
Product Replacement in the Monster
Petra E. Holmes, Stephen A. Linton, and Scott H. Murray

CONTENTS

1. Introduction
2. The Product Replacement Algorithm
3. Computing the Monster
4. Product Replacement in the Monster
5. Conclusions
Acknowledgments
References

2000 AMS Subject Classification: Primary 20-04, 20D08

Keywords: Monster group, randomised algorithms

We show that the product replacement algorithm can be used to
produce random elements of the Monster group. These random
elements are shown to have the same distribution of element
orders as uniformly distributed random elements after a small
number of steps.

1. INTRODUCTION

Computing in finite groups often requires a supply of

random elements. There are several known methods for

producing them. The best known practical method is

the product replacement algorithm which is given in Sec-

tion 2.

The Monster is the largest of the 26 sporadic simple

groups. It has order

808 017 424 794 512 875 886 459 904 961 710 757 005 754 368 000 000 000

;its minimal faithful permutation and matrix represen-

tation degrees are respectively 97 239 461 142 009 186 000

and 196 882. This makes it far harder to work with than

the 25 smaller sporadics.

In Section 3, we describe techniques which allow lim-

ited computation in the Monster. In Section 4, we de-

scribe our experiments to assess the effectiveness of com-

bining these techniques with a suitable version of the

product replacement algorithm, and in Section 5, we

present our results and conclusions.

2. THE PRODUCT REPLACEMENT ALGORITHM

Let G be a finite group generated by the set X.

The product replacement algorithm uses an array s =

(s1, . . . , sm) of elements of G satisfying the property that

�s1, . . . , smX = G. We require that m be larger than the

size of X . Initially we take the entries in s to be the ele-

ments of X , with repetitions to fill out the array. Then at

each stage of the algorithm, we choose distinct random

integers i and j between 1 and m; and then replace si by

the product sisj . We then return the new value of si as

c A K Peters, Ltd.
1058-6458/2001 $0.50 per page

Experimental Mathematics 12:1, page 123

124 Experimental Mathematics, Vol. 12 (2003), No. 1

our random element. It is known from [Celler et al. 95]

that the random elements returned converge in the long

term to a fixed distribution. While this distribution is of-

ten close to uniform, [Pak 01] has shown that in certain

cases, it can be very far from uniform.

A more recent variant of this algorithm [Leedham-

Green and Murray 02] does converge to the uniform dis-

tribution. In this variant, we have an extra group el-

ement s0, called the accumulator. Then at each step

we do product replacement as above, but in addition we

choose a third random integer k and multiply s0 by sk.

Then s0 is returned as our random element.

We have run 100 tests of the product replacement al-

gorithm (with and without an accumulator) with differ-

ent random seeds. We assess the randomness of the ele-

ments produced using the χ2 statistic at the 0.9 probabil-

ity level, applied to a test value derived from the orders

of the random elements. We consider that the algorithm

has converged at step t if, for at least nine out of the

subsequent ten steps, the χ2 value is below the 0.9 level,

as would be expected from genuinely random elements.

These methods for testing product replacement are based

on [Babai et al. 01, Celler et al. 95].

3. COMPUTING IN THE MONSTER

Computing in the Monster is very different to computing

in smaller groups. In most of the groups in which we

work, generating elements can be stored as permutations

or matrices. In the Monster we must take a different

approach, as seen in the three constructions of [Linton

et al. 98], [Holmes and Wilson], and [Wilson 00]. The

construction of [Linton et al. 98], which uses 3-local sub-

groups and linear algebra in characteristic 2, gives us the

fastest way of computing in M and so we choose it for

our computations.

All three of the constructions use three generators,

two of which generate a local subgroup. In the construc-

tion of [Linton et al. 98], two of the generators, C and

D, generate a subgroup isomorphic to 31+12.2Suz:2, the

normaliser of an element in class 3B. The third gener-

ator, T , normalizes a subgroup of �C,DX isomorphic to
32+5+10:(M11× 22), the centraliser of two commuting el-
ements of class 3B. The element T extends this group to

32+5+10:(M11 × D8). The dimension 196882 module for
M over GF (2) restricts to 31+12.2Suz:2 with shape

142⊕ 32760⊕ (36 ⊗ 90),
where all dimensions are over GF (4) except 142. So C

and D are represented as files each containing four ma-

trices, one for each piece of the representation. Similarly,

the module structure for 32+5+10:(M11×D8) allows T to
be stored as a collection of small matrices.

There are two main programs: one which calculates

the image of any vector in the 196882-dimensional space

under any of the generators, and one which can multiply

together the elements in the local subgroup and return

the product in the same format as the generators. In

this paper, we use the vector-image program to calculate

orders of words in the generators.

It takes approximately 60 ms for each occurrence of

T in a word to multiply a vector by a word using a

Pentium II/450MHz processor with 384 MB of RAM.

This operation is about 100 times faster than when using

the construction of [Holmes and Wilson], although that

construction is the more frequently used as it gives easy

access to 2-local subgroups and comes equipped with a

method for shortening words [Holmes 02].

4. PRODUCT REPLACEMENT IN THE MONSTER

We performed 100 independent incarnations of the prod-

uct replacement algorithm, both with and without an

accumulator, running them for 20 steps with an accumu-

lator and 25 without.

To assess the uniformity of the distribution of ran-

dom elements that we obtained using the χ2 test, we

need some easily calculated property of these elements

which will take a reasonably small number of values

and whose distribution in the whole Monster is known.

The χ2 test can then be used to compare the dis-

tribution of the values which appear in our sample

with the true distribution of the value. In the Mon-

ster, the only suitable property which it appears feasi-

ble to calculate is element order, which has also been

used in studying product replacement in other groups

[Celler et al. 95]. To meet the requirements of the

χ2 test, that each outcome have expected frequency at

least 1 for the sample size being used, we group the

orders {1, 2, . . . , 23, 25, 28, 33, 34, 44, 45, 55, 105, 110} to-
gether to form a single test value.

In fact, we do not strictly use element order, but in-

stead use the order of the action of the elements on a

fixed test vector. It is highly likely, but not proven, that

this vector lies in a faithful orbit of M. Otherwise, there
will be a very small chance of obtaining a divisor of the

correct order. Since this would make the orders look less,

rather than more, random, it does not invalidate our con-

clusions.

The product replacement algorithm was actually per-

formed in the free group on three generators using an

Holmes et al.: Product Replacement in the Monster 125

Number χ2 χ2

of steps with accumulator no accumulator

1 670.051 419.923

2 390.119 367.669

3 249.562 300.125

4 163.061 252.426

5 142.792 247.926

6 62.536 274.574

7 65.525 223.413

8 36.882 94.410

9 50.313 131.215

10 37.671 56.936

11 37.680 76.733

12 35.448 52.527
13 57.899 35.812

14 48.167 33.932

15 37.387 38.222

16 34.160 44.395

17 37.068 43.748

18 47.394 49.358

19 30.610 40.715

20 40.744 38.068

21 45.162

22 36.205

23 38.297

24 46.629

25 43.727

TABLE 1. χ2 values. The entries in bold show where

convergence has occurred.

array of length 4, resulting, for each random seed, in two

sequences of words (one obtained using the accumulator,

and the other not). This part of the calculation and the

computation of χ2 values was done in GAP [GAP 02].

A C program, using subroutines derived from [Linton

et al. 98], was then used to compute the orders of these

words evaluated at the three generators described in Sec-

tion 3.

5. CONCLUSIONS

Table 1 gives the χ2 values for each step. It can be seen

that product replacement with an accumulator converges

after 8 steps, and for product replacement, we need 12.

One use of random element generation in any group

is to obtain elements of specific conjugacy classes or or-

ders, for use in subsequent calculations, such as finding

standard generators [Wilson 96]. To assess the suitability

of product replacement in the Monster for this purpose,

we tabulate in Table 2 the number of steps of product

replacement with an accumulator that we have to per-

form before we see elements of multiples of each possible

order amongst our hundred runs. We are only interested

in multiples of element orders because we can get the el-

ement of the required order by powering up. It is clear

Number Element orders

of steps

1 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 20, 23, 28,

30, 56, 60

2 9, 13, 31, 39, 41, 45, 46

3 11, 17, 19, 21, 24, 34, 35, 42, 55, 57, 68, 70,

84, 119

4 16, 22, 25, 26, 32, 33, 40, 47, 50, 52, 66, 78,

95, 104

5 18, 27, 36, 48, 51, 54, 62, 69, 92

6 29, 59, 71, 87, 93, 94

7 38, 44

8 88

9 105, 110

TABLE 2. Element orders occurring in the output of prod-
uct replacement.

from the table that short words are not suitable for gen-

erating random elements as there are some orders of ele-

ments which we were unable to find without using many

steps. To assess the cost of computing with random el-

ements produced in this way, we graph in Figure 1 the

length of the words generated against the number of steps

of product replacement. Applying a word of length n to

FIGURE 1. Word lengths for product replacement in the
free group.

126 Experimental Mathematics, Vol. 12 (2003), No. 1

a single vector takes about 60 nms on a Pentium II/450

processor.

We conclude that, while it is not practical to use a sin-

gle product replacement calculation to produce a series

of random elements of the Monster as is done in other

groups, since the words involved would rapidly grow too

long, it would appear that, at least as far as element or-

ders are concerned, starting a fresh product replacement

algorithm and running it for between 8 and 15 steps (de-

pending on the quality of randomness required) is both a

feasible and an effective way to generate pseudorandom

elements of the Monster.

Note that it is easy to see that the elements obtained

in this way must be far from uniformly distributed on

M. By counting the possible random choices, we see that
n step product replacement with (without) accumulator

can produce at most (4 ∗ 3 ∗ 4)n ((4 ∗ 3)n) distinct out-
comes, and this reaches the order of the Monster only for

n ≥ 32 (n ≥ 49). What our experiments show is that

product replacement approaches the same distribution

of element orders as the uniform distribution of elements

much sooner than this.

ACKNOWLEDGMENTS

The first author is supported by EPSRC grant

GR/R95265/01. The computations described in this

paper were performed on equipment provided by EPSRC

grant GR/M32351/01.

REFERENCES

[Babai et al. 01] László Babai, Walter Kim, Scott H. Murray,

and Rebecca Vessenes. “Quality of Random Elements in

Finite Groups.” Unpublished.

[Celler et al. 95] Frank Celler, Charles R. Leedham-Green,

Scott H. Murray, Alice C. Niemeyer, and E. A. O’Brien.

“Generating Random Elements of a Finite Group.”

Comm. Algebra 23 (1995), 4931—4948.

[Holmes 02] P. E. Holmes. “Computing in the Monster.” PhD

diss., Birmingham, 2002.

[Holmes and Wilson] P. E. Holmes and R. A. Wilson. “A

New Computer Construction of the Monster Using 2-

Local Subgroups.” J. LMS. To appear.

[Leedham-Green and Murray 02] C. R. Leedham-Green and

Scott H. Murray. “Variants of Product Replacement.” In

Computational and Statistical Group Theory, pp. 97—104,

Contemporary Mathematics 298, Providence, RI: Ameri-

can Mathematical Society, 2002.

[Linton et al. 98] S. A. Linton, R. A. Parker, P. G. Walsh,

and R. A. Wilson. “Computer Construction of the Mon-

ster.” J. Group Theory 1 (1998), 307—337.

[Pak 01] Igor Pak. “What Do We Know about the Prod-

uct Replacement Algorithm?” In Groups and Computa-

tion, III (Columbus, OH, 1999), pp. 301—347. Berlin: de

Gruyter, 2001.

[GAP 02] The GAP Group. GAP—Groups, Algorithms, and

Programming, Version 4.3. Available from World Wide

Web (http://www.gap-system.org), 2002.

[Wilson 96] R. A. Wilson. “Standard Generators for Sporadic

Simple Groups.” J. Algebra 184 (1996), 505—515.

[Wilson 00] R. A. Wilson. “A Construction of the Monster

Group over GF(7), and an Application.” Preprint, 2000.

Petra E. Holmes, School of Mathematics and Statistics, University of Birmingham, Edgbaston,

Birmingham B15 2TT, United Kingdom (P.E.Holmes@bham.ac.uk)

Stephen A. Linton, School of Computer Science, University of St. Andrews, North Haugh, St. Andrews,

Fife, KY16 9SS, United Kingdom (sal@dcs.st-and.ac.uk)

Scott H. Murray, Faculteit Wiskunde en Informatica, Technische Universiteit Eindhoven, Postbus 513,

5600 MB Eindhoven, The Netherlands (smurray@win.tue.nl)

Received June 12, 2002; accepted March 20, 2003.

