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R. M. Kashaev conjectured that the asymptotic behavior of the
link invariant he introduced [Kashaev 95], which equals the col-
ored Jones polynomial evaluated at a root of unity, determines
the hyperbolic volume of any hyperbolic link complement. We
observe numerically that for knots 63, 89 and 820 and for the
Whitehead link, the colored Jones polynomials are related to
the hyperbolic volumes and the Chern–Simons invariants and
propose a complexification of Kashaev’s conjecture.

1. INTRODUCTION

In [Kashaev 95], R.M. Kashaev defined a link invariant

associated with the quantum dilogarithm, depending on

a positive integer N , which is denoted by �LXN for a link
L. Moreover, in [Kashaev 97], he conjectured that for

any hyperbolic link L, the asymptotics at N → ∞ of

|�LXN | gives its volume, that is

vol(L) = 2π lim
N→∞

log |�LXN |
N

with vol(L) the hyperbolic volume of the complement

of L. He showed that this conjecture is true for three

doubled knots 41, 52, and 61. Unfortunately, his proof is

not mathematically rigorous.

Afterwards, in [Murakami and Murakami 01], the first

two authors proved that for any link L, Kashaev’s invari-

ant �LXN is equal to the colored Jones polynomial evalu-

ated at exp 2π
√−1/N , which is written by JN (L), and

extended Kashaev’s conjecture as follows.

Conjecture 1.1. (Volume conjecture.)

,L, = 2π

v3
lim
N→∞

log |JN (L)|
N

,

where ,L, is the simplicial volume of the complement of
L and v3 is the volume of the ideal regular tetrahedron.
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Note that the hyperbolic volume vol(L) of a hyperbolic

link L is equal to ,L, multiplied by v3. This conjecture
is not true for links in general, as JN (L) vanishes for a

split link L. It is shown by Kashaev and O. Tirkkonen in

[Kashaev and Tirkkonen 00] that the volume conjecture

holds for torus knots. See [Thurston 99] and [Yokota 00,

Yokota 02] for discussions about Kashaev’s conjecture

for hyperbolic knots from the viewpoint of tetrahedron

decomposition.

In this paper, following Kashaev’s way to analyze the

asymptotic behavior of the invariant, we observe numer-

ically, by using MAPLE V (a product of Waterloo Maple

Inc.) and SnapPea [Weeks 02], that for the hyperbolic

knots 63, 89, 820, and for the Whitehead link, the colored

Jones polynomials are related to the hyperbolic volumes

and the Chern—Simons invariants. Note that the knots

63 and 89 are not doubles of the unknot.

We also discuss a relation between the asymptotic be-

havior of JN (L) and the Chern—Simons invariant of the

complement of the above-mentioned links L, and propose

the following conjecture.

Conjecture 1.2. (Complexification of Kashaev’s conjec-
ture.) Let L be a hyperbolic link. Then the following

formula holds.

JN (L) ∼ exp N
2π
(vol(L) +

√−1CS(L)) (N →∞)

where CS(L) is the Chern—Simons invariant of L [Chern

and Simons 74, Meyerhoff 86]. Note that the complement

of L is a hyperbolic manifold with cusps.

The statement of this conjecture will be given more

properly in the last section.

2. PRELIMINARIES

First, we will briefly review the colored Jones polyno-

mials of links following [Kirby and Melvin 91]. It is

obtained from the quantum group Uq(sl(2,C)) and its
N -dimensional irreducible representation.

Let L be an oriented link. We consider a (1, 1)-tangle

presentation of L, obtained by cutting a component of

the link. We assume that all crossing and local extreme

points are as in Figure 1. We can calculate the N -colored

Jones polynomial JL(N) evaluated at the N -th root of

unity for L in the following way. We start with a labeling

of the edges of the (1, 1)-tangle presentation with labels

{0, 1, . . . , N−1}. Here we label the two edges containing
the end points of the tangle by 0. Following the labeling,

FIGURE 1. Crossings and local extrema in a link diagram.

we associate a positive (respectively, negative) crossing

with the element Rijkl (respectively, R̄
ij
kl), a maximal point

∩ labeled by i with the element −s−2i−1, and a minimal
point ∪ labeled by i with the element −s2i+1 with s =
exp π

√−1
N

as in Figure 1.

Here Rijkl and R̄
ij
kl are given by

Rijkl =

min(N−1−i,j)

n=0

δl,i+nδk,j−n
(i+ n)!(N − 1 + n− j)!
(i)!(N − 1− j)!(n)!

× s2(i−N−1
2 )(j−N−1

2 )−n(i−j)−n(n+1)
2 ,

R̄ijkl =

min(N−1−j,i)

n=0

δl,i−nδk,j+n
(j + n)!(N − 1 + n− i)!
(j)!(N − 1− i)!(n)! (−1)n

× s−2(i−N−1
2 )(j−N−1

2 )−n(i−j)+n(n+1)
2

with (n)! = (s− s−1)(s2 − s−2) · · · (sn − s−n).
After multiplying all elements associated with the crit-

ical points, we sum over all indices, ignoring framings of

links.

We calculate the colored Jones polynomial of the

Whitehead link as an example. We can label each edge in

the following way, noting Kronecker’s deltas in Rijkl and

R̄ijkl.

We have to rotate a crossing where edges go up. In

that case, we use ∪ and/or ∩ to calculate the invariant.

FIGURE 2. Labeling of the Whitehead link.
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JN (63) =
0≤k,l,m

k+l+m≤N−1

(−1)k+ls (l+k)(l+k+1)2 − (m+k)(m+k+1)
2 +

k(k+1)
2 +2(m−l)(k+1)+N(m−l+k)

× (N − 1− l)!(N − 1−m)!(l +m+ k)!(N − 1)!(1− s
−2N−2) · · · (1− s−2N−2k)

(N − 1− l −m− k)!(N − 1− l − k)!(N − 1−m− k)!(l)!(m)!(k)! .

FIGURE 3. Calculation of JN (63).

Then we calculate the formula

JN (L) =

0≤i,j,k≤N−1
i,j≥k

(q)i(q)j{(q)N−1−k}2
{(q)k}2(q)N−1−i(q)N−1−j(q)i−k(q)j−k q

−k(i+j+1),

(2—1)

where q = s2 = exp 2π
√−1
N

. Here (x)k = (1 − x)(1 −
x2) · · · (1− xk).
Next, the Chern—Simons invariant of a link is defined.

Let A be the set of all SO(3)-connections of the trivial

SO(3)-bundle of a closed three-manifoldM and cs : A→
R the Chern—Simons functional defined by

cs(A) =
1

8π2
Tr A ∧ dA+ 2

3
A ∧ A ∧ A .

The Chern—Simons invariant of the connection A is then

defined to be the integral

csM (A) =
s(M)

cs(A) ∈ R/Z,

where the integral is over a section s of the SO(3)-bundle

(i.e., an orthonormal frame field on M) [Chern and Si-

mons 74]. If M is hyperbolic, we define cs(M) to be the

Chern—Simons invariant of the connection defined by the

hyperbolic metric.

The definition of the Chern—Simons invariant for hy-

perbolic three-manifolds with cusps is due to R. Meyer-

hoff [Meyerhoff 86]. It is defined modulo 1/2 by using

a special singular frame field which is linear near the

cusps. See [Meyerhoff 86] for details. See [Coulson et al.

00] to examine how it is computed by SnapPea [Weeks

02]. Throughout this paper, we use another normaliza-

tion CS(M) = −2π2 cs(M) so that vol(M)+√−1CS(M)
is a natural complexification of the hyperbolic volume

vol(M) (see [Neumann and Zagier 85, Yoshida 85]).

3. KNOT 63

Let us calculate the colored Jones polynomial of the knot

63 using the labeling as in Figure 4.

Putting k = n1+n2 and using the formula in [Murakami

and Murakami 01]

N−1

i=0

(−1)isβi α
i
=

α

j=1

(1− sβ+α+1−2j) (3—1)

with α = k, i = n1, and β = −k − 1 − 2N , we calculate
JN (63) as shown in Figure 3.

The colored Jones polynomial of the knot 63 is given

by

JN (63) =
k,l,m≥0

k+l+m≤N−1

(q)k+l+m
(q)l(q)m

2

(q)k+l(q̄)m+k q
(m−l)(k+1).

(3—2)

We review the technique in [Kashaev 97]. For a

complex number p and a positive real number γ with

|Re p| < π + γ, we define

Sγ(p) = exp
1

4

∞

−∞

epx

sinh(πx) sinh(γx)

dx

x
.

Here Re denotes the real part. This function has two

properties:

(a) 1 + exp(
√−1p) Sγ(p+ γ) = Sγ(p− γ),

(b) Sγ(p) ∼ exp 1

2γ
√−1Li2 − exp(

√−1p) (γ → 0),

FIGURE 4. Labeling of 63.
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where

Li2(z) = −
z

0

log(1− u)
u

du.

We put

fγ(p) =
Sγ(γ − π)
Sγ(p)

, f̄γ(p) =
Sγ(−p)
Sγ(π − γ) ,

so that

(q)k = fγ(−π+ (2k+1)γ), (q̄)k = f̄γ(−π+ (2k+1)γ).

Following Kashaev’s analysis, we rewrite the for-

mula (3—2) as a multiple integral with appropriately cho-

sen contours. (Note that there is considerable doubt as

to the contours.) By using the property (b), it can be

asymptotically approximated by

exp

√−1
2γ

V63(z, u, v) dz du dv

with γ = π/N . Here z, u, and v correspond to qk, qm,

and ql, respectively, and

V63(z, u, v) = Li2(zuv)− Li2
1

zuv
+ Li2(zv)

− Li2 1

zu
− Li2(u) + Li2 1

u

− Li2(v) + Li2 1

v
− log z log u

v
.

Then there exists a stationary point

(z0, u0, v0) = (0.204323 − 0.978904
√−1, 1.60838 +

0.558752
√−1, 0.554788 + 0.192734√−1) of V63 with

ImV63(z0, u0, v0) < 0, arg z0 + arg u0 + arg v0 ≤ 2π,

and we have

− ImV63(z0, u0, v0) = 5.693021 . . . ,
ReV63(z0, u0, v0) = 0.

From values of vol(63) and CS(63) given by SnapPea, we

see that the equation

exp

√−1
2γ

V63(z0, u0, v0) = exp
vol(63) +

√−1CS(63)
2γ

holds up to digits shown above.

4. KNOT 89

We label the edges of the (1, 1)-tangle presentation of the

knot 89 as in Figure 5.

FIGURE 5. Labeling of 89.

We obtain the following formula of the colored Jones

polynomial of the knot 89, where we put l = m1 +m2 +

k1 + k2 and use the formula (3—1):

JN (89) =
0≤l,m1,m2,n1,n2≤N−1

m1+n1,m2+n2≤l
m1+m2≤l

(q)l−m1(q)l(q)l−m2

(q)m1(q)m2(q)n1(q)n2

2

× (q̄)l−n1(q)l−n2
(q)l−m1−n1(q̄)l−m2−n2

× q(m2−m1)(l−m1−m2)+(n2−n1)(l−n1−n2)+m2−m1+n2−n1 ,

which can be asymptotically approximated by

· · · exp

√−1
2γ

V89(x, y, z, u, v) dx dy dz du dv,

where x, y, z, u, and v correspond to q−l, qm1 , qm2 , qn1 ,

and qn2 respectively, and

V89(x, y, z, u, v)

= −Li2(xy) + Li2 1

xy
− Li2(xz) + Li2 1

xz

− Li2(xu) + Li2 1

xv
− Li2(x) + Li2 1

x
− Li2(y)

+ Li2
1

y
− Li2(z) + Li2 1

z
− Li2(u) + Li2 1

u

− Li2(v) + Li2 1

v
+ Li2(xzv)− Li2 1

xyu

− log y
z
log(xzv)− log u

v
log(xyu).

Thus, we have

− ImV89(x0, y0, z0, u0, v0) = 7.5881802 . . . ,
ReV89(x0, y0, z0, u0, v0) = 0
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for

x0 = 0.7366011609− 0.6763273835
√−1,

y0 = 0.4472176075− 0.1647027124
√−1,

z0 = 1.968989044− 0.7251455025
√−1,

u0 = 0.3859112582− 0.0202712198
√−1,

v0 = 2.584139126− 0.1357401508
√−1

satisfying

ImV89(x0, y0, z0, u0, v0) < 0,

arg x0 + arg y0 + arg u0 ≤ 2π,
arg x0 + arg z0 + arg v0 ≤ 2π,
arg x0 + arg u0 + arg v0 ≤ 2π.

It follows from the calculation by SnapPea that

exp

√−1
2γ

V89(x0, y0, z0, u0, v0)

= exp
vol(89) +

√−1CS(89)
2γ

,

up to digits shown above.

5. KNOT 820

In this section, we discuss a relation between the asymp-

totic behavior of the colored Jones polynomial and the

Chern—Simons invariant for the knot 820. We label each

edge in the diagram of the knot in Figure 6.

FIGURE 6. Labeling of 820.

The N -colored Jones polynomial of the knot 820 is

given by

j,l≤k≤i+l≤j+m
j≤i

0≤i,j,k,l,m≤N−1

{(q̄)i(q)k(q̄)m}2
{(q̄)j(q)l}2(q)k−l(q̄)i−k+l(q̄)j+m−i−l(q)i−j(q)k−j

× qk+m+im+km−il, (5—1)

which can be rewritten in the integral

· · · exp

√−1
2γ

V820(x, y, z, u, v) dx dy dz du dv

with

V820(x, y, z, u, v) = −2Li2(x) + 2Li2
1

y
+ 2Li2(z)

− 2Li2 1

u
− 2Li2 1

x
− Li2 1

xy

− Li2 z

y
− Li2(zu) + Li2(xzu)

+ Li2
1

xyuv
+ log x log u

+ log x log v − log z log v + π2

2
.

Here x, y, z, u, and v correspond to q−i, qj , qk, q−l, and
qm, respectively.

Stationary points are solutions to partial differential

equations,

∂V820
∂x

=
∂V820
∂y

=
∂V820
∂z

=
∂V820
∂u

=
∂V820
∂v

= 0.

From these equations, we have the following system of

algebraic equations:

(1− x)2 1− 1

xyuv
uv = 1− 1

xy
(1− xzu),

1− 1

xy
1− z

y
= 1− 1

y

2

1− 1

xyuv
,

(1− z)2 (1− xzu) v = (1− zu) 1− z
y

,

(1− zu) 1− 1

xyuv
x = 1− 1

u

2

(1− xzu) ,

1− 1
v

2

z = 1− 1

xyuv
x.

Using MAPLE V, we get a stationary point

(x0, y0, z0, u0, v0) which satisfies the conditions

arg
1

u0
≤ arg z0, arg z0 ≤ arg 1

x0
+ arg

1

u0
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from the range in the summation in (5—1), and

ImV820(x0, y0, z0, u0, v0) < 0,

where Im denotes the imaginary part. Note that the

range of (5—1) can be read as

arg
1

u
≤ arg z ≤ arg 1

x
+ arg

1

u
,

arg
1

x
+ arg

1

y
+ arg

1

u
≤ arg v,

0 ≤ arg 1
x
+ arg

1

y
,

0 ≤ arg 1
x
, arg z, arg

1

u
, arg v ≤ 2π.

To put it concretely,

x0 = 2.878599677 + 2.657408013
√−1,

y0 =∞,
z0 = −0.4425377456− 0.4544788919

√−1,
u0 = 0.3542198353− 0.02180673815

√−1,
v0 = 0.1458832937− 0.3399257634

√−1.

Then we obtain

− ImV820(x0, y0, z0, u0, v0) = 4.1249032 . . . ,

− ReV820(x0, y0, z0, u0, v0) + π2

2π2
= 0.1033634 . . . .

Applying values of vol(820) and CS(820) given by Snap-

Pea [Weeks 02], we see that the following equation holds

up to digits shown above.

exp

√−1
2γ

V820(x0, y0, z0, u0, v0)

= exp
vol(820) +

√−1CS(820)
2γ

.

Note that CS(820) is defined modulo π
2.

6. WHITEHEAD LINK

For the final example, we calculate the limit of the colored

Jones polynomial of the Whitehead link given by (2—1),

which can be changed to the formula

JN (L) =
0≤i,j,k≤N−1

k≤i,j

{(q̄)i(q̄)j}2
(q)4k(q̄)i−k(q̄)j−k

q−(N−1)N/2.

This can be asymptotically approximated by

exp

√−1
2γ

VL(x, y, z) dx dy dz,

where

VL(x, y, z) = −2Li2 1

x
− 2Li2 1

y
− 4Li2(z)

+ Li2
z

x
+ Li2

z

y
+ π2,

and x, y, and z correspond to qi, qj, and qk respectively.

For a stationary point (x0, y0, z0) = (∞,∞, 1+
√−1), we

obtain

− ImVL(x0, y0, z0) = 3.663862 . . . ,

− ReVL(x0, y0, z0)
2π2

= −0.1250000 . . . .

Since these values agree with SnapPea, the equation

exp

√−1
2γ

VL(x0, y0, z0) = exp
vol(L) +

√−1CS(L)
2γ

holds up to digits shown above.

7. TOPOLOGICAL CHERN-SIMONS INVARIANT
AND SOME EXAMPLES

We propose a topological definition of the Chern—Simons

invariant for links.

For a link L, if there exists the limit

2π Im lim
N→∞

log
JN+1(L)

JN (L)
mod π2,

then we denote it by CSTOP(L) and call it the topological

Chern—Simons invariant of L.

Let us give some numerical examples.

For the knot 52, we list some values of

(N, 2π log(JN+1(52)/JN (52))) by Pari-Gp in Table

1.

By fitting the above data to quadratic functions on

1/N , we can obtain the limit value

2.82813− 3.02414√−1
of 2π log(JN+1(52)/JN (52)) as N → ∞ numerically,

which agrees with the value

2.8281220− 3.02412837√−1
by SnapPea. We display our data graphically in Figures

7 and 8, which help us to see the limit.

Similarly, for the Whitehead link L, we illustrate our

numerical check in Table 2, Figure 9, and Figure 10.

Fitting, we get the numerical limit value 3.66386 +

2.46742
√−1 of 2π log(JN+1(L)/JN (L)) as N → ∞,

which agrees with our result in Section 6.
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(40, 3.058223721261842722613885956− 3.022924613281720287391974968√−1)
(50, 3.013081508530188353573854822− 3.023340368517507069134855780√−1)
(60, 2.982744318753580696821772299− 3.023574042878935429645720640√−1)
(70, 2.960955404961739170749114151− 3.023717381786374852930574631√−1)
(80, 2.944548269170450112446966301− 3.023811574968472287718611711√−1)
(100, 2.921483906108228993018469212− 3.023923719027833555669502480√−1)
(120, 2.906046421388666000282542398− 3.023985374930307234443986632√−1)
(150, 2.890559881907537128372001511− 3.024036295143969179028770901√−1)
(200, 2.875024234226941620327156350− 3.024076266558545340852410631√−1)
(250, 2.865679250969538531562099056− 3.024094905811349375139149331√−1)

TABLE 1.

(40, 3.892920359101811097809525583 + 2.457483997330866045812504703
√−1)

(50, 3.848161466402914225154530180 + 2.461039474018016569869745301
√−1)

(60, 3.818029013349499312708236153 + 2.462976748675980254703390855
√−1)

(70, 3.796362501209537691078944556 + 2.464147191795881614582476451
√−1)

(80, 3.780034327560022195082015385 + 2.464907923404764622274395868
√−1)

(100, 3.757062258985477857247991239 + 2.465803785962819679236327339
√−1)

(120, 3.741674608179023673159144258 + 2.466291085896660260688606142
√−1)

(150, 3.726228649726558590507828429 + 2.466690204011030007962113880
√−1)

TABLE 2. (N, 2π log(JN+1(L)/JN (L))) for the Whitehead link L

FIGURE 7.
Dots indicate (1/N, 2πRe log(JN+1(52)/JN(52))) for

N = 40, 50, 60, 70, 80, 100, 120, 150, 200, 250. The origin
corresponds to (0, 2.82).

FIGURE 8.
Dots indicate (1/N , 2π Im log(JN+1(52)/JN (52))) for
N = 40, 50, 60, 70, 80, 100, 120, 150, 200, 250. The origin
corresponds to (0,−3.0242).
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FIGURE 9.
Dots indicate (1/N, 2πRe log(JN+1(L)/JN (L))) for N =

40, 50, 60, 70, 80, 100, 120, 150. The origin corresponds to
(0, 3.66).

FIGURE 10.
Dots indicate (1/N, 2π Im log(JN+1(L)/JN(L))) for N =

40, 50, 60, 70, 80, 100, 120, 150. The origin corresponds to
(0, 2.4674).

8. CONCLUSION

We have shown the following by direct calculation.

Observation 8.1. Let L be one of the hyperbolic knots 63,
89, and 820, or the Whitehead link. Following Kashaev’s

way, we approximate the colored Jones polynomial JN (L)

of L asymptotically by

· · · exp
N
√−1
2π

VL(x)dx.

Then there exists a stationary point x0 of VL such that

the formula

exp
N
√−1
2π

VL(x0) = exp
N

2π
(vol(L) +

√−1CS(L))

holds up to 6 digits.

Conjecture 8.2. (Complexification of Kashaev’s conjec-
ture.) Let L be a hyperbolic link. Then, it holds that

vol(L) = 2π lim
N→∞

log |�LXN |
N

with vol(L) the hyperbolic volume of the complement of

L. Moreover, there exists the topological Chern—Simons

invariant CSTOP(L) of L

CSTOP(L) = 2π Im lim
N→∞

log
JN+1(L)

JN (L)
mod π2,

and CSTOP(L) equals to CS(L) modulo π
2. Here CS(L)

is the Chern—Simons invariant of L [Chern and Simons

74, Meyerhoff 86]. Note that the complement of L is a

hyperbolic manifold with cusps.

We note that Observation 8.1 also holds for the knots

41, 52 and 61 by calculating Kashaev’s examples in

[Kashaev 97] using MAPLE V and SnapPea.

Therefore we conclude that the complexified Kashaev

conjecture is true, up to several digits, up to choices of

contours when we change summations into integrals, and

up to choices of saddle (stationary) points when we ap-

proximate integrals by the saddle point method, for the

six hyperbolic knots above and for the Whitehead link.

Note that if the complexified Kashaev conjecture is

true then the topological Chern—Simons invariant of a hy-

perbolic link coincides with its Chern—Simons invariant

associated with the hyperbolic metric. Moreover if the

volume conjecture is true then the colored Jones poly-

nomial would give both the simplicial volume and the

topological Chern—Simons invariant for any knot.
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