H(x) =

M(x)

k=1
k odd

kπ4,1,k(x)

where M(x) = max{h(p) : p ≤ x}. By the Cohen-

Lenstra heuristics, we have

π4,1,k(x) ∼ π4,1(x)P (k) ∼ x

2 log x
P (k).

Also, it is not difficult to show (Theorem 4.1 of Jacobson

[Jacobson 95]) that

y

k=1
k odd

w(k) ∼ 1

2C
log y;

x H(x) 8H(x)/x

109 101284007 0.81027

2 · 109 203601670 0.81441

5 · 109 511808671 0.81889

1010 1027420829 0.82194

2 · 1010 2062604790 0.82504

5 · 1010 5175931981 0.82815

1011 10386588068 0.83093

2 · 1011 20841205517 0.83365

TABLE 3. Some values of H(x) and 8H(x)/x.

te Riele and Williams: New Computations Concerning the Cohen-Lenstra Heuristics 111

hence,
y

k=1
k odd

kP (k) ∼ 1
2
log y,

and therefore,

H(x) ∼ x

4 log x
logM(x).

We now need to investigate the mysterious M(x). By a

result of Le [Le 94], we know thatM(x) <
√
x/2, but how

large can M(x) become? By the Siegel-Brauer theorem,

we know that

log(h(p)R) ∼ 1
2
log p.

Furthermore, for certain values of p such as p = t2+1 or

p = t2 + 4, we have R = O(log p).
Let p(x) denote the number of primes of the form t2+

1 ≤ x. By the long-standing conjecture E of Hardy and
Littlewood [Hardy and Littlewood 23], we would have

p(x) ∼ c
√
x

log x

for an absolute constant c. It follows that for x large

enough, we must have

p(x)− p(x/2) > 1.
That is, there must exist some prime p (≡ 1 mod 4) such
that

x/2 < p ≤ x
and R = O(log p) = O(log x). Since M(x) ≥ h(p) and
p > x/2, we get

logM(x)

log x
> 1− log 2

log x

log h(p)

log p
.

Also, since
logM(x)

log x
<
1

2
− log 2
log x

,

we see that under Conjecture E we have

logM(x)

log x
∼ 1
2
,

providing further evidence for Hooley’s conjecture. It is

important to notice then that the speed of convergence

of H(x)/x to 1/8 appears to depend upon the fequency

of values of p such that h(p) is large; however, according

to the Cohen-Lenstra heuristics (see Conjecture 4.2 of

[Jacobson 95]) we know that

Prob(h(p) > k) =
1

2k
+O log k

k2
.

Hence, the large class numbers that push the value of

logM(x)/ log x to 1/2 become increasingly less frequent

as x increases, accounting for the slow convergence of

H(x)/x to 1/8 indicated in Figure 1.

5.3 Examples

Example 5.1. We take p = 97 843 343 893 as in [van der
Poorten et al. 01] with T = 1000 and f = 10.

Step 1(a) finds S(T, p) = 0.3765342 and

M = 329944.5389420387

for the integral multiple of R2.
4

In Step 1(b), Algorithm 2.7 is carried out, i.e., first the

list L is computed. In Step 2 of Algorithm 2.7, we did not
find a match of b(2it) neither of b(2it) with some element

of L, for i = 1, 2, . . . , {(K + 2B + 1)/2tQ, so this shows
that R2 > K with K =M/11 = 29994.9580856399.

In Step 1(c), Algorithm 2.8 is carried out, i.e., it is

verified that b(M/p) W= b1, for p = 3, 5, 7. It follows that
R2 = R/ log(2) =M = 329944.5389420387.

In Step 2(a), we compute

√
p exp(S(T, p))/(R2 log 4) = 0.9965428,

so that h̃ = 1 and δ = −0.0034572.
In Step 2(b), with g = 0, for the function A(T,m) de-

scribed in Section 3, we find that A(1000, p) = 0.6972602,

so that exp(A(1000, p)) = 2.008243. With h1 = 1, we

have 3h1/(h̃ + δ) = 3.010407 so that exp(A(T, p)) <

3h1/(h̃ + δ) and we conclude that h(97 843 343 893) =

h̃ = 1.

Example 5.2. We take p = 990 000 388 129 with T = 1000
and f = 10.

Step 1(a) finds S(T, p) = 1.895771 and

M = 4729385.900492189.

4The value of kR2 reported in [van der Poorten et al 01] is three
times the value given here, because of a mistake HtR made in [van

der Poorten et al 01] in the programming of the Kronecker symbol.

This is explained and corrected in [te Riele and Williams 03]. The

consequence of this mistake is that for all the primes which are

≡ 5 mod 8, our computed value of kR2 in [van der Poorten et al
01] is too large by a factor of 3. Fortunately, this does not affect the

result of [van der Poorten et al 01], namely that the Ankeny-Artin-

Chowla conjecture is true for all the primes p ≡ 1 mod 4 below 109
since for the verification of this conjecture any multiple of R2 will
suffice, as long as this does not exceed 8p.

112 Experimental Mathematics, Vol. 12 (2003), No. 1

In Step 1(b), Algorithm 2.7 computes the list L, and
no match is found of b(2it) nor of b(2it) with some ele-

ment in this list, for i = 1, 2, . . . , {(K + 2B + 1)/2tQ, so
this shows that R2 > M/11.

In Step 1(c), it is verified that b(M/p) W= b1 for p =

3, 7, but b(M/5) = b1 and b(M/25) W= b1. It follows that

R2 = R/ log(2) =M/5 = 945877.1800984377.

Step 2(a) computes
√
p exp(S(T, p))/(R2 log 4) =

5.0518490, so that h̃ = 5 and δ = 0.0518490.

In Step 2(b), with g = 0, we find exp(A(1000, p)) =

2.117520. For h1 = 1, h̃+ g ≥ 3h1 and

min
h̃+ g + 2h1

h̃+ δ
,

h̃+ δ

h̃+ g − 2h1
= 1.385631,

so no conclusion for h is possible and we try to find a di-

visor of h with Algorithm 4.5. We try the divisor q = 5 of

h̃+ g (of course). For the first ideal s = [6/2, (1+
√
p)/2]

from the stock S, Algorithm 4.4 finds that it is not prin-

cipal. Step 2 of Algorithm 4.5 now finds a reduced ideal

t = [486/2, (61+
√
p)/2] which is equivalent to sh̃+g = s5.

This ideal t is found to be principal with help of Algo-

rithm 4.4. For β = 1, s(h̃+g)/q
β

= s is not principal, as

we already know, and we conclude that qα−β+1 = 5 is a
nontrivial divisor of h.

Now we repeat Step 2(b) with h1 = 5 (and still g = 0).

We have h̃+ g = h1 = 5 and 3h1/(h̃+ δ) = 2.969210, so

that exp(A(1000, p)) < 3h1/(h̃+δ) and we conclude that

h(990 000 388 129) = h̃ = 5.

Example 5.3. p = 199 999 913 213, the largest prime

< 2 · 1011 for which our algorithm could compute the

class number, with T = 7500, f = 48.

Step 1(a) finds S(T, p) = −0.4557187 and M =

211269.9174290152.

In Step 1(b), Algorithm 2.7 then finds that

R2 = R/ log(2) = 454.3439084494522.

In Step 2(a), we compute

√
p exp(S(T, p))/(R2 log 4) = 450.1514159,

so that h̃ = 451 and δ = −0.80966325.
In Step 2(b), with g = 0, we find exp(A(7500, p)) =

1.209404. For h1 = 1, h̃+ g ≥ 3h1 and

min
h̃+ g + 2h1

h̃+ δ
,

h̃+ δ

h̃+ g − 2h1
= 1.002564,

so no conclusion for h is possible. Therefore, we try to

find a divisor of h with Algorithm 4.5. We start with q =

11, the smallest prime divisor of h̃+g = 451. For the first

ideal s = [14/2, (3+
√
p)/2] in the stock S, Algorithm 4.4

finds that it is not principal, so Step 2 of Algorithm 4.5

now finds a reduced ideal t = [11738/2, (439771+
√
p)/2]

which is equivalent to sh̃+g = s451. With the help of

Algorithm 4.4, this ideal is found to be nonprincipal, so

we conclude that h W= h̃+ g.
Step 2(b) is repeated now with g = −2 so h̃+g = 449.

With h1 = 1, (1—4) is not satisfied, so no conclusion

for h can be drawn. Therefore, we try to find a divi-

sor of h. Since 449 is prime, we try q = 449 in Algo-

rithm 4.5. For the first ideal s = [14/2, (3 +
√
p)/2] in

the stock S, Algorithm 4.4 finds that it is not princi-

pal, so Step 2 of Algorithm 4.5 now finds a reduced ideal

t = [380938/2, (367115 +
√
p)/2] which is equivalent to

sh̃+g = s449. With the help of Algorithm 4.4, this ideal

is found to be principal. For β = 1, s(h̃+g)/q
β

= s is not

principal, as we already know, and we may conclude that

qα−β+1 = 449 is a nontrivial divisor of h.
Now we repeat Step 2(b) with h1 = 449 (and still

g = −2). We have h̃ + g = h1 = 449 and 3h1/(h̃+ δ) =

2.992068, so that exp(A(7500, p)) < 3h1/(h̃ + δ) and we

conclude that h(199 999 913 213) = h̃+ g = 449.

Example 5.4. p = 199 999 649 533 (the largest prime

< 2 · 1011 for which our algorithm could not compute

the class number) with T = 7500, f = 48.

Step 1(a) finds S(T, p) = −0.3602558 and M =

228674.1622363300.

In Step 1(b), Algorithm 2.7 then finds that

R2 = R/ log(2) = 47.12987680055535.

In Step 2(a), we compute

√
p exp(S(T, p))/(R2 log 4) = 4774.2565225,

so that h̃ = 4775 and δ = −0.74347755.
In Step 2(b), with g = 0, we find exp(A(7500, p)) =

1.209404. For h1 = 1, h̃+ g ≥ 3h1 and

min
h̃+ g + 2h1

h̃+ δ
,

h̃+ δ

h̃+ g − 2h1
= 1.000263,

so no conclusion for h is possible. Therefore, we try to

find a divisor of h with Algorithm 4.5. We start with q =

5, the smallest prime divisor of h̃+g = 4775. For the first

ideal s = [6/2, (1+
√
p)/2] in the stock S, Algorithm 4.4

te Riele and Williams: New Computations Concerning the Cohen-Lenstra Heuristics 113

finds that it is not principal, so Step 2 of Algorithm 4.5

now finds a reduced ideal t = [60238/2, (430595+
√
p)/2]

which is equivalent to sh̃+g = s4775. With the help of

Algorithm 4.4, this ideal is found to be nonprincipal, so

we conclude that h W= h̃+ g.
Step 2(b) is repeated now with, successively, g =

−2, 2,−4, 4, but similarly as for g = 0, this leads to the
conclusion that h W= 4773, 4777, 4771, 4779.
Step 2(c) now resorts to PARI-GP’s function

quadclassunit which returns h(199 999 649 533) =

4785.

ACKNOWLEDGMENTS

The research for this paper was partially supported by

NSERC of Canada grant #A7649.

REFERENCES

[Bach 95] E. Bach. “Improved Approximations for Euler

Products.” In Number Theory, CMS Conference Proceed-

ings, Volume 15, pp. 13—28. Providence, RI: American

Math. Soc., Providence, RI, 1995.

[Cohen and Lenstra 84a] H. Cohen and H. W. Lenstra, Jr.

“Heuristics on Class Groups.” In Number Theory, pp. 26—

36, Lecture Notes in Mathematics 1052. Berlin: Springer

Verlag, 1984.

[Cohen and Lenstra 84b] H. Cohen and H. W. Lenstra, Jr.

“Heuristics on Class Groups of Number Fields.” In Num-

ber Theory, pp. 33-62, Lecture Notes in Mathematics

1068. Berlin: Springer Verlag, 1984.

[Hardy and Littlewood 23] G. H. Hardy and J. E. Little-

wood. “Partitio numerorum III: On the Expression of

a Number as the Sum of Primes.” Acta Math. 44 (1923),

1—70.

[Hooley 84] C. Hooley. “On the Pellian Equation and the

Class Number of Indefinite Binary Quadratic Forms.”

J. reine angew. Math. 353 (1984), 98—131.

[Jacobson 95] M. J. Jacobson, Jr. “Computational Tech-

niques in Quadratic Fields.” Master’s thesis, University

of Manitoba, 1995.

[Jacobson 98] M. J. Jacobson, Jr. “Experimental Results

on Class Groups of Real Quadratic Fields (extended

abstract). In Algorithmic Number Theory — ANTS-III

(Portland, Oregon), pp. 463—474, Lecture Notes in Com-

puter Science 1423. Berlin: Springer Verlag, 1998.

[Jacobson et al. 95] M. J. Jacobson, Jr., R. F. Lukes, and H.

C. Williams. “An Investigation of Bounds for the Regu-

lator of Quadratic Fields.” Experimental Math. 4 (1995),

211—225.

[Jacobson and Williams 03] M. J. Jacobson, Jr. and H. C.

Williams. “New Quadratic Polynomials with High Den-

sities of Prime Values.”Math. Comp. 72 (2003), 499—519.

[Le 94] M.-H. Le. “Upper Bounds for Class Numbers of Real

Quadratic Fields.” Acta Arith. 68 (1994), 141—144.

[Lenstra 82] H. W. Lenstra, Jr. “On the Calculation of Regu-

lators and Class Numbers of Quadratic Fields.” London

Math. Soc. Lecture Note Series 56 (1982), 123—150.

[van der Poorten et al. 01] A. J. van der Poorten, H. te Riele,

and H. C. Williams. “Computer Verification of the

Ankeny-Artin-Chowla Conjecture for All Primes Less

than 100000000000.” Math. Comp 70 (2001), 1311—1328.

[te Riele and Williams 03] H. te Riele and H. C. Williams.

“Corrigenda and Addition to: Computer Verification of

the Ankeny-Artin-Chowla Conjecture for All Primes Less

than 100 000 000 000.” Math. Comp, 72 (2003), 521—523.

[Stephens and Williams 88] A. J. Stephens and H. C.

Williams. “Computation of Real Quadratic Fields with

Class Number One.” Math. Comp. 51 (1988), 809—824.

Herman te Riele, CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands (herman@cwi.nl)

Hugh Williams, Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada T2N 1N4

(williams@math.ucalgary.ca)

Received May 31, 2002; accepted in revised form March 14, 2003.

