A Flat Manifold with No Symmetries

Reinhard Waldmüller

CONTENTS

Introduction
The Example
Lattices and Cocycles
Acknowledgments
References

2000 AMS Subject Classification: Primary 20C34, 20H15, 53C25 Keywords: Flat manifolds, Bieberbach groups In this note, we give an example of a flat manifold having a trivial group of affinities by constructing a Bieberbach group with a trivial center and trivial outer automorphism group.

1. INTRODUCTION

The compact, connected, flat Riemannian manifolds (flat manifolds for short) are classified up to affine equivalence by their fundamental groups, the so-called Bieberbach groups. These groups are precisely the torsion-free groups satisfying an exact sequence

$$0 \longrightarrow L \longrightarrow \Gamma \longrightarrow G \longrightarrow 1 \tag{1-1}$$

where G is a finite group and L is a faithful $\mathbb{Z}G$ -lattice of finite rank, i.e., a free \mathbb{Z} -module of finite rank on which Gacts faithfully. Let X be a flat manifold with fundamental group Γ . The group Aff(X) of affine self-equivalences of X is a Lie group. Its identity component $Aff_0(X)$ is a torus whose dimension is the rank of the center of Γ , and $\operatorname{Aff}(X)/\operatorname{Aff}_0(X)$ is isomorphic to $\operatorname{Out}(\Gamma)$, the outer automorphism group of Γ . Malfait conjectured [Malfait 98, Conjecture 5.13], that Aff(X) is never torsion-free (where the trivial group is considered to be torsion-free). In Section 2, we will give an example of a Bieberbach group that has a trivial center and trivial outer automorphism group, and hence is the fundamental group of a flat manifold with trivial group of affinities. In particular, it is a counterexample to Malfait's conjecture. Let Γ be a Bieberbach group as in (1–1) and $\delta \in H^2(G, L)$ be the cohomology class giving rise to (1-1). Let N be the normalizer of G in Aut(L). There is a natural action of N on $H^2(G, L)$, and $Out(\Gamma)$ satisfies the short exact sequence (see [Charlap 86, Theorem V.1.1])

 $0 \longrightarrow H^1(G,L) \longrightarrow \operatorname{Out}(\Gamma) \longrightarrow N_{\delta}/G \longrightarrow 1, \quad (1\text{--}2)$

where N_{δ} denotes the stabilizer of δ in N. The center of Γ is $L^G = \{ v \in L | gv = v \ \forall g \in G \}$, so to find a flat manifold with no symmetries, it suffices to construct a

$\begin{array}{c} 0 -1 -1 & 0 \\ 0 & 0 -1 & 0 \\ 0 & 0 -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 -1 & -1 \\ 0 & 0 -2 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 1 & -1 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array}$	$ \begin{array}{c} 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 & -1 \\ 0 & 0 & -1 & -1 & -1 \\ -1 & -2 & -1 & -1 & -1 \\ 0 & 0 & -1 & -1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 2 \\ 0 & -1 & 0 \\ 2 & 0 & 2 \\ 1 & 0 & 1 \\ 1 & 0 & 0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

FIGURE 1. L_2 .

(b)

1	0	1 -	-1	0	0	0 0	0	0.0	0	0	0 -	$1 \ 0$	0 -1	0	0 -	1 1	0 -	1	0	0 0	0	-1 1	0	0	0	0 (0 0	0	0	0	0 0	0 0	0	0 -	2
	1	0	1	0	0	0 0	0	0 0	0	0	0	$1 \ 0$	$0 \ 1$	0	0	1 - 1	0	1	0	$0 \ 0$	0	1 - 1	0	0	0	0 (0 0	0	0	0	0 0	0 0	0	0	2
	0	0	2	0	0	0 0	0 (0 0	0	0	0	$1\ 0$	0 1	0	0	1 - 1	0	1	0	0 0	0	1 - 1	0	0	0	0 (0 0	0	0	0	0 0	0 0	0	0	3
	0	0	1 ·	-1	0	0 0	0 (0 0	0	0	0	$1\ 0$	0 1	0	0	1 - 1	0	1	0	0 0	0	1 - 1	0	0	0	0 (0 0	0	0	0	0 0	0 0	0	0	2
	0	0	1	0 -	-1	0 - 1	0	-10	0	0	0	10	0 0	0	0	1 - 1	0	1	0	00	0	1 - 1	0	0 -	1	0 () -1	1	0	1	00	$1 \ 0$	0	0	1
	0	0	1	0	0	0 0	0	0 0	0	0	0	10	0 1	0	0	1 -1	0	1	0	00	0	1 -1	0	0	0	0 (0 0	0	0	0	$0\ 1$	00	0	0	3
	0	0	1	0	0	0 0	0	0 0	0	0	0	10	0 1	0	0	1 -1	0	1	0	00	0	1 -1	0	0	0	0 (0 0	0	0 -	1	00	00	0	0	2
	0	0	1	0	0	0 0	0	00	0	0	0	10	0 1	0	0	1 -1	0	1	0	00	0	1 -1	-1	0	0	0 (0 0	0	0	0	00	00	0	0	2
	0	0	1	0	0	0 0	0	00	0	0	0	10	0 1	0	0	1 -1	0	1	0	00	0	1 -1	0	0	0	0 (0 0	0	0	0	00	-10	0	0	2
	0 -	-1	1	0	0.	-1 1	. 0	00	0	0	0	10	0 1	-1	0	1 -1	-1	0 -	-1	00	0	1 -1	0	0	0	0 (0 0	0	0	0	10	01	0	0	1
	0	0	0	0	0	1 0) 1	0 0	-1	0	0	10	0 1	0	0	1 -1	0	1	0	00	0	1 - 1	-1	0	0 -	1 () ()	-1	0	0	01	00	0 -	1	1
	0	0	1.	-1	0	0 0	0	10	0	0	0	10	-1 1	0	0	1 -1	0	1	1	01	0	1 0	0.	-1	0	0 -	10	0	0	0	00	00	0	1	3
	0	0	1	0	0	0 0	0	00	0	0	0	10	0 1	0	0	1-1	1	1	0	00	0	1-1	0	0	0	0 0) ()	0	0	0	00	00	0	0	3
	0	0	1	0	0	0 0	0	00	0	0	0	10	0 1	0	0	1-1	0	2	0	00	0	1-1	0	0	0	00) ()	0	0	0	00	00	0	0	3
	0	0	1	0	0	0 0	0	00	0	0	0	10	0 1	0	0	1-1	0	1	1	00	0	1-1	0	0	0	00) ()	0	0	0	00	00	0	0	3
	0	0	1	0	0	0 0	0	00	0	0	0	10	0 1	0	0	1-1	0	1	0	10	0	1-1	0	0	0	00) ()	0	0	0	00	00	0	0	3
	0	0	1	0	0	0 0	0	00	0	0	0	10	02	0	0	1-1	0	1	0	0.0	0	1-1	0	0	0	0) ()	0	0	0	00	00	0	0	3
	1	0	1	0	0	0 0		00	0	0	0	10	0 1	0	0	1-1	1	1	0	10	1	1-1	1	1	1) ()	0	1	0	00	00	0	0	ა 1
	-1	0	1	0	0			00	0	0	0	10	0 1	0	0	1-1	-1	1	0.	-10	1	2-1	-1.	-1-	1) U) O	0	-1	0	00	00	0	0	1
	0	0	1	0	0			00	0	0	0	10	0 1	0	0	1-1	0	1	0	00	0	2-1	0	0	0) U) O	0	0	0	0.0	0.0	0	0	ა ი
	0	0	1	0	0			00	0	0	1	10	0 1	0	0	1 -1	0	1	0	0.0	0	1 1	0	0	0) ()) ()	0	0	0	0.0	0.0	0	0	ົ
	0	0	1	0	0			0.0	0	0	1	20	0 1	0	0	1 -1	0	1	0	0.0	0	1 -1	0	0	0) ()) ()	0	0	0	0.0	0.0	0	0	ა ვ
	0	0	1	0	0		0	0.0	0	0	0	20	0 1	0	0	1_1	0	1	0	0.0	0	1_1	0	0	0) 0) 0	0	0	0	0.0	0.0	0	0	3
	0	0	1	0	0		0	0.0	0	0	0	10	1 1	0	0	1_1	0	1	0	0.0	0	1_1	0	0	0) 0) 0	0	0	0	0.0	0.0	0	0	3
	0	0	1	0	0		0	0.0	0	0	0	10		1	0	1_1	0	1	0	0.0	0	1_1	0	0	0) 0) 0	0	0	0	0.0	0.0	0	0	3
	0	0	1	0	0	0 0	0	0.0	0	0	0	10	0 1	0	0	1 -1	0	1	0	0.0	-1	1-1	0	0	0	0	0	0	0	0	0.0	0.0	0	0	$\frac{5}{2}$
	0	0	1	0	0	0 0	0	0.0	0	0	0	10	0 1	0	0	2-1	0	1	0	0.0	0	1-1	0	0	0	0	0	0	0	0	0.0	0.0	0	0	3
	0	0	1	0	0	0 0	0	0.0	0	0	0	10	0 1	0	0	1 0	0	1	0	0.0	0	1 - 1	0	0	0	0	0	0	0	0	0.0	0.0	0	0	3
	0	0	1	0	0	0 0) -1	0.0	Ő	0	0	10	0 1	0	0	1 -1	0	1	0	0.0	0	1 - 1	0	0	0	0	0	0	0	0	0.0	0.0	0	0	$\frac{3}{2}$
	Õ	0	1	0	0	0 0	0	0.0	0	0	0	10	0 1	0	0	1 -1	0	1	0	0.0	0	1 - 1	0	0	0	0 (0 0	0	0	0	0.0	0.0	1	0	3
	0	0	1	0	0	0 0	0	0.0	0	0	0	10	0 1	0	0	1 -1	0	1	0	0.0	0	1 -1	0	0	0	0 () 1	0	0	0	0.0	0.0	0	0	3
	0	0	1	0	0	0 0	0	0.0	0	0	0	10	0 1	0	0	1 -1	0	1	0	0 0	0	1 -1	0	0	0	0 (0 0	0	0	0	0 0	0 0	0	1	3
	0	0	1	1	0	0 0	0	0.0	0 -	-1	0	11	0 1	1	0	1 0	0	1	0 -	-10	0	1 -1	0	0	0	1 (0 0	0	0	0	00	-10-	-1	0	3
	0	0	1	0	0	0 0	0	0.0	0	0	0	$1 \ 0$	$0 \ 1$	0	0	1 - 1	0	1	0	0 0	0	1 - 1	0	0	1	0 (0 0	0	0	0	0 0	0 0	0	0	3
	0	0	1	0	0	0 0	0	0.0	0	0	0	$1 \ 0$	$0 \ 1$	0	0	1 -1	0	1	0	0 0	0	1 - 1	0	0	0	0 (0 0	1	0	0	0 0	0 0	0	0	3
	0 -	-1	1	0	0	0 0) 1	0.0	0	0 -	-1	$1 \ 0$	-1 1	0	-1	2 - 1	0	1	0	0.0	-1	1 - 1	0	0	0	0 () -1	0	0	0	0 0	00-	-1	0	0
	0	0	1	0	0	0 -1	0	0 0	0	0	0	$1 \ 0$	$0 \ 1$	0	0	1 - 1	0	1	0	$0 \ 0$	0	1 - 1	0	0	0	0 (0 0	0	0	0	0 0	0 0	0	0	2
	0	0	1	0	0	0 0	0 0	0 0	0	0	0	$1 \ 0$	$0 \ 1$	0	0	1 - 1	0	1	0	$0 \ 0$	0	1 - 1	0	0	0	0 (0 0	0	0	0 -	-10	0 0	0	0	2
	0	0	1	0	0	1 0	0 0	0 0	0	0	0	$1\ 0$	$0 \ 1$	0	0	1 - 1	0	1	0	0 0	0	1 - 1	0	0	0	0 (0 0	0	0	0	0 0	0 0	0	0	3
1	0	0	1	0	0	0 0	0 0	-10	0	0	0	$1\ 0$	0 1	0	0	1 - 1	0	1	0	0 0	0	1 - 1	0	0	0	0 (0 0	0	0	0	0 0	0 0	0	0	2
	1	0	1	0	0	0 0	0	$0\ 1$	0	0	1	21	0 1	0	0	1 - 1	0	1	0	$0\ 1$	0	1 -1	0	0	0	0 (0 0	0	0	1	$1 \ 1$	0 0	0	0	6
	0	0	1	0	0	0 0	0	0 0	0	0	0	$1\ 0$	0 1	0	0	1 -1	0	1	0	00	0	1 -1	0	1	0	0 (0 0	0	0	0	00	00	0	0	3
	0	0	1	0	0	0 0	0	0 0	0	0	0	10	0 1	0	0	1 -1	0	1	0	00	0	1 -1	0	0	0	1 (0 0	0	0	0	00	00	0	0	3
l	0	0	-2	0	0	0 0	0	00	0	0	0 -	20	0 -2	0	0 -	-2 2	0 -	2	0	00	0	-2 2	0	0	0	0 (0 (0	0	0	00	00	0	0 -	5/

Figure 2(a).

100000	$0\ 0$	000000	00000	00000	$0 \ 0 \ 0$	000000000000000000000000000000000000
001000	$0\ 0$	000000	00000	00000	$0 \ 0 \ 0$	000000000000000000000000000000000000000
000100	$0\ 0$	000000	00000	00000	$0 \ 0 \ 0$	000000000000000000000000000000000000000
000010	0 0	000000	00000	00000	$0 \ 0 \ 0$	000000000000000000000000000000000000000
010000	0 0	000000	00000	00000	$0 \ 0 \ 0$	000000000000000000000000000000000000000
000000	0 0	000000	00000	00000	$0 \ 0 \ 0$	000000000000000000000000000000000000000
000001	00	000000	00000	00000	$0 \ 0 \ 0$	000000000000000000000000000000000000000
000000	0 0	000000	00000	00000	$0 \ 0 \ 0$	001000000000000000000000000000000000000
00000-	10	000000	00000	00000	$0 \ 0 \ 0$	000000000000000000000000000000000000000
000000	0 0	000010	00000	00000	$0 \ 0 \ 0$	000000000000000000000000000000000000000
000000	0 0	000000	0100	00000	$0 \ 0 \ 0$	000000000000000000000000000000000000000
000000	00	000000	00000	10000	$0 \ 0 \ 0$	000000000000000000000000000000000000000
000000	00	00000	0000	00000	$0 \ 0 \ 0$	000000000000000000000000000000000000000
000000	00	000000	01000	00000	$0 \ 0 \ 0$	000000000000000000000000000000000000000
000000	0 0	010000	00000	00000	$0 \ 0 \ 0$	000000000000000000000000000000000000000
000000	0 0	000000	00010	00000	$0 \ 0 \ 0$	000000000000000000000000000000000000000
000000	0 0	000000	00001	00000	$0 \ 0 \ 0$	000000000000000000000000000000000000000
000000	0 0	001000	00000	00000	$0 \ 0 \ 0$	000000000000000000000000000000000000000
000000	0 0	000000	00000	01000	$0 \ 0 \ 0$	000000000000000000000000000000000000000
000000	0 0	000000	00000	00100	0 0 0	000000000000000000000000000000000000000
000000	0 0	000100	00000	00000	$0 \ 0 \ 0$	000000000000000000000000000000000000000
000000	$0 \ 0$	000000	00000	00000	$0 \ 0 \ 0$	000100000000000000000101
000000	0 0	000000	00000	00000	$0 \ 0 \ 0$	0000001000000000 10 1
000000	0 0	000000	00000	00000	$0 \ 0 \ 0$	000000001000000 10 1
000000	0 0	000000	00000	00000	$0 \ 0 \ 0$	000000000100000 10 1
000000	0 0	000000	00000	00000	$0 \ 0 \ 0$	0000000000010000 10 1
000000	0 0	000000	00000	00000	$0 \ 0 \ 0$	010000000000000000000000000000000000000
000000	0 0	000000	00000	00000	0 -1 0	000000000000000000000000000000000000000
000000	0 0	000000	00000	00000	$0 \ 0 \ 0$	0000000000000010 10 1
000000	$0\ 0$	000000	00000	00000	$0 \ 0 \ 0$	0000100000000000000000101
000000	$0 \ 0$	000000	00000	00000	$0 \ 0 \ 0$	0000010000000000000000101
000000	$0\ 0$	000000	00000	00010	$0 \ 0 \ 0$	000000000000000000000000000000000000000
000000	$0 \ 0$	000000	00000	00000	$0 \ 0 \ 0$	00000010000000 10 1
000000	$0\ 0$	000000	00000	00000	$0 \ 0 \ 0$	00000001000000 10 1
000000	$0\ 0$	000000	00000	$0\ 0\ 0\ 0\ 1$	$0 \ 0 \ 0$	000000000000000000000000000000000000000
000000	$0\ 0$	000000	00000	00000-	-1 0 0	000000000000000000000000000000000000000
000000	$0 \ 0$	000000	00000	00000	$0 \ 0 \ 0$	-10000000000000000000000000000000000000
000000	$0\ 0$	000000	00000	00000	$0 \ 0 \ 0$	0000000000001000 10 1
000000	$0\ 0$	000000	00000	00000	$0 \ 0 \ 0$	0000000000000100 10 1
000000	$0\ 0$	00000	00000	00000	$0 \ 0 \ 1$	000000000000000000000000000000000000000
000000	$0\ 0$	000000	00000	00000	$0 \ 0 \ 0$	0000000000000001 10 1
000000	01	00000	00000	00000	$0 \ 0 \ 0$	000000000000000000000000000000000000000
000000	0 0	00000	00000	00000	$0 \ 0 \ 0$	000000000000000000000000000000000000000
000000	00	100000	00000	00000	$0 \ 0 \ 0$	000000000000000000000000000000000000000
000000	0 0	00000	00000	00000	$0 \ 0 \ 0$	000000000000000000000000000000000000000

Figure 2(b).

FIGURE 3. The cocycles.

torsion-free extension (1-1) such that L^G , $H^1(G, L)$, and N_{δ}/G are trivial. To do this, we need to know when an extension (1-1) is torsion-free, and this happens if and only if we have $\operatorname{res}_U^G(\delta) \neq 0$ for all nontrivial subgroups U of G, where $\operatorname{res}_U^G : H^2(G, L) \to H^2(U, L)$ denotes the restriction homomorphism (see [Charlap 86, Theorem III.2.1]). An element $\delta \in H^2(G, L)$ satisfying this condition is called special. By transitivity of restriction, it suffices to check this for subgroups of prime order, and by the action of G on $H^2(G, L)$, it suffices to consider representatives of conjugacy classes of subgroups. Also, for a Sylow *p*-subgroup U of G, the restriction homomorphism $\operatorname{res}_U^G : H^2(G, L)_p \to H^2(U, L)$ is injective. Since it is difficult to compute $H^2(G, L)$, we use the isomorphic group $H^1(G, \mathbb{Q} \otimes_{\mathbb{Z}} L/L)$ instead.

2. THE EXAMPLE

Let $G = M_{11}$, the Mathieu group on 11 letters. Then G has a presentation

$$\begin{split} G &\cong \langle a, b \, | \, a^2, b^4, (ab)^{11}, (ab^2)^6, \\ & ababab^{-1}abab^2ab^{-1}abab^{-1}ab^{-1} \rangle, \end{split}$$

and representatives of conjugacy classes of subgroups of order 2, respectively, 3 are $\langle a \rangle$, respectively, $\langle (ab^2)^2 \rangle$; see [Wilson et al. 01]. Let L_1 be the 20-dimensional integral representation of G from the Web-Atlas [Wilson et al. 01], let L_3 be the dual of the 44-dimensional integral representation of G from the Web-Atlas, and let L_2 and L_4 be the lattices given in Figure 1 and Figure 2, respectively. The lattices are given by the images of the generators a and b under the corresponding integral representation of G, i.e., the lattice is identified with \mathbb{Z}^n on which G acts by matrix multiplication. Furthermore, let $\delta_i \in H^1(G, \mathbb{Q} \otimes_{\mathbb{Z}} L_i/L_i)$ for $1 \leq i \leq 4$ be the cocycles given in Figure 3. A cocycle δ is given by vectors $v_a, v_b \in \mathbb{Q}^n$ such that $\delta(a) = v_a + \mathbb{Z}^n$ and $\delta(b) = v_b + \mathbb{Z}^n$. These have the following properties:

- (1) The character afforded by L_1 is $\chi + \bar{\chi}$, where χ is one of the two nonreal irreducible characters of Gof degree 10. The order of δ_1 is 6, and we have $\operatorname{res}_{\langle a \rangle}^G(\delta_1) = 0$, but $\operatorname{res}_{\langle (ab^2)^2 \rangle}^G(\delta_1) \neq 0$.
- The character afforded by L₂ is χ + x̄, where χ is one of the two irreducible characters of G of degree 16. The order of δ₂ is 5. Hence the restriction of δ₂ to any subgroup of order 5 is nonzero.
- (3) The character afforded by L_3 is the irreducible character of G of degree 44. The order of δ_3 is 6, and we have $\operatorname{res}_{\langle a \rangle}^G(\delta_3) \neq 0$, but $\operatorname{res}_{\langle (ab^2)^2 \rangle}^G(\delta_3) = 0$.

(4) The character afforded by L_4 is the irreducible character of G of degree 45. The order of δ_4 is 11. Hence the restriction of δ_4 to any subgroup of order 11 is nonzero.

Thus $\delta := \delta_1 + \cdots + \delta_4 \in H^1(G, \mathbb{Q} \otimes_{\mathbb{Z}} L/L)$, where $L := L_1 \oplus \cdots \oplus L_4$, is a special element. Let Γ be an extension of L by G given by δ . Then Γ is torsion-free and has trivial center. Moreover, we have $H^1(G, L) = 0$. This is easily checked using the fact that, if $L^G = 0$, a prime p divides $|H^1(G,L)|$ if and only if $(L/pL)^G \neq 0$ (see [Hiss and Szczepański 97, Lemma 2.1]). Now it remains to check that $N_{\operatorname{Aut}(L)}(G)_{\delta} = G$. Since G has no outer automorphisms, we have $N_{\operatorname{Aut}(L)}(G) = C_{\operatorname{Aut}(L)}(G)G$, and the centralizer of G in $\operatorname{Aut}(L)$ is $C_{\operatorname{Aut}(L_1)}(G) \times \cdots \times$ $C_{\operatorname{Aut}(L_4)}(G)$. We claim that $C_{\operatorname{Aut}(L_i)}(G) = \{\pm 1\}$ for $1 \leq i \leq 4$. This is obvious for i = 3, 4. Now $C_{Aut(L_i)}(G)$ is the unit group of $\operatorname{End}_{\mathbb{Z}G}(L_i)$, which is a \mathbb{Z} -order in $\operatorname{End}_{\mathbb{O}G}(\mathbb{O}\otimes_{\mathbb{Z}} L_i)$. For i=1,2, this endomorphism ring is isomorphic to $\mathbb{Q}(\chi)$, where χ is as above. In the first case, $\mathbb{Q}(\chi) = \mathbb{Q}(\sqrt{-2})$, and in the second case, we have $\mathbb{Q}(\chi) = \mathbb{Q}(\sqrt{-11})$. In both cases, all \mathbb{Z} -orders have unit group $\{\pm 1\}$, hence the claim. Now it is clear that $C_{\operatorname{Aut}(L)}(G)_{\delta} = 1$ and we are done.

The computations in this example have been performed with GAP [GAP 02] and CARAT [Opgenorth et al. 01].

It would be desirable to have more than one example, preferably an infinite family. But to achieve this using the above strategy, one needs a family of lattices with the "right" properties, and I do not know of such a family.

ACKNOWLEDGMENTS

This example is the main result of my diploma thesis and I am grateful to my advisor G. Hiss for helpful hints and his encouragement to publish it. Also, I would like to thank J. Müller for several discussions.

REFERENCES

- [Opgenorth et al. 01] J. Opgenorth, W. Plesken and T. Schulz. "CARAT – Crystallographic Algorithms and Tables," Version 1.2, 2001. Available from World Wide Web (http://wwwb.math.rwth-aachen.de/carat/), 2001.
- [Charlap 86] L. S. Charlap. Bieberbach Groups and Flat Manifolds. New York: Springer-Verlag, 1986.
- [GAP 02] The GAP Group. "GAP Groups, Algorithms, and Programming," Version 4.3, 2002. Available from World Wide Web (http://www.gap-system.org), 2002.

- [Hiss and Szczepański 97] G. Hiss and A. Szczepański. "Flat Manifolds with Only Finitely Many Affinities." Bull. Polish Acad. Sci. Math. 45:4 (1997), 349–357.
- [Malfait 98] W. Malfait. "Model Aspherical Manifolds with No Periodic Maps." Trans. A.M.S. 350:11 (1998), 4693– 4708.
- [Wilson et al. 01] R. A. Wilson, P. Walsh, J. Tripp, I. Suleiman, S. Rogers, R. A. Parker, S. Norton, S. Linton, and J. Bray. "Atlas of Finite Group Representations." Online database. Available from World Wide Web (http://www.mat.bham.ac.uk/atlas/), 2001.
- Reinhard Waldmüller, Lehrstuhl D für Mathematik, RWTH Aachen, Templergraben 64, 52062 Aachen, Germany (reinhard@math.rwth-aachen.de)

Received January 23, 2003; accepted April 29, 2003.