
How to Compute the Coefficients
of the Elliptic Modular Function j(z)
Harald Baier and Günter Köhler

CONTENTS

1. Introduction
2. Two Approaches Using the Definition of j
3. Approaches due to Rademacher and Mahler
4. Herrmann’s Method
5. Computations via Hecke Series
6. A Formula of Kaneko and Zagier
References

2000 AMS Subject Classification: Primary 42A16; Secondary 11F03

Keywords: Algorithmic number theory, elliptic modular function j,
Fourier coefficients, Fourier series

We discuss various methods to compute the Fourier coefficients
of the elliptic modular function j(z). We present run times to
compute the coefficients in practice. If possible, we discuss
the theoretical complexity of the corresponding method, too.
We conclude that, in practice, an approach due to Kaneko and
Zagier turns out to be most efficient.

1. INTRODUCTION

The Fourier coefficients c(n) of the elliptic modular func-

tion

j(z) =
∞3

n=−1
c(n)qn , (1—1)

where q = e(z) = e2πiz for z in the upper half plane, are

important for several purposes. For instance, they can be

used to compute singular values of j(z) and Hilbert class

polynomials, and they are needed to compute modular

equations. The standard definition of j(z) is

j(z) =
E34(z)

∆(z)
, (1—2)

where

∆(z) = q ·
∞�
n=1

(1−qn)24 = 12−3 ·DE34(z)− E26(z)i (1—3)
is the discriminant function and

E4(z) = 1 + 240 ·
∞3
n=1

σ3(n)q
n,

E6(z) = 1− 504 ·
∞3
n=1

σ5(n)q
n (1—4)

with σr(n) =
�
d|n d

r are the Eisenstein series of weights

4 and 6, respectively.

We discuss various approaches to compute the Fourier

coefficients c(n). We show that the respective perfor-

mance is, in practice, very different. Furthermore, we

cs A K Peters, Ltd.
1058-6458/2001 $0.50 per page

Experimental Mathematics 12:1, page 115

116 Experimental Mathematics, Vol. 12 (2003), No. 1

give evidence that a method proposed by Zagier ([Za-

gier 96]) and Kaneko ([Kaneko 99]) is the most efficient

one. For most of the methods discussed in this paper,

we present the performance in both theory and practice.

More precisely, by the performance in theory, we mean

the number of multiplications of integers. Thus we do

not consider the contribution of integer additions. If we

speak of the performance in practice, we mean the CPU

time of our implementation.

One of our aims is that our results are easily verifi-

able by an “ordinary” user. Hence, all our run times are

measured on a PC using freely available libraries. Our

practical tests are performed on an Athlon XP1600+ run-

ning Linux 2.4.10 at 1.4 GHz and having 1 GByte main

memory. All programs are implemented in C++ using

the GNU compiler gcc 3.0.1 and the GNU multipreci-

sion package gmp 3.2.1 . As stated above, all software

is freely available. The implementation of the meth-

ods in this paper may be downloaded from the Web-

site of the first author (http://www.cdc.informatik.tu-

darmstadt.de/˜hbaier).

The rest of the paper is organized as follows. In Sec-

tion 2, we discuss two algorithms using the definition

of the modular function j. In Section 3, we present two

methods proposed by Rademacher [Rademacher 38] and

Mahler [Mahler 76], respectively. In Section 4, we in-

vestigate an algorithm which makes use of ideas due to

Herrmann [Herrmann 73]. In Section 5, we present two

methods due to the second author. This approach uses

Hecke series. The last method, due to Zagier and Kaneko,

is discussed in Section 6.

2. TWO APPROACHES USING THE DEFINITION OF
j

In this section, we discuss the performance of our first

two algorithms. Both methods are based on Equations

(1—2), (1—3), and (1—4). We give evidence that for our

purposes none of them is efficient in practice.

In order to make use of the defining equations, we have

to know the coefficients of the denominator in Equation

(1—2). It is well known that ∆ may be written in terms

of a Fourier series, that is, we have

∆(z) =

∞3
n=1

τ (n)qn . (2—1)

The coefficients τ (n) in Equation (2—1) are called Ra-

manujan numbers. A first approach would be to com-

pute τ (n) by means of the infinite product for ∆(z) or

by means of E34(z) and E
2
6(z), respectively. However, in

the first author’s thesis, it is shown that both ideas turn

out to be rather slow ([Baier 02]).

We investigate two different representations of the Ra-

manujan numbers in what follows. The first one is due

to Ramanujan himself ([Ramanujan 27]); the second one

was proposed by Niebur ([Niebur 75], [Gouvêa 97]).

In 1916, Ramanujan ([Ramanujan 27, page 152])

proved the recursion formula

τ(1) = 1, τ(n) = − 24

n− 1 ·
n−13
k=1

σ1(n−k)τ (k) for n > 1 .

(2—2)

Once the values σ1(n) are known, it is obvious how to

evaluate and implement Equation (2—2) for n ≥ 2. First,
we are not aware of any reasonable estimation of the

computational complexity to compute σ1(n). However,

if we use trial division and reasonable values of n, say

n ≤ 50000, we may use machine types and hence fast

arithmetic for the computation of σ1(n). Indeed, as ex-

plained below, our practical test shows that only about

5% of the CPU time is spent computing the values σ1(n).

Second, we assume that the division by n−1 in Equa-
tion (2—2) takes the same time as a multiplication. Let

R(N) denote the total number of multiplications to com-

pute τ (n) for 2 ≤ n ≤ N using Ramanujan’s recursion

formulae. Then it is easy to see that

R(N) =

N3
n=2

(n+ 1) =
N2

2
+
3N

2
− 2 . (2—3)

Finally, if we set N = 50000, this approach takes us

6 minutes, 15 seconds in practice to compute τ (n) for

2 ≤ n ≤ N . The CPU time to get all relevant values

σ1(n) is 19 seconds.

Let us turn to the second method of this section. It is

due to Niebur ([Niebur 75], [Gouvêa 97]). Niebur shows

τ(n) = n4σ1(n)

− 24 ·
n−13
k=1

D
35k4 − 52k3n+ 18k2n2iσ1(k)σ1(n− k) .

(2—4)

We describe how we evaluate Equation (2—4). As above,

we leave out the cost of the computation of σ1(n) in our

following discussion. Let n and k be given. We compute

(in this order) k2, kn, k4 = k2 · k2, k3n = k2 · kn, and
k2n2 = (kn)2. In all, we have to perform 10 multiplica-

tions to compute an addend in the sum of Equation (2—4).

Thus, the number of multiplications to compute τ (n) is

10(n− 1)+ 4 = 10n− 6. Let Ni(N) be the total amount

Baier and Köhler: How to Compute the Coefficients of the Elliptic Modular Function j(z) 117

of multiplications to compute τ (n) for 2 ≤ n ≤ N using

Niebur’s formula. Then we have

Ni(N) =

N3
n=2

(10n− 6) = 5N2 −N − 4 . (2—5)

Compared to R(N), the number of multiplications of this

method is about 10 times larger. Indeed, the run time in

practice is much slower. If we compute τ (n) for n up to

50000, the CPU time is 22 minutes, 21 seconds.

We will see in Section 6, that if we use a method due

to Kaneko and Zagier, the whole computation of c(n)

up to n = 50000 takes less than 9 minutes in practice.

Thus, we skip the further computation of the c(n) by the

methods of this section.

3. APPROACHES DUE TO RADEMACHER AND
MAHLER

This section deals with two further methods to compute

the coefficients c(n). The first one is due to Rademacher

[Rademacher 38]; the second one is due to Mahler [Mahler

76].

H. Rademacher [Rademacher 38] used the circle

method to prove a formula which expresses c(n) as a

convergent infinite series in terms of Bessel functions and

Kloosterman sums. He realized, however, that the con-

vergence of the series is rather slow and that “the co-

efficients ... can be found [from the formula] by trou-

blesome computations, which for higher n are practi-

cally inexecutable ...” For this reason, we did not check

how Rademacher’s formula performs using the computing

power now available. A modern account of Rademacher’s

and related later work is given in [Knopp 90].

We next discuss Mahler’s approach. In [Mahler 76,

page 91], K. Mahler proved a system of recursion formu-

las for c(n). They read

c(4n) = c(2n+ 1) +
1

2
(c(n)2 − c(n))

+

n−13
k=1

c(k)c(2n− k) , (3—1)

c(4n+ 1) = c(2n+ 3)− c(2)c(2n) + 1
2
(c(n+ 1)2

− c(n+ 1)) + 1
2
(c(2n)2 + c(2n))

+

n3
k=1

c(k)c(2n− k + 2)−
2n−13
k=1

(−1)k−1c(k)c(4n− k)

+

n−13
k=1

c(k)c(4n− 4k) , (3—2)

c(4n+ 2) = c(2n+ 2) +

n3
k=1

c(k)c(2n− k + 1) , (3—3)

c(4n+ 3) = c(2n+ 4)− c(2)c(2n+ 1)− 1
2
(c(2n+ 1)2

− c(2n+ 1)) +
n+13
k=1

c(k)c(2n− k + 3)

−
2n3
k=1

(−1)k−1c(k)c(4n− k + 2)

+

n3
k=1

c(k)c(4n− 4k + 2) . (3—4)

As soon as the values c(−1), . . . , c(5) are known, the se-
quence of c(n) is uniquely determined by Mahler’s recur-

sion formulas.

We next investigate the number of multiplications to

evaluate Mahler’s equations. LetN ∈ N, 4 | N. ByM(N)
we denote the number of multiplications to compute the

Fourier coefficients c(n) up to n = N by Mahler’s ap-

proach. We do not consider a factor 12 , as this operation

is only a right shift. We fix 1 ≤ n ≤ N
4 . Obviously, Equa-

tions (3—1)—(3—4) yield a contribution of n, 4n+1, n, and

4n + 3 multiplications to M(N), respectively. Thus, for

fixed n, the contribution is 10n + 4 multiplications. As

we assume c(−1), . . . , c(5) to be known, we conclude

M(N) =

N
4 −13
n=1

(10n+ 4) +
N

4
− 6 = 5N2

16
− 10 . (3—5)

In this way, a table of c(n) for n ≤ 50000 was computed
in the first author’s thesis [Baier 02]. The run time in

[Baier 02] compared to the method of Section 6. is much

larger. Although both hardware and libraries in use of

[Baier 02] are inferior to our environment, we expect an

implementation of Mahler’s Equations (3—1)—(3—4) to be

inferior to the method of Kaneko on our platform, too.

4. HERRMANN’S METHOD

We next present two methods for the computation of

the c(n) which are both bases on an article by O. Herr-

mann [Herrmann 73]. The first method is due to Herr-

mann himself. In an early work in the field of algorithmic

number theory, Herrmann computed a table of c(n) for

n ≤ 6002 as explained below. The second approach is our
variant of Herrmann’s algorithm. It turns out that our

algorithm is slightly faster in practice than the original

method.

118 Experimental Mathematics, Vol. 12 (2003), No. 1

The crucial observation is that we may write the dis-

criminant function ∆ in terms of Dedekind’s η-function.

More precisely, we have ∆ = η24, where

η(z) = e
p z
24

Q
·
∞�
n=1

(1− qn) =
∞3
n=1

w
12

n

W
· e
w
n2z

24

W

= e
p z
24

Q
·
∞3

n=−∞
(−1)nqn(3n+1)/2 , (4—1)

where
D
12
n

i
is a quadratic residue symbol. Herrmann

([Herrmann 73]) used Equation (4—1) to compute the val-

ues of c(n) for n ≤ 6002 as follows. He avoided the com-
putation of the power E34 in Equation (1—2) by means of

the identity

E34 = E12 +
432000

691
∆ , (4—2)

where

E12(z) = 1 +
65520

691
·
∞3
n=1

σ11(n)q
n (4—3)

is the normalized Eisenstein series of weight 12. Then he

divided E12(z) repeatedly 24 times by η(z). This works

well since Euler’s series
�∞

n=−∞(−1)nqn(3n+1)/2 is sparse
with very few coefficients ±1 and all others equal to 0.
In order to implement Herrmann’s proposal, we men-

tion the following observations. First, using the re-

lation ∆ = η24 and Equations (1—2), (4—2), we getD
j − 432000

691

i·η24 = E12. Second, it is obvious that we may
write the right sum in Equation (4—1) as

�∞
n=0 e(n)q

n

with e(n) ∈ {−1; 0; 1}. Thus, we getX
c(−1) +

w
c(0)− 432000

691

W
q +

∞3
n=1

c(n)qn+1

~

·
X ∞3
n=0

e(n)qn

~24
= 1 +

65520

691
·
∞3
n=1

σ11(n)q
n .

(4—4)

Once the coefficients e(n) and σ11(n) are known, Equa-

tion (4—4) shows how to recover the Fourier coefficients

of the modular function j. The computation of σ11(n) is

straightforward. In addition, the computation of the co-

efficients e(n) is very fast. An algorithm may be found,

for instance, like Algorithm 7.3 in the first author’s the-

sis [Baier 02]. We remark that in our implementation,

we multiply both sides of Equation (4—4) by 691 to work

with integers.

We estimate the number of multiplications to get the

c(n) up to n = N by this method. It is obvious that

one division by the series
�∞

n=0 e(n)q
n in Equation (4—4)

takes
�N

k=1 k =
N(N+1)

2 multiplications. Thus, in all,

the number of multiplications using Herrmann’s method

is at least 12N(N +1). However, the multiplications are

trivial, as one factor is a coefficient e(n) and therefore in

{−1; 0; 1}. Additionally, the case e(n) = 0 is by far the

most common. Thus we cannot compare this number of

multiplications directly to the number M(N) of Section

3.. The CPU time of this method to compute c(n), −1 ≤
n ≤ 50000, was 39 minutes, 39 seconds.
We next explain our similar method. The fundamen-

tal difference to Herrmann’s approach is that instead of

successively dividing by
�∞

n=0 e(n)q
n in Equation (4—4),

we first compute a series representing the 24th power

of
�∞
n=0 e(n)q

n. More precisely, let e24(n) denote the

Fourier coefficients of the series (
�∞

n=0 e(n)q
n)
24
. Thus,

we set
�∞

n=0 e24(n)q
n = (

�∞
n=0 e(n)q

n)
24
. Again, Equa-

tion (4—4) yields an obvious recursion formula for the

c(n), once the values e24(n) and σ11(n) are known. In

contrast to the coefficients e(n), the computation of the

values e24(n) is more burdensome.

In Section 5, we use a Hecke representation of η8 to

get the Fourier coefficients of the series (
�∞
n=0 e(n)q

n)
8
.

Similar to above, we denote these coefficients as e8(n).

Then we use standard exponentiation methods to com-

pute the coefficients e24(n).

Unfortunately, we are not able to count the number of

multiplications of this method to compute the coefficients

c(n), n ≤ N. Hence, we cannot present a theoretical es-
timation of the complexity of our approach. Neverthe-

less, our practical tests give evidence that our method

is slightly faster than Harrmann’s original method. For

example, N = 50000 yields a run time of 35 minutes, 39

seconds. Furthermore, this approach seems to be faster

than using Mahler’s formula of Section 3.

5. COMPUTATIONS VIA HECKE SERIES

The method in this section is similar to the approach in

Section 4. We use the formula

j(z) = γ32(z) with γ2(z) =
E4(z)

η8(z)
. (5—1)

However, it is known from Schoeneberg [Schoeneberg 53]

and later writers ([Serre 85], [Köhler 88]), that several

powers of η(z) are represented by theta series with a

Hecke character on an imaginary quadratic number field

and that, therefore, their Fourier expansion is lacunary.

Specifically, we have (see [Köhler 88, page 84])

η8(z) =
1

6
·
3
µ∈Z[ω]

χ(µ)µ3e

w
1

3
µµz

W
,

Baier and Köhler: How to Compute the Coefficients of the Elliptic Modular Function j(z) 119

where ω = e
D
1
6

i
= 1

2 (1 +
√−3) and

χ(x+ yω) =

w
x− y
3

W
for x, y ∈ Z, with a quadratic residue symbol on the right-
hand side. We collect the contribution of associated and

conjugate elements in Z[ω] and obtain the expansion

η8(z) =
3
n>0

n≡1 mod 3

a8(n)e
pnz
3

Q
, (5—2)

a8(n) =
3
x>0,

x2=n

px
3

Q
· x3

+
3

1≤y<x,
x2+xy+y2=n

w
x− y
3

W
· (x− y)(2n+ 3xy) .(5—3)

In Section 4, we introduced coefficients e8(n) defined as

Fourier coefficients of the series (
�∞

n=0 e(n)q
n)
8
. The re-

lation e8((n − 1)/3) = a8(n) is obvious from Equation

(5—2). Thus, Equation (5—3) yields an efficient algorithm

to compute a table of the coefficients e8(n).

It is well known that γ2(z) = q
−1/3�∞

n=0 g(n)q
n with

integers g(n). We combine Equations (5—1) and (1—4) to

get a recursion formula for the coefficients g(n). More

precisely, it is easy to see that for n ≥ 1, we have

g(n) = 240 · σ3(n)−
n−13
k=0

g(k)e8(n− k). (5—4)

Again, we then make use of standard exponentiation

techniques to compute the values of c(n) from the re-

lation j = γ32 .

Although this method is very similar to our variant

of Herrmann’s algorithm, it turns out to be much slower

for N = 50000. The run time is 202 minutes, 33 seconds.

The reason is that using the power function is rather slow

for the large coefficients g(n) compared to the coefficients

e8(n). The CPU time to compute the values g(n), n ≤
N + 1, is only 8 minutes, 16 seconds. Hence, 95.9% of

the run time is spent computing c(n) from g(n).

There is a variant of this method. We observe that

j =
E34 − E26 + E26

∆
= 123 +

E26
∆
= 123 + γ23 (5—5)

with

γ3 =
E6
η12

. (5—6)

There is no representation of η12 as a theta series with

Hecke character. But we have ([Köhler 88, page 88])

η6(z) =
1

4
·
3

µ∈Z[√−1]
χ(µ)µ2e

w
1

4
µµz

W
, (5—7)

where χ(x + y
√−1) = (−1)y if x W≡ y mod 2 and

χ(x+y
√−1) = 0 otherwise. Thus, we can tabulate η6 as

efficiently as η8. Squaring η6 yields η12, a division gives

γ3, and squaring again gives the coefficients c(n) of j(z).

In practice we observe that this variant is far more effi-

cient than the first one via γ2. The total CPU time is 95

minutes, 53 seconds.

6. A FORMULA OF KANEKO AND ZAGIER

In this section, we describe a method which was discov-

ered by D. Zagier [Zagier 96] and M. Kaneko [Kaneko

99]. The main Formula (6—4) makes use of coefficients

t(n) introduced by Zagier. Once the t(n) are known,

Equation (6—4) promises to be highly efficient since it re-

quires just additions, but essentially no multiplications.

Indeed we will see that this method turns out to be the

most efficient one to compute the coefficients c(n).

Zagier defined the sequence of numbers t(n) using cer-

tain singular values of j(z). We call the numbers t(n)

Zagier coefficients. Zagier gave an equivalent definition

of the t(n) by means of the Fourier expansion of a mero-

morphic modular form of weight 3
2 , namely,

g(z) = −E4(4z)θ1(z)
η(4z)6

=
3
d

t(d)qd , (6—1)

where θ1(z) =
�∞
n=−∞(−1)nqn

2

is one of Jacobi’s theta

series. We have

t(−1) = −1, t(0) = 2, t(d) = 0 (6—2)

if d < −1 or d ≡ 1, 2 mod 4.
Zagier proved the recursion formulas3
r∈Z

r2t(4n− r2) = −480σ3(n),
3
r∈Z

t(4n− r2) = 0

(6—3)

for n ≥ 1. It is obvious that the relations of Equation

(6—3) uniquely determine the values t(3), t(4), t(7),

Using this, Kaneko proved

c(n) =
1

n

X3
r∈Z

t(n− r2)

+
3

r>0, r odd

D
(−1)nt(4n− r2)− t(16n− r2)i


(6—4)

for n ≥ 1. When we use this formula to compute a table
of c(n) for n ≤ N , we need to compute a table of the

Zagier coefficients t(d) for d ≤ 16N . As t(d) = 0 for

120 Experimental Mathematics, Vol. 12 (2003), No. 1

t(800000) = 2164260999701052804585981227488262471198748472952\
9733696975143657080601035731790618173990526143533\
3656512282742365636119956617463196459050613824587\
6750440295776998790470423898792992957601904049205\
2973403996546755959877527784339014288775236748835\
2863476016634146494249609602402917308097572254788\
7973319641485734514318500429668348518525812824026\
0074890731020416830998364778099390291027394641183\
2430533387006349005324030346999047083617137851988\
1210160600271788791610210207214991198832620779142\
5161510503902500820717723125283468679059769785638\
3625441026469277090619710353216297142058551845001\
2536352059514829394139977330472898704169335282699\
2655586854087319998910783830452828265611170156566\
4610378672848078406365514503837549643769613967403\
6486510953444974172510427077521129204294180980867\
9992323250061136672353088366222604434782193190281\
2550994292744548193301365833106507850565952542288\
9946965717275618329353414719784089114371714546118\
1640821077406275518949910112812979406046773037141\
5907987653061887825150042047996556954159609405596\
4178054544759745095141452724977338405984760557339\
4993676514688839783009090058502226547817882109781\
5745036709112156565866550240890475100791145297982\
528846788862573350090531733289276113660937680

FIGURE 1. A Sample Zagier Coefficient.

d ≡ 1, 2 mod 4, this is essentially a table of length 8N .
Once the Zagier coefficients are known, we just have to

do additions to compute the c(n) using Equation (6—4).

We explain how to recursively compute the Zagier co-

efficients. It is obvious from the formulas in Equation

(6—3) that if some n ≥ 1 is given, we get the following
recursion:

t(4n− 1) = −240σ3(n)−
√
4n+13
r=2

r2t(4n− r2) ,

t(4n) = −2
√
4n+13
r=1

t(4n− r2) .

Most of the CPU time is spent to compute the values

t(d). If N = 50000, their computation takes us 8 minutes,

19 seconds. The run time of the whole computation of

the c(n), n ≤ N, is 8 minutes, 43 seconds. Thus, 95% of

the CPU time is spent computing the table of the Zagier

coefficients.

In Figure 1, we list the coefficient t(800000). We

choose this coefficient, as for N = 50000, we have to

compute the values t(d) up to d = 799999. We remark

that t(800000) is an integer of bitlength 4056.

Finally, we remark that if N is of order of magnitude

50000, this method assumes that a large quantity of main

memory is to our disposal, say more than 500 MByte. For

example, we terminated this algorithm on a PC having

about 100 MByte of main memory after 15 minutes. At

this point, the CPU usage of our process was less than

5%, while the swapping process took almost all of the

time.

REFERENCES

[Baier 02] H. Baier. “Efficient Algorithms for Generating El-

liptic Curves over Finite Fields Suitable for Use in Cryp-

tography.” PhD thesis, Darmstadt University of Tech-

nology, 2002.

[Gouvêa 97] F.Q. Gouvêa. “Non-Ordinary Primes: A Story.”

Exp. Math. 6:3 (1997), 195—205.

[Herrmann 73] O. Herrmann. “Über die Berechnung der

Fourierkoeffizienten der Funktion j(τ).” J. f. d. reine

u. angew. Math. 274 (1973), 187—195.

[Kaneko 99] M. Kaneko. Traces of Singular Moduli and

the Fourier Coefficients of the Elliptic Modular Func-

tion j(τ). Volume 19 of Number Theory. Fifth

Conf. Canad. Number Theory Assoc., Ottawa, Ontario,

Canada, Aug. 1996. AMS, CRM Proc. Lect. Notes, 1999.

Baier and Köhler: How to Compute the Coefficients of the Elliptic Modular Function j(z) 121

[Köhler 88] G. Köhler. “Theta Series on the Hecke Groups

G(
√
2) and G(

√
3).” Math. Z. 197:1 (1988), 69—96.

[Knopp 90] M. Knopp. “Rademacher on J(τ), Poincaré Se-
ries of Nonpositive Weights and the Eichler Cohomol-

ogy.” Notices Amer. Math. Soc. 37 (1990), 385—393.

[Mahler 76] K. Mahler. “On a Class of Non-Linear Functional

Equations Connected with Modular Functions.” Jour-

nal of the Australian Mathematical Society 22: Series A

(1976), 65—120.

[Niebur 75] D. Niebur. “A Formula for Ramanujan’s τ -
Function.” Ill. J. Math. 19 (1975), 448—449.

[Rademacher 38] H. Rademacher. “The Fourier Coefficients

of the Modular Invariant J(τ).” Amer. J. Math. 60

(1938), 501—512.

[Ramanujan 27] S. Ramanujan. Collected Papers. Cam-

bridge, UK: Cambridge University Press, 1927.

Reprinted New York, 1962.

[Schoeneberg 53] B. Schoeneberg. “Über den Zusammen-

hang der Eisensteinschen Reihen und Thetareihen mit

der Diskriminante der elliptischen Funktionen.” Math.

Ann. 126 (1953), 177—184.

[Serre 85] J. P. Serre. “Sur la lacunarite des puissances de

η.” Glasg. Math. J. 27 (1985), 203—221.

[Zagier 96] D. Zagier. “Traces of Singular Moduli.” preprint,

1996. Preprint.

Harald Baier, Darmstadt Center of IT-Security, Darmstadt University of Technology, D-64283 Darmstadt, Germany

(hbaier@dzi.tu-darmstadt.de)

Günter Köhler, Department of Mathematics, University of Würzburg, D-97074 Würzburg, Germany

(koehler@mathematik.uni-wuerzburg.de)

Received July 17, 2002; accepted in revised form May 21, 2003.

