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Abstract. We are interested in the structure of the solution space of second-order
half-linear differential equations taking into account various classifications regarding
asymptotics of solutions. We focus on an exhaustive analysis of the relations among
several types of classes which include the classes constructed with respect to the values
of the limits of solutions and their quasiderivatives, the classes of regularly varying
solutions, the classes of principal and nonprincipal solutions, and the classes of the so-
lutions that obey certain asymptotic formulae. Many of our observations are new even
in the case of linear differential equations, and we provide also the revision of existing
results.
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1 Introduction

We consider the half-linear differential equation

(r(t)Φ(u′))′ + p(t)Φ(u) = 0, (1.1)

t ∈ [a, ∞), a > 0, where r(t) > 0, Φ(u) = |u|α−1 sgn u, α > 1. By Φ−1 we mean the inverse of
Φ. Note that Φ−1(u) = |u|β−1 sgn u, where β is the conjugate number to α, i.e.,

1
α
+

1
β
= 1.

We study asymptotic properties of equation (1.1) from several points of view. We deal
with the sets of solutions classified according to the values of their limits and the limits of
their quasiderivatives, the classes of regularly varying solutions (with prescribed indices), the
classes of principal and nonprincipal solutions, and the classes of solutions satisfying quite
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precise asymptotic formulae. We provide an exhaustive discussion concerning the relations
among these classes and, in fact, in each setting we describe the entire solution space of (1.1).
A big part of our results is new even in the linear case (where such a comprehensive treatment
has not been known previously). In addition, we offer a revision and completion of existing
results and place them into a broader context. To be more precise, all the results where p > 0
(and L > 0) are new, with the exception of some of the inclusions involving the formulae
in terms of L, which are established in [22, Section 5]. We utilize in the proofs also another
results from [22], namely Theorem 3.3 and Lemma 3.5 on regular variation of the elements of
the solution space. As for the case p < 0, all the results where η < 0 (in Theorem 2.1 and
Theorem 2.2) or δ + α < γ (the entire Theorem 2.3) or ηi < 0 (in Theorem 2.4) are new. More-
over, the results in the case p < 0 are newly supplemented by the formulae in terms of Bk,
and some of the known inclusions involving Gk,Hk are completed in sense of equalities. The
known results which are included in Theorem 2.1 and Theorem 2.2 (except of those involving
L) are taken from [19, Section 6] and [23, Section 4], see also Lemma 3.19. The relations with
the formulae involving L in Theorems 2.1, 2.2, 2.4 for the case p < 0 and L < 0 are taken from
[20, Theorem 2, Theorem 4]. Thanks to the parallel analysis of the cases p < 0 and p > 0,
we can see similarities and differences between these two cases. This concerns not only the
statements, but also the proofs, some of them can be unified, some other require A different
approach. Further relations and comparisons with existing results are spread throughout the
text.

Some phenomena which can occur only in the purely half-linear case (i.e., α ̸= 2) are
revealed. Recall that (1.1) arises out when studying radially symmetric solutions of certain
partial differential equations with p-Laplacian, thus the results can be useful in theory of
PDEs. Our observations are important also from stability point of view and can find appli-
cations in a description of Poincaré–Perron solutions which are associated to perturbations of
some autonomous nonlinear differential equations.

An important role in our theory is played by the condition

lim
t→∞

tα p(t)
r(t)

= Cγ. (1.2)

This condition guarantees that the set of all positive solutions of (1.1) consists of regularly
varying solutions of known indices which are related to the value of the limit Cγ ∈
(−∞, (|α − 1 − γ|/α)α], γ being the index of regular variation of r, see Theorem 3.3. As
for the existence of a regularly varying solution of (1.1), note that there are known conditions
in certain integral (more general) forms that are not only sufficient but also necessary (1.1), see
[9,10]. Since we assume regular variation of p and r (as we wish to include precise asymptotic
formulae into our relations among the classes), the integral conditions reduce to (1.2), and
thereby (1.2) actually becomes also necessary, see Lemma 3.5. We however emphasize that
thanks to Theorem 3.3 we work with the entire solution space, and there is no sign condition
on p a-priori needed.

A deeper approach to asymptotic formulae (including the critical – double root cases,
see below) and related problems in the framework not only of Karamata theory, but also
of de Haan theory (the classes Gamma and Pi) can be found in [19, 20, 22, 23]. Relations of
regularly varying solutions of (1.1) to Poincaré–Perron solutions are examined in [21, 22]. For
further results concerning asymptotics of half-linear differential equations in the framework of
regular variation see [6, 9–11, 14–17]. A very important work which shows how the Karamata
theory can be applied to study qualitative properties of various differential equations is the
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monograph [12] by Marić, see also [18], where the progress after the year 2000 is summarized.
Recall that by the Sturm type separation theorem which extends to half-linear equations,

see [6, Chapter 1], a solution of (1.1) is oscillatory (i.e., it is not of eventually one sign) if and
only if all solutions of (1.1) are oscillatory. Hence, we can classify equation (1.1) as oscillatory
or nonoscillatory as in the linear case. We are interested in behavior of nonoscillatory solutions
of (1.1). Since the solution space (1.1) is homogeneous, without loss of generality we may
consider only the set

S = {y : y(t) is a positive solution of (1.1) for large t}.

Assuming that p is eventually of one sign we get that all solutions in S are eventually mono-
tone, thus any such a solution belongs to one of the classes

IS = {y ∈ S : y′(t) > 0 for large t}, DS = {y ∈ S : y′(t) < 0 for large t}.

The classes IS ,DS can further be divided into four mutually disjoint subclasses

ISB =

{
y ∈ IS : lim

t→∞
y(t) = My ∈ (0, ∞)

}
, IS∞ =

{
y ∈ IS : lim

t→∞
y(t) = ∞

}
,

DSB =

{
y ∈ DS : lim

t→∞
y(t) = My ∈ (0, ∞)

}
, DS0 =

{
y ∈ DS : lim

t→∞
y(t) = 0

}
.

The so-called quasiderivative y[1] of y ∈ S is defined by y[1] = rΦ(y′). We introduce the
following convention that is pertinent to the limits of solutions and their quasiderivatives:

ISuv =

{
y ∈ IS : lim

t→∞
y(t) = u, lim

t→∞
y[1](t) = v

}
,

DSuv =

{
y ∈ DS : lim

t→∞
y(t) = u, lim

t→∞
|y[1](t)| = v

}
;

for the subscripts of IS and DS , by u = B and v = B we mean that the value of u and v,
respectively, is a positive number. Denote

Jp =
∫ ∞

a
|p(s)|ds, Jr =

∫ ∞

a
r1−β(s)ds, (1.3)

Let p < 0. Then
S = IS ∪ DS , where IS ̸= ∅ ̸= DS , (1.4)

see [5], [6, Chapter 4]. It is almost immediate (thanks to monotonicity) that

IS = IS∞∞ ∪ IS∞B ∪ ISB∞ ∪ ISBB

and
DS = DS00 ∪DS0B ∪DSB0 ∪DSBB,

see also [5], [6, Chapter 4]. The solutions in IS∞∞ are called strongly increasing and the
solutions in DS00 are called strongly decreasing, together they form extremal solutions. The
solutions in IS∞B are called regularly increasing and the solutions in DS0B are called regularly
decreasing.

Let p > 0. If Jr = ∞, then DS = ∅ while if Jp = ∞, then IS = ∅, see [6, Chapter 4].
Note that if Jr = ∞ = Jp, then S = ∅ since (1.1) is oscillatory by the Leighton–Wintner type
criterion, see [6, Theorem 1.2.9]. Moreover, it is easy to show that if Jr = ∞ (and Jp < ∞), then

S = IS = IS∞B ∪ IS∞0 ∪ ISB0, (1.5)
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while if Jp = ∞ (and Jr < ∞), then

S = DS = DSB∞ ∪DS0∞ ∪DS0B, (1.6)

see [4]. The solutions in IS∞B and DSB∞ are called dominant, the solutions in IS∞0 and DS0∞

are called intermediate, the solutions in ISB0 and DS0B are called subdominant. An important
role in studying (non)emptiness of the subclasses ISuv and DSuv and related problems is
played by the integral conditions (3.1). Some of these relations will be used in our proofs. For
more information in this direction, see [2–6].

If (1.1) is nonoscillatory, then there exists a nontrivial solution y of (1.1) such that for every
nontrivial solution u of (1.1) with u ̸= λy, λ ̸= 0, we have

y′(t)
y(t)

<
u′(t)
u(t)

for large t,

see, e.g., [6, Section 4.2]. Such a solution is said to be principal solution. Solutions of (1.1)
which are not principal are called nonprincipal solutions. Principal solutions are unique up to
a constant multiple. We denote

P = {y ∈ S : y is principal}.

Some characterizations of principal solutions are presented in Theorems 3.20–3.26 for the
purposes of our later use, see also [2,3,13]. Note that the situation concerning a description of
principal solutions is substantially more complicated in the case p > 0 than in the case p < 0
for half-linear equations.

A measurable function f : [a, ∞) → (0, ∞) is called regularly varying (at infinity) of index ϑ if

lim
t→∞

f (λt)
f (t)

= λϑ for every λ ∈ (0, ∞); (1.7)

we write f ∈ RV(ϑ). If ϑ = 0, we speak about slowly varying functions; we write f ∈ SV ,
thus SV = RV(0). If f ∈ RV(ϑ), then relation (1.7) holds uniformly on each compact λ-set
in (0, ∞) (the so-called Uniform Convergence Theorem, see, e.g., [1]). It follows that f ∈ RV(ϑ)
if and only if there exists a function L ∈ SV such that f (t) = tϑL(t) for every t. The slowly
varying component of f ∈ RV(ϑ) will be denoted by L f , i.e.,

L f (t) :=
f (t)
tϑ

, (1.8)

unless stated otherwise. We adopt notation (1.8) also for negative functions f such that | f | ∈
RV(ϑ). The so-called Representation Theorem (see, e.g., [1]) says the following: f ∈ RV(ϑ) if
and only if

f (t) = φ(t)tϑ exp
{∫ t

a

ψ(s)
s

ds
}

, (1.9)

t ≥ a, for some a > 0, where φ, ψ are measurable with limt→∞ φ(t) = C ∈ (0, ∞) and
limt→∞ ψ(t) = 0. A function f ∈ RV(ϑ) can alternatively be represented as

f (t) = φ(t) exp
{∫ t

a

ω(s)
s

ds
}

, (1.10)

t ≥ a, for some a > 0, where φ, ω are measurable with limt→∞ φ(t) = C ∈ (0, ∞) and
limt→∞ ω(t) = ϑ. A regularly varying function f is said to be normalized regularly varying, we
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write f ∈ NRV(ϑ), if φ(t) ≡ C in (1.9) or in (1.10). If (1.9) holds with ϑ = 0 and φ(t) ≡ C, we
say that f is normalized slowly varying, we write f ∈ NSV . We denote

SSV = S ∩ SV , SRV (ϑ)c = S ∩RV(ϑ),
SNSV = S ∩NSV , SNRV (ϑ) = S ∩NRV(ϑ);

a similar convention is used when S is replaced by DS or IS . Some properties of regularly
varying functions are gathered in Proposition 3.1 and Theorem 3.2; for more information see
[1, 8].

The condition
|p| ∈ RV(δ), r ∈ RV(γ), (1.11)

which plays an important role in our theory, in fact is not needed for showing regular variation
of solutions to (1.1), but it enables us to provide a precise asymptotic description. We will
assume that δ ̸= −1 and γ ̸= α − 1 which leads to avoiding the critical (double-root – see
(2.3)) setting. The critical setting (which is considered in connection with searching precise
asymptotic formulae in [20,22] and requires a more refined approach) could be treated also in
the framework of our topic – a finer classification would however be needed. Denote

G(t) = Φ−1
(

tp(t)
r(t)

)
, J =

∫ ∞

a
|G(t)|dt, H(t) =

tα−1 p(t)
r(t)

, R =
∫ ∞

a
|H(t)|dt. (1.12)

If (1.11) holds and δ + α = γ, then

G(t) =
1
t

Φ−1
(

Lp(t)
Lr(t)

)
and H(t) =

Lp(t)
tLr(t)

(1.13)

by Proposition 3.1. Observe that if α ̸= 2, then the situation where J = ∞ and R < ∞ (or
vice versa) can occur under the conditions (1.11) and δ + α = γ. An example can easily
be constructed via the relations in (1.13). This fact substantially affects the structure of the
solution space of (1.1) which turns out to be more complex than in the linear case. Lemma 3.7
describes a connection of J, R with the integrals in (3.1) which play a central role in studying
the existence problems in the classes ISuv,DSuv. To simplify writing asymptotic formulae,
we adopt the notation

E(σ, τ, K, f ) = exp
{∫ τ

σ
(1 + o(1))K f (s)ds

}
,

where o(1) is meant either as τ → ∞ when τ < ∞ or as σ → ∞ when τ = ∞. As usually,
for f , g which are either both positive or both negative, the relation f (t) ∼ g(t) as t → ∞
means limt→∞ f (t)/g(t) = 1, while f (t) = o(g(t)) as t → ∞ means limt→∞ f (t)/g(t) = 0. The
sets presented below are introduced for purposes of an easy and synoptic incorporation of
asymptotic formulae to other classifications; the constants My, Ny are defined by

My = lim
t→∞

y(t), Ny = lim
t→∞

y[1](t).

The sets G1,G2,H1,H2,H3,H4 are pertinent to the solutions in the classes SV and RV(ϱ),
respectively, where

ϱ =
α − 1 − γ

α − 1
, (1.14)
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under the condition Cγ = 0, and are defined by:

G1 =
{

y ∈ S : y(t) = E(a, t,−1/Φ−1(δ + 1), G)
}

,

G2 =
{

y ∈ S : y(t) = MyE(t, ∞, 1/Φ−1(δ + 1), G)
}

,

and

H1 =

{
y ∈ S : y(t) = y(t0) +

∫ t

t0

r1−β(s)E(a, s,−(β − 1)/Φ(ϱ), H)ds
}

,

H2 =

{
y ∈ S : y(t) =

∫ ∞

t
r1−β(s)E(a, s,−(β − 1)/Φ(ϱ), H)ds

}
,

H3 =

{
y ∈ S : y(t) = y(t0) +

∫ t

t0

r1−β(s)Φ−1(Ny)E(s, ∞, (β − 1)/Φ(ϱ), H)ds
}

,

H4 =

{
y ∈ S : y(t) =

∫ ∞

t
r1−β(s)Φ−1(−Ny)E(s, ∞, (β − 1)/Φ(ϱ), H)ds

}
.

If
∫ ∞

a |H(s)|ds = ∞, then H1 = H2 = H0 (see Lemma 3.14), where

H0 =
{

y ∈ S : y(t) = tr1−β(s)E(a, t,−(β − 1)/Φ(ϱ), H)
}

.

The sets L1,L2 which are designed for the case Cγ ̸= 0 and for an alternative description in
the case Cγ = 0 with RV(ϱ) solutions, are given by:

L1(ϑ, η) =

{
y ∈ S : y(t) = tϑE

(
a, t,

1 − β

Φ(ϑ)− Cγ/ϑ
, L(ϑ, η, ·)

)}
,

L2(ϑ, η) =

{
y ∈ S : y(t) = DtϑE

(
t, ∞,

β − 1
Φ(ϑ)− Cγ/ϑ + η|ϑ|α−2 , L(ϑ, η, ·)

)}
,

where

L(ϑ, η, t) =
1
t

[
tα p(t)
r(t)

− Cγ + Φ(ϑ)

(
tr′(t)
r(t)

− γ

)]
, with |L(ϑ, η, ·)| ∈ RV(η − 1),

and D = limt→∞ y(t)/tϑ. If A is a set, then by the equality A = L(ϑ, η) we mean that

A =

{
L1(ϑ, η) if

∫ ∞
a |L(ϑ, η, s)|ds = ∞,

L2(ϑ, η) if
∫ ∞

a |L(ϑ, η, s)|ds < ∞.
(1.15)

In view of Proposition 3.1, if η < 0 and A = L(ϑ, η), then A = L2(ϑ, η). Note that in our
results we actually have limt→∞ L(ϑ, η, t) = 0, thus by the Representation Theorem (1.9), we
get L(ϑ, η) ⊂ RV(ϑ), ϑ ∈ R, η ≤ 0. If Cγ = 0, then

L(0, η, t) = H(t) and L(ϱ, η, t) =
Lp(t)
tLr(t)

− Φ(ϱ)
L′

r(t)
Lr(t)

.

The sets B1, . . . ,B6 are pertinent to the situations where y and/or y[1] have a real nonzero limit
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and are defined as follows:

B1 =

{
y ∈ S : My − y(t) ∼

Φ−1(Ny)

ϱ
tr1−β(t) as t → ∞

}
,

B2 =

{
y ∈ S : Ny − y[1](t) ∼

Φ(My)

δ + 1
tp(t) as t → ∞

}
,

B3 =

{
y ∈ S : My − y(t) ∼

My(α − 1)
Φ−1(δ + 1)(δ + α − γ)

tG(t) as t → ∞
}

,

B4 =

{
y ∈ S : Ny − y[1](t) ∼

−Ny

Φ(ϱ)(δ + α − γ)
tH(t) as t → ∞

}
,

B5 =
{

y ∈ S : t|G(t)| = o(|My − y(t)|) as t → ∞
}

,

B6 =
{

y ∈ S : t|H(t)| = o(|Ny − y[1](t)|) as t → ∞
}

.

2 Main results

In this section we present the main results that are formulated as four theorems; we distin-
guish, in particular, whether Cγ is zero or not and whether γ is equal to δ + α or not.

First note that under the assumptions of Theorems 2.1–2.4, we have, for a given ϑ ∈ R,

SRV (ϑ) = SNRV (ϑ), (2.1)

see Remark 3.4. Therefore we omit writing this relation in formulations of the theorems
since it holds in each case. It is worthy of noting that because of the properties of principal
solutions, in the sets that are equal to P , we have uniqueness up to a constant multiple. This,
in particular, means that, for example, in the case (i-a) of Theorem 2.1, there is only one slowly
varying solution provided we fix its value at a point.

In Theorems 2.1-2.3, we need to take δ ̸= −1, γ ̸= α − 1; Theorem 2.4 does not require
an inequality. In fact, the equality in the settings of Theorems 2.1-2.3 would lead to some-
how critical cases (which correspond with double roots in (2.3) and/or border-line version
of the Karamata integration theorem). Actually, the critical cases can be treated, but a more
sophisticated approach is needed and introducing new special asymptotic subclasses is neces-
sary. The main ingredients in analyzing these cases are suitable transformations to non-critical
cases and applications of existing results (including the new ones in this paper). We will not
go further in this direction. For some considerations concerning the critical case see [20, 22].

The first two theorems deal with SV and RV(ϱ) solutions under the condition γ = δ + α.
Recall that ϱ is defined in (1.14).

Theorem 2.1. Let Cγ = 0 and (1.11) hold, where γ = δ + α. For the relations involving the class
L(ϱ, η) assume, in addition, |L(ϱ, η, ·)| ∈ RV(η − 1), η ≤ 0, and if the condition δ < −1 is supposed,
let, in addition, δ < −1 + η(α − 1). Then S = SNSV ∪ SNRV (ϱ), SNSV ̸= ∅, SNRV (ϱ) ̸= ∅, and
the following hold:
(i) Assume that J = ∞ and R = ∞.

(i-a) If p < 0 and δ < −1, then

SNSV = DS = DS00 = G1 = P , SNRV (ϱ) = IS = IS∞∞ = H1 = H0 = L(ϱ, η).

(i-b) If p < 0 and δ > −1, then

SNSV = IS = IS∞∞ = G1, SNRV (ϱ) = DS = DS00 = H2 = H0 = L(ϱ, η) = P .
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(i-c) If p > 0 and δ < −1, then

S = IS = IS∞0 = SNSV ∪ SNRV (ϱ), with SNSV = G1 = P , SNRV (ϱ) = H1 = H0 = L(ϱ, η).

(i-d) If p > 0 and δ > −1, then

S = DS = DS0∞ = SNSV ∪ SNRV (ϱ), with SNSV = G1, SNRV (ϱ) = H2 = H0 = L(ϱ, η) = P .

(ii) Assume that J < ∞ and R < ∞.
(ii-a) If p < 0 and δ < −1, then

SNSV = DS = DSB0 = G2 = B5 = P , SNRV (ϱ) = IS = IS∞B = H3 = B6 = L(ϱ, η).

(ii-b) If p < 0 and δ > −1, then

SNSV = IS = ISB∞ = G2 = B5, SNRV (ϱ) = DS = DS0B = H4 = B6 = L(ϱ, η) = P .

(ii-c) If p > 0 and δ < −1, then

SNSV = ISB0 = G2 = B5 = P , SNRV (ϱ) = IS∞B = H3 = B6 = L(ϱ, η).

(ii-d) If p > 0 and δ > −1, then

SNSV = DSB∞ = G2 = B5, SNRV (ϱ) = DS0B = H4 = B6 = L(ϱ, η) = P .

Observe that Theorem 2.1 and Theorem 2.2 have the same general assumptions. They differ
in the conditions regarding mutual behavior of J and R. We emphasize that the combinations
J = ∞ ∧ R < ∞ and J < ∞ ∧ R = ∞, which are assumed in Theorem 2.2, can occur only in
the purely half-linear case (i.e., α ̸= 2), and that is why we separate them into a particular
theorem. In view of equalities in (1.13), it is easy to find a suitable example illustrating this
setting. Indeed, take Lr(t) = 1 and Lp(t) = 1/ lnω t, where 1 < ω < α − 1 or α − 1 < ω < 1.
It so arises out that the structure of the solution space in the half-linear case is generally
more complex than in the linear one under our setting. In particular, under the conditions
of Theorem 2.2, there can coexist strongly monotone solutions with non-extremal ones or
intermediate solutions with dominant or subdominant ones. See also [4,5] where the problem
of coexistence and non-linear setting is discussed in a more general context.

Theorem 2.2. Let (1.11) hold, where γ = δ + α, and Cγ = 0. For the relations involving the class
L(ϱ, η) assume, in addition, |L(ϱ, η, ·)| ∈ RV(η − 1), η ≤ 0, and if the condition δ < −1 is supposed,
let, in addition, δ < −1 + η(α − 1). Then S = SNSV ∪ SNRV (ϱ), SNSV ̸= ∅, SNRV (ϱ) ̸= ∅, and
the following hold:
(i) Assume that J = ∞ and R < ∞.

(i-a) If p < 0 and δ < −1, then

SNSV = DS = DS00 = G1 = P , SNRV (ϱ) = IS = IS∞B = H4 = B6 = L(ϱ, η).

(i-b) If p < 0 and δ > −1, then

SNSV = IS = IS∞∞ = G1, SNRV (ϱ) = DS = DS0B = H4 = B6 = L(ϱ, η) = P .

(i-c) If p > 0 and δ < −1, then

SNSV = IS∞0 = G1 = P , SNRV (ϱ) = IS∞B = H4 = B6 = L(ϱ, η).
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(i-d) If p > 0 and δ > −1, then

SNSV = DS0∞ = G1, SNRV (ϱ) = DS0B = H4 = B6 = L(ϱ, η) = P .

(ii) Assume that J < ∞ and R = ∞.

(ii-a) If p < 0 and δ < −1, then

SNSV = DS = DSB0 = G2 = B5 = P , SNRV (ϱ) = IS = IS∞∞ = H1 = H0 = L(ϱ, η).

(ii-b) If p < 0 and δ > −1, then

SNSV = IS = ISB∞ = G2 = B5, SNRV (ϱ) = DS = DS00 = H2 = H0 = L(ϱ, η) = P .

(ii-c) If p > 0 and δ < −1, then

SNSV = ISB0 = G2 = B5 = P , SNRV (ϱ) = IS∞∞ = H1 = H0 = L(ϱ, η).

(ii-d) If p > 0 and δ > −1, then

SNSV = DSB∞ = G2 = B5, SNRV (ϱ) = DS0B = H2 = H0 = L(ϱ, η) = P .

The next theorem can be seen as a complement of Theorems 2.1 and 2.2 in the sense
that the condition δ + α = γ will not be satisfied. We assume δ + α < γ which implies
Cγ = 0, J < ∞, R < ∞; this can be seen from Proposition 3.1 (see the proof of Theorem 2.3).
On the other hand, in contrast to the case of equality δ + α = γ, the strict inequality allows us
to consider a richer variety of combinations of conditions δ < −1, δ > −1, γ < α− 1, γ > α− 1.
Observe that under the setting of Theorem 2.3, there are no extremal or intermediate solutions.
The case δ + α > γ is not considered since then there are no regularly varying solutions.
Indeed, by Proposition 3.1, we then have |Cγ| = ∞. If p < 0, then by [23], the set S is
nonempty and consists entirely of the solutions in the de Haan classes Γ and Γ−, which are
subsets of rapidly varying functions. If p > 0, then equation (1.1) is oscillatory by Hille–
Nehari type criteria, see [6, Chapter 3], and so S is empty. In fact, to show that there are no
RV solutions, we can argue in a alternative way, namely that the necessary condition is not
fulfilled, see Lemma 3.5.

Theorem 2.3. Let (1.11) hold, where γ > δ + α. For the relations involving the class L(ϱ, η) assume,
in addition, |L(ϱ, η, ·)| ∈ RV(η − 1), η ≤ 0, and if the condition γ < α − 1 is supposed, let, in
addition, γ < (α − 1)(1 + η). Then S = SNSV ∪ SNRV (ϱ), SNSV ̸= ∅, SNRV (ϱ) ̸= ∅, and the
following hold:

(i) Assume that δ < −1 and γ < α − 1.

(i-a) If p < 0, then

SNSV = DS = DSB0 = G2 = B3 = P , SNRV (ϱ) = IS = IS∞B = H3 = B4 = L(ϱ, η).

(i-b) If p > 0, then

SNSV = ISB0 = G2 = B3 = P , SNRV (ϱ) = IS∞B = H3 = B4 = L(ϱ, η).

(ii) Assume that δ > −1 and γ > α − 1.
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(ii-a) If p < 0, then

SNSV = IS = ISB0 = G2 = B3, SNRV (ϱ) = DS = DS0B = H4 = B4 = L(ϱ, η) = P .

(ii-b) If p > 0, then

SNSV = DSB∞ = G2 = B3, SNRV (ϱ) = DS0B = H4 = B4 = L(ϱ, η) = P .

(iii) Assume that δ < −1 and γ > α − 1.

(iii-a) If p < 0, then

ISNSV = IS = ISBB = B1 = B2 ̸= ∅,

DSNSV = DSB0 ∪DSBB, DSB0 = G2 = B3 ̸= ∅, DSBB = B1 = B2 ̸= ∅,

SNRV (ϱ) = DSNRV (ϱ) = DS0B = H4 = B4 = L(ϱ, η) = P .

(iii-b) If p > 0, then

ISNSV = IS = ISB0 ∪ ISBB, ISB0 = G2 = B3 ̸= ∅, ISBB = B1 = B2 ̸= ∅,

DSNSV = DSBB = B1 = B2 ̸= ∅,

SNRV (ϱ) = DSNRV (ϱ) = DS0B = H4 = B4 = L(ϱ, η) = P .

One can see that the case δ > −1 and γ < α − 1 is not considered in the previous theorem.
This is quite natural because there are no regularly varying solutions; the reasons are almost
the same as in the case α + δ > γ (discussed before Theorem 2.3). Indeed, if p < 0, there are
solutions only in the de Haan classes Γ and Γ−, see [23]. If p > 0, then (1.1) is oscillatory by
Hille–Wintner type criterion, see [6]. Alternatively, we can again argue by Lemma 3.5 since
δ + α > −1 + γ + 1 = γ.

The next theorem can be seen as a complement to the previous ones in the sense that
previously was assumed (or was guaranteed) Cγ = 0 and now we take Cγ ̸= 0. Note that
Cγ ̸= 0 and r ∈ RV(γ) imply |p| ∈ RV(γ − α). Indeed, from (1.2) and Proposition 3.1, we
have |p(t)| ∼ |Cγ|t−αr(t) ∈ RV(−α + γ) as t → ∞. In general, we do not need to exclude
the critical case γ = α − 1. However, if we take Cγ > 0, then necessarily γ ̸= α − 1 since we
assume Cγ ≤ Kγ, where

Kγ =

(
|α − 1 − γ|

α

)α

. (2.2)

We denote
ϑi = Φ(λi), ϑ1 ≤ ϑ2,

where λ1 ≤ λ2 are the (real) roots of

Fγ(λ) := |λ|β + γ + 1 − α

α − 1
λ +

Cγ

α − 1
= 0. (2.3)

If η2 = 0 in Theorem 2.4, then we do not need to assume γ + α(ϑ2 − 1) + η2 > −1, since
this inequality is satisfied automatically thanks to the properties of the roots, see Lemma 3.6.
Observe that under the setting of Theorem 2.4, there are only extremal solutions (when p < 0)
or intermediate solutions (when p > 0). In the case Cγ = Kγ, generally oscillation or nonoscil-
lation of (1.1) can occur. Nonoscillation is guaranteed e.g. by tα p(t)/r(t) ≤ Cγ (this follows
from the Sturm type theorem, see [6]), or by the conditions of [9, Theorem 2.2, Theorem 3.2],
or by some suitable nonoscillation criterion, see, e.g., [6, Chapter 3].
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Theorem 2.4. Let Cγ ∈ (−∞, Kγ] \ {0} and r ∈ NRV(γ) ∩ C1, γ ∈ R. For the relations involving
the classes L(ϑi, ηi), i = 1, 2, assume, in addition, |L(ϑi, ηi, ·)| ∈ RV(ηi − 1), where η1, η2 ≤ 0, and
γ + α(ϑ2 − 1) + η2 > −1. Then S = SNRV (ϑ1) ∪ SNRV (ϑ2), SNRV (ϑi) ̸= ∅, i = 1, 2, and the
following hold:

(i) Assume that Cγ < 0. Then

SNRV (ϑ1) = DS = DS00 = L(ϑ1, η1) = P , ϑ1 < 0,

SNRV (ϑ2) = IS = IS∞∞ = L(ϑ2, η2), ϑ2 > 0.

(ii) Assume that 0 < Cγ ≤ Kγ; the strict inequality Cγ < Kγ is required only when the relations
involving the classes L(ϑi, ηi), i = 1, 2, are considered. If Cγ = Kγ, we assume, in addition, nonoscil-
lation of (1.1).

(ii-a) If γ < α − 1, then

SNRV (ϑ1) ∪ SNRV (ϑ2) = S = IS = IS∞0, ϑ1, ϑ2 > 0,

SNRV (ϑ1) = L(ϑ1, η1) = P , SNRV (ϑ2) = L(ϑ2, η2).

(ii-b) If γ > α − 1, then

SNRV (ϑ1) ∪ SNRV (ϑ2) = S = DS = DS0∞, ϑ1, ϑ2 < 0

SNRV (ϑ1) = L(ϑ1, η1) = P , SNRV (ϑ2) = L(ϑ2, η2).

For various examples that illustrate, in particular, the asymptotic formulae in particular
settings, see [20,22]. Among others it is shown that the situation where

∫ ∞
a |L(ϑ1, η1, s)|ds = ∞

and
∫ ∞

a |L(ϑ2, η2, s)|ds < ∞ (or vice versa) can occur even when η1 = η2 = 0.
In [21, 22] we explore how some of the above results can be applied to the half-linear

equation of the form
(Φ(y′))′ + a(t)Φ(y′) + b(t)Φ(y) = 0

to analyze its Poincaré–Perron solutions (that is the solutions y such that limt→∞ y′(t)/y(t)
exists as a finite number). The equation can be viewed as a perturbation of the equation with
constant coefficients. A key role is played by a suitable transformation, and we believe that the
new results of this paper could be extended in this sense. Another direction is an extension
to the critical (double-root) case which is roughly explained at the beginning of this section.
Since theory of regularly varying sequences is at disposal and difference equations often show
their particularities (when compared with their continuous counterparts), a discrete version
of our results is also of interest.

3 Auxiliary statements and proofs

We start with selected properties of regularly varying functions.

Proposition 3.1.

(i) If f ∈ RV(ϑ), then ln f (t)/ ln t → ϑ as t → ∞. It then clearly implies that limt→∞ f (t) = 0
provided ϑ < 0, and limt→∞ f (t) = ∞ provided ϑ > 0.

(ii) If f ∈ RV(ϑ), then f α ∈ RV(αϑ) for every α ∈ R.
(iii) If fi ∈ RV(ϑi), i = 1, 2, f2(t) → ∞ as t → ∞, then f1 ◦ f2 ∈ RV(ϑ1ϑ2).
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(iv) If fi ∈ RV(ϑi), i = 1, 2, then f1 + f2 ∈ RV(max{ϑ1, ϑ2}).
(v) If fi ∈ RV(ϑi), i = 1, 2, then f1 f2 ∈ RV(ϑ1 + ϑ2).

(vi) If f1, . . . , fn ∈ RV , n ∈ N, and R(x1, . . . , xn) is a rational function with nonnegative coeffi-
cients, then R( f1, . . . , fn) ∈ RV .

(vii) If L ∈ SV and ϑ > 0, then tϑL(t) → ∞, t−ϑL(t) → 0 as t → ∞.
(viii) If f ∈ RV(ϑ) and a measurable g is such that g(t) ∼ f (t) as t → ∞. Then g ∈ RV(ϑ).

(ix) If f ∈ RV(ϑ), ϑ ̸= 0, then there exists g ∈ C1 with g(t) ∼ f (t) as t → ∞ and such
that tg′(t)/g(t) → ϑ, whence g ∈ NRV(ϑ). Moreover, g can be taken such that |g′| ∈
NRV(ϑ − 1).

(x) Let f be eventually positive and differentiable, and let limt→∞ t f ′(t)/ f (t) = ϑ. Then f ∈
NRV(ϑ).

(xi) If | f ′| ∈ RV(ϑ), ϑ ̸= −1, with f ′ being eventually of one sign, then f ∈ NRV(ϑ + 1).

Proof. The proofs of (i)–(x) are either easy or can be found in [1, 8]. For (xi) see [19].

The following statement (the so-called Karamata integration theorem) is of great impor-
tance in our theory.

Theorem 3.2 ([1]). Let L ∈ SV .

(i) If ϑ < −1, then
∫ ∞

t sϑL(s)ds ∼ tϑ+1L(t)/(−ϑ − 1) as t → ∞.

(ii) If ϑ > −1, then
∫ t

a sϑL(s)ds ∼ tϑ+1L(t)/(ϑ + 1) as t → ∞.

(iii) If
∫ ∞

a L(s)/s ds converges, then L̃(t) =
∫ ∞

t L(s)/s ds is a SV function; if
∫ ∞

a L(s)/s ds diverges,
then L̃(t) =

∫ t
a L(s)/s ds is a SV function; in both cases, L(t)/L̃(t) → 0 as t → ∞.

Finiteness of the limit in (1.2) guarantees (in nonoscillatory case) regular variation of all
positive solutions.

Theorem 3.3 ([22]). Let r ∈ RV(γ), γ ∈ R, and Cγ ∈ (−∞, Kγ] be defined by (1.2), Kγ =

(|α − 1 − γ|/α)α . We assume, in addition, nonoscillation of (1.1) when C = Kγ with tα p(t)/r(t) ̸≤
Kγ (in all other cases, nonoscillation is automatically guaranteed). Then S = SNRV (ϑ1) ∪ SNRV (ϑ2)

with SNRV (ϑ1) ̸= ∅ ̸= SNRV (ϑ2), where λi = Φ(ϑi), i = 1, 2, are the roots of (2.3).

Remark 3.4. In the proof of Theorem 3.3 it is actually shown that for any y ∈ S , we have
limt→∞ ty′(t)/y(t) ∈ {ϑ1, ϑ2}. That is why any regularly varying solution is automatically
normalized; in other words, (2.1) holds. But even without a-priori assuming (1.2), it can be
proved that SRV (ϑ) ⊆ SNRV (ϑ) under the assumption of regular variation of r, by means of
Lemma 3.5 and Proposition 3.1. Normality follows also from the asymptotic formulae or from
monotonicity of solutions and quasiderivatives with the help of the properties of regularly
varying functions.

Under our setting, condition (1.2) is necessary for the existence of a regularly varying
solution.

Lemma 3.5 ([22]). Let (1.11) hold with δ ̸= −1 and γ ̸= α − 1. If SRV (ϑ) ̸= ∅, where λ = Φ(ϑ) is
a real root of (2.3), then limt→∞ tα p(t)/r(t) = Cγ and δ + α ≤ γ.

Lemma 3.6 ([22]). Let λ±
1 ≤ λ±

2 denote the (real) roots of (2.3) when sgn(α − 1 − γ) = ±1 and let
λ1 ≤ λ2 denote the (real) roots of (2.3) when γ = α − 1. Set ϑ±

i = Φ(λ±
i ) and ϑi = Φ(λi), i = 1, 2.
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(i) Let γ ̸= α − 1. If Cγ < 0, then ϑ±
1 ϑ±

2 < 0, |ϑ+
1 | = ϑ−

2 , and |ϑ−
1 | = ϑ+

2 > |ϱ|. If Cγ = 0,
then ϑ+

1 = ϑ−
2 = 0 and −ϑ−

1 = ϑ+
2 = |ϱ|. If Cγ ∈ (0, Kγ), then ϑ±

1 ϑ±
2 > 0 and ϑ+

1 = |ϑ−
2 | <

|γ + 1 − α|/α < ϑ+
2 = |ϑ−

1 | < |ϱ|. If Cγ = Kγ, then −ϑ−
1 = −ϑ−

2 = ϑ+
1 = ϑ+

2 = |γ + 1 − α|/α.

(ii) Let γ = α − 1. Then Cγ ≤ 0 with ϑ1 = ϑ2 = 0 when Cγ = 0 while ϑ1,2 = ±(|Cγ|/(α − 1))1/α

when Cγ < 0.

Denote

J1 =
∫ ∞

a
V1(t)dt, J2 =

∫ ∞

a
V2(t)dt, R1 =

∫ ∞

a
W1(t)dt, R2 =

∫ ∞

a
W2(t)dt, (3.1)

where

V1(t) = r1−β(t)
(∫ t

a
|p(s)|ds

)β−1

, V2(t) = r1−β(t)
(∫ ∞

t
|p(s)|ds

)β−1

,

W1(t) = |p(t)|
(∫ t

a
r1−β(s)ds

)α−1

, W2(t) = |p(t)|
(∫ ∞

t
r1−β(s)ds

)α−1

.

These integrals naturally occur when studying (non)emptiness of the classes ISuv,DSuv and
play an important role also in characterization of principal solutions, see [2–6]. Later, in the
proofs we use some of these results.

Since we work in the framework of regular variation, some specific and useful properties
of V1, V2, W1, W2 can be derived.

Lemma 3.7. Let (1.11) hold. Then

(i) Vi(t) ∼ |G(t)|/|δ + 1|β−1 as t → ∞, where i = 1 when δ > −1 while i = 2 when δ < −1.

(ii) Wi(t) ∼ |H(t)|/|γ(1 − β) + 1|α−1 as t → ∞, where i = 1 when γ < α − 1 while i = 2 when
γ > α − 1.

(iii) If δ < −1, then V1(t) ∼ Jβ−1
p r1−β(t) as t → ∞, where Jp is defined in (1.3).

(iv) If γ > α − 1, then W1(t) ∼ Jα−1
r |p(t)| as t → ∞, where Jr is defined in (1.3).

Proof. The asymptotic formulae in (i) and (ii) follow from the Karamata Integration Theorem
(Theorem 3.2). The relations in (iii) and (iv) are obvious; convergence of the integrals Jp and
Jr, respectively, is a consequence of Theorem 3.2.

Remark 3.8. Let (1.11) hold. If δ > −1, then
∫ ∞

a |p(s)|ds = ∞, thus
∫ ∞

a V2(s)ds cannot
converge. If γ < α − 1, then

∫ ∞
a r1−β(s)ds = ∞, thus

∫ ∞
a W2(s)ds cannot converge. Now from

Lemma 3.7 it easily follows that:

(i) Let δ > −1. Then a) J1 = ∞ ⇔ J = ∞, b) J2 = ∞.

(ii) Let δ < −1. Then a) J1 = ∞ ⇔ Jr = ∞, b) J2 = ∞ ⇔ J = ∞.

(iii) Let γ < α − 1. Then a) R1 = ∞ ⇔ R = ∞, b) R2 = ∞.

(iv) Let γ > α − 1. Then a) R1 = ∞ ⇔ Jp = ∞, b) R2 = ∞ ⇔ R = ∞.

The first statement in the following lemma is sometimes called the reciprocity principle and
equation (3.2) is called the reciprocal equation (to equation (1.1)).
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Lemma 3.9. Let y be a solution of (1.1) with p ̸= 0. If u = |y[1]|, then u is a solution of

(r̂(t)Φ−1(u′))′ + p̂(t)Φ−1(u) = 0, (3.2)

where r̂ = |p|1−β and p̂ = r1−β sgn p. In particular, if y ∈ S , then

u ∈ Ŝ = {u : u is an eventually positive solution of (3.2)}.

If Ĝ(t) = Φ(tp̂(t)/r̂(t)) and Ĥ(t) = tβ−1 p̂(t)/r̂(t), then

Ĝ = H and Ĥ = G. (3.3)

If (1.11) holds, then

| p̂| ∈ RV(δ̂) and r̂ ∈ RV(γ̂), where δ̂ = γ(1 − β) and γ̂ = δ(1 − β). (3.4)

Proof. Since u′ = −pΦ(y), we get y = −|p|1−βΦ−1(u′) sgn p. From u = rΦ(y′), we have
y′ = r1−βΦ−1(u). Thus we find that u satisfies (3.2). The relations in (3.3) are obvious. The
relations in (3.4) follow easily by Proposition 3.1.

Remark 3.10. For the notation of subclasses of Ŝ we use the “circumflex analog” of the no-
tation of subclasses of S . For instance, D̂S and D̂SB0 mean the set of eventually decreasing
solutions of (3.2) and the subset of D̂S where u ∈ D̂SB0 tends to a positive constant with
limt→∞ r̂(t)Φ−1(u(t)) = 0, respectively. Similarly we approach to the notation of the classes
for the solutions satisfying prescribed asymptotic formulae. For example, Ĝ2 is defined as
Ĝ2 =

{
u ∈ Ŝ : u(t) = MuE

(
t, ∞, 1/Φ

(
δ̂ + 1

)
, Ĝ

)}
, where Mu = limt→∞ u(t).

Lemma 3.11. Let (1.11) be satisfied with δ ̸= −1 and γ ̸= α − 1. Then the following hold:

(i) DSB0 ∪ DSB∞ ∪ ISB0 ∪ ISB∞ ⊆ X, where X = B5 when δ + α = γ, while X = B3 when
δ + α < γ.

(ii) DS0B ∪ IS∞B ⊆ X, where X = B6 when δ + α = γ, while X = B4 when δ + α < γ.

(iii) ISBB ∪DSBB ⊆ Bi, i = 1, 2.

Proof. (i) Let y ∈ DSB0 ∪ DSB∞ ∪ ISB0 ∪ ISB∞. Then y ∈ SSV , and so y ∈ SNSV , see Re-
mark 3.4. Integrating (1.1) we get y[1](t) ∼ Py(t) as t → ∞, where Py(t) =

∫ ∞
t p(s)Φ(y(s))ds or

Py(t) = −
∫ t

t0
p(s)Φ(y(s))ds according to whether δ < −1 or δ > −1, respectively. Applying

Theorem 3.2 and using y(t) ∼ My, where My = limt→∞ y(t), in both cases we get

y[1](t) ∼ −1
δ + 1

tp(t)Φ(y(t)) ∼ −1
δ + 1

tp(t)Φ(My)

as t → ∞, thus y′(t) ∼ −MyG(t)/Φ−1(δ + 1) as t → ∞. Integrating the last relation from t to
∞, we obtain

My − y(t) ∼
−My

Φ−1(δ + 1)

∫ ∞

t
G(s)ds (3.5)

as t → ∞. Assume that δ + α = γ. Since |G| ∈ RV(−1), from Theorem 3.2 we get t|G(t)| =
o
(∫ ∞

t |G(s)|ds
)

as t → ∞. Combining the last relation with (3.5), we find that y ∈ B5.
Assume that δ + α < γ. Then, in view of Proposition 3.1, |G| ∈ RV(ζ − 1), where ζ =
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(β− 1)(δ+ 1−γ)+ 1. From δ+ α < γ we have ζ < 0. Hence, Theorem 3.2 yields
∫ ∞

t G(s)ds ∼
−tG(t)/ζ as t → ∞, thus (3.5) implies y ∈ B3.

(ii) Let y ∈ DS0B ∪ IS∞B ⊆ X. Set u = |y[1]|. We have u = ±y[1] according to whether y ∈
IS or y ∈ DS , respectively. Then u satisfies (3.2), and limt→∞ u(t) = Mu where Mu = |Ny|,
Ny = limt→∞ y[1](t). Since, in addition,

u[1] = r̂Φ−1(u′) = |p|1−βΦ−1(±(rΦ(y′))′) = ∓|p|1−βΦ−1(pΦ(y)) = ∓y sgn p, (3.6)

we get
u ∈ D̂SB0 ∪ D̂SB∞ ∪ ÎSB0 ∪ ÎSB∞. (3.7)

We use the convention introduced in Lemma 3.9 and Remark 3.10. The reciprocal version of
δ + α ≤ γ is δ̂ + β ≤ γ̂; it is easy to see that the inequalities are in fact the same. In view of
(3.7), we can apply part (i) of Lemma 3.11 to the reciprocal equation. If δ + α < γ, then

|Ny| − |y[1](t)| = Mu − u(t) ∼ Mu(β − 1)
Φ(δ̂ + 1)(δ̂ + β − γ̂)

tΦ
(

tp̂(t)
r̂(t)

)
=

|Ny|
Φ(γ(1 − β) + 1)(−γ + β/(β − 1) + δ)

tα p(t)
r(t)

=
−|Ny|

Φ(ϱ)(δ + α − γ)
tH(t)

as t → ∞. Consequently, y ∈ B4. Similarly we find that B6 is reciprocal version of B5.
(iii) Let y ∈ ISBB ∪ DSBB. From (1.1), (y[1](t))′ ∼ −Mα−1

y p(t) as t → ∞, where My =

limt→∞ y(t). Theorem 3.2 yields

Ny − y[1](t) ∼ −Mα−1
y

∫ ∞

t
p(s)ds ∼

−Mα−1
y

−(δ + 1)
tp(t)

as t → ∞, where Ny = limt→∞ y[1](t). This implies ISBB ∪ DSBB ⊆ B2. From the relation
y[1](t) ∼ Ny as t → ∞, which is equivalent to y′(t) ∼ Φ−1(Ny/r(t)), by Theorem 3.2, we
obtain

My − y(t) ∼ Φ−1(Ny)
∫ ∞

t
r1−β(s)ds ∼

Φ−1(Ny)

−((1 − β)γ + 1)
tr1−β(t) = −

Φ−1(Ny)

ϱ
tr1−β(t)

as t → ∞. This implies ISBB ∪DSBB ⊆ B1.

Lemma 3.12. Let (1.11) be satisfied with δ ̸= −1 and γ ̸= α − 1. Then the following hold:

(i) If J = ∞, then (DS00 ∪ IS∞∞ ∪ IS∞0 ∪DS0∞) ∩ SV ⊆ G1.

(ii) If J < ∞, then ISB0 ∪DSB0 ∪ ISB∞ ∪DSB∞ ⊆ G2.

Proof. Take y ∈ SSV . Note that in (i) slow variation is assumed, in (ii) it clearly holds, and
SSV = SNSV , see Remark 3.4. We have |p|Φ(y) ∈ RV(δ) by Proposition 3.1. Let δ < −1. Then∫ ∞

a |p(s)|Φ(y(s))ds < ∞ by Theorem 3.2. Observe that the classes considered in the lemma,
which correspond to this setting, are DS x0, ISx0. Indeed, from (1.1) we have∣∣∣y[1](t)− y[1](t0)

∣∣∣ = ∫ t

t0

|p(s)|Φ(y(s))ds (3.8)

and because of the convergence of the integral we cannot have limt→∞ |y[1](t)| = ∞. Assume
that y belongs to such classes. Integrating (1.1) from t to ∞, Theorem 3.2 yields

−y[1](t) = −
∫ ∞

t
p(s)Φ(y(s))ds ∼ 1

δ + 1
tp(t)Φ(y(t)) (3.9)
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as t → ∞. Similarly, under the condition δ >−1, which corresponds to the classes DS x∞, IS x∞

(this follows from (3.8) and the divergence of the integral), integration of (1.1) from t0 to t and
Theorem 3.2 lead to

y[1](t) = y[1](t0)−
∫ t

t0

p(s)Φ(y(s))ds ∼ −
∫ t

t0

p(s)Φ(y(s))ds ∼ − 1
δ + 1

tp(t)Φ(y(t)) (3.10)

as t → ∞. Consequently, no matter what δ ̸= −1 is, both (3.9) and (3.10) lead to

y′(t)
y(t)

∼ Φ−1
(

−1
δ + 1

)
Φ−1

(
tp(t)
r(t)

)
= Φ−1

(
−1

δ + 1

)
G(t) (3.11)

as t → ∞. The following observation which was established in [22] will be useful in the sequel.
Let A ∈ R, ε1(t) → 0 as t → ∞, and f be a positive function such that

∫ ∞
a f (t)dt = ∞. Then

there exists ε2(t) → 0 as t → ∞ such that

A +
∫ t

a
(1 + ε1(s)) f (s)ds =

∫ t

a
(1 + ε2(s)) f (s)ds. (3.12)

If J = ∞, then integration of (3.11) from t0 to t yields

ln y(t) = ln y(t0) +
∫ t

t0

(1 + o(1))Φ−1
(

−1
δ + 1

)
G(s)ds

=
∫ t

t0

(1 + o(1))Φ−1
(

−1
δ + 1

)
G(s)ds

=
∫ t

a
(1 + o(1))Φ−1

(
−1

δ + 1

)
G(s)ds

as t → ∞, where we applied (3.12) twice. Taking exponential, we find that y ∈ G1. If J < ∞,
then integration of (3.11) from t to ∞ yields

− ln
y(t)
My

=
∫ ∞

t
Φ−1

(
−(1 + o(1))

δ + 1

)
G(s)ds

as t → ∞, where My = limt→∞ y(t), which leads to y ∈ G2.

Remark 3.13. Let (1.11) hold with δ ̸= −1 and γ ̸= α − 1. Let SNSV ̸= ∅ and recall that it
implies (1.2) with Cγ = 0 by Lemma 3.5. Assume that J = ∞ and note that then necessarily
δ + α = γ. Indeed, δ + α < γ would imply J < ∞ while δ + α > γ would imply SNSV = ∅.
From [19, Section 6] and [23, Section 4] it follows that if p < 0, then

SNSV ⊆ DS00 provided δ < −1,

SNSV ⊆ IS∞∞ provided δ > −1.

From [22, Section 5] we have, if p > 0, then

SNSV ⊆ IS∞0 provided δ < −1,

SNSV ⊆ DS0∞ provided δ > −1.

Assume that J < ∞. From [19, Section 6], [22, Section 5], and [23, Section 4] we have, if p < 0,
then

SNSV ⊆ DSB0 provided δ < −1, γ < α − 1,

SNSV ⊆ ISB∞ provided δ > −1, γ > α − 1.

From [22, Section 5] we have, if p > 0, then

SNSV ⊆ ISB0 provided δ < −1, γ < α − 1,

SNSV ⊆ DSB∞ provided δ > −1, γ > α − 1.
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Lemma 3.14. Let (1.11) be satisfied with δ ̸= −1 and γ ̸= α − 1. Then the following hold:

(i) If R = ∞, then (DS00 ∪ DS0∞) ∩ RV(ϱ) ⊆ H2 = H0 and (IS∞∞ ∪ IS∞0) ∩ RV(ϱ) ⊆
H1 = H0.

(ii) If R < ∞, then DS0B ⊆ H4 and IS∞B ⊆ H3.

(iii) If R = ∞, then H1 = H2 = H0.

Proof. We will prove the case when R < ∞ for the class DS0B with details. The other cases in
(i) and (ii) can be proved similarly. Let y ∈ DS0B. Set u = −y[1]. Then u satisfies reciprocal
equation (3.2) and u ∈ Ŝ by Lemma 3.9. Since y ∈ DS0B, we get u(t) ∼ Mu as t → ∞, where
Mu = −Ny = − limt→∞ y[1](t). As in (3.6), we get u[1] = y sgn p, and therefore u[1](t) → 0
as t → ∞. Consequently, u ∈ D̂SB0 or u ∈ ÎSB0 according to whether p < 0 or p > 0,
respectively. In view of Lemma 3.12-(ii), we get u ∈ Ĝ2, that is

u(t) = Mu exp

{∫ ∞

t

1 + o(1)
Φ
(
δ̂ + 1

)Φ
(

sp̂(s)
r̂(s)

)
ds

}

as t → ∞. We use the convention from Lemma 3.9 and Remark 3.10. Thus we find that

−r(t)Φ(y′(t)) = u(t) = −Ny exp
{∫ ∞

t
(1 + o(1))

1
Φ(ϱ)

H(s)ds
}

,

which yields

y′(t) = Φ−1(Ny)r1−β(t) exp
{∫ ∞

t
(1 + o(1))

β − 1
Φ(ϱ)

H(s)ds
}

,

as t → ∞. Since y ∈ DS0, integration from t to ∞ leads to y ∈ H4.
It remains to prove H1 = H2 = H0 when R = ∞. Take y ∈ H1. In view of (1.13)

and representation (1.9), we have E(a, ·,−(β − 1)Φ(ϱ), H) ∈ SV . Therefore, r1−βE(a, ·,−(β −
1)Φ(ϱ), H) ∈ RV(γ(1 − β)) by Proposition 3.1. Hence, from Theorem 3.2 and thanks to
divergence of

∫ ∞
a |H(t)|dt, utilizing (3.12), we obtain

y(t) = (1 + o(1))
tr1−β(t)

|ϱ| E

(
a, t,−β − 1

Φ(ϱ)
, H

)
= tr1−β(t) eln 1+o(1)

|ϱ| E

(
a, t,−β − 1

Φ(ϱ)
, H

)
= tr1−β(t)E

(
a, t,−β − 1

Φ(ϱ)
, H

)
as t → ∞. Thus H1 ⊆ H0. Using similar ideas, we obtain the opposite inclusion. The equality
H2 = H0 can be proved analogously.

Remark 3.15. Let (1.11) hold with δ ̸= −1 and γ ̸= α − 1. From the reciprocity principle
(see Lemma 3.9) combined with the ideas of Remark 3.13, recalling the relations u = ±y[1],
u[1] = ∓y sgn p (see (3.6)) and Ĝ = H (see (3.3)), we obtain the following claims. Assume
R = ∞ (which implies δ + α = γ). Then

SNRV (ϱ) ⊆ IS∞∞ provided δ < −1, p < 0,

SNRV (ϱ) ⊆ DS00 provided δ > −1, p < 0,

SNRV (ϱ) ⊆ IS∞0 provided δ < −1, p > 0,

SNRV (ϱ) ⊆ DS0∞ provided δ > −1, p > 0.
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Assume R < ∞. Then

SNRV (ϱ) ⊆ IS∞B provided δ < −1, γ < α − 1,

SNRV (ϱ) ⊆ DS0B provided δ > −1, γ > α − 1.

Lemma 3.16 ([22]). Let r ∈ NRV(γ) ∩ C1, γ ∈ R, and (1.2) hold with Cγ < Kγ, Kγ being defined
by (2.2). Assume that |L(ϑi, ηi, ·)| ∈ RV(ηi − 1), i = 1, 2, where Φ(ϑ1) < Φ(ϑ2) are the roots of
(2.3), η1, η2 ≤ 0, and γ + α(ϑ2 − 1) + η2 > −1. Then

SNRV (ϑi) ⊆ Lk(ϑi, ηi), i = 1, 2, (3.13)

where k = 1 when
∫ ∞

a |L(ϑi, ηi, s)|ds = ∞, while k = 2 when
∫ ∞

a |L(ϑi, ηi, s)|ds < ∞; if Cγ = 0,
we consider only the nonzero root in (3.13).

Lemma 3.17. Let (1.11) be satisfied with p > 0, δ ̸= −1, and γ ̸= α − 1. Then the following hold:

(i) If y ∈ S1 ∩ RV(ϑ), ϑ ∈ R, where S1 = IS∞0 ∪ DS0∞ ∪ ISB0 ∪ DSB∞, then |y[1]| ∈
RV(δ + 1 + (α − 1)ϑ) and |y′| ∈ RV((β − 1)(δ + 1 − γ) + ϑ). If y ∈ S1 ∩ RV(ϑ) and
δ + α = γ, then |y′| ∈ RV(ϑ − 1). If, in addition ϑ = ϱ, then |y[1]| ∈ SV .

(ii) If y ∈ S2 ∩ RV(ϑ), where S2 = IS∞B ∪ DS0B, then ϑ = ϱ, |y[1]| ∈ SV , and |y′| ∈
RV(ϱ − 1).

Proof. (i) Let y ∈ S1 ∩RV(ϑ). Then |y[1]| tends to 0 or ∞ and pΦ(y) ∈ RV(δ + ϑ(α − 1)) by
Proposition 3.1. Hence, integrating (1.1) from t0 to t or from t to ∞ (according to whether
δ + ϑ(α − 1) is positive or negative, respectively), realizing that y[1](t)− y[1](t0) ∼ y[1](t) in the
former case, and using Theorem 3.2, we get

|y[1](t)| ∼ 1
|δ + 1 + ϑ(α − 1)| tp(t)Φ(y(t))

as t → ∞, which implies |y[1]| ∈ RV(δ + 1 + ϑ(α − 1)). In view of Proposition 3.1, we get
|y′| ∈ RV((β − 1)[δ + 1 + (α − 1)ϑ − γ]) = RV((β − 1)(δ + 1 − γ) + ϑ). If δ + α = γ, then
the last index reduces to ϑ − 1. If ϑ = ϱ, then for the index associated to |y[1]| we have
δ + 1 + ϑ(α − 1) = δ + α − γ = 0.

(ii) Let y ∈ S2 ∩RV(ϑ). Then y[1](t) ∼ Ny as t → ∞, i.e.

y′(t) ∼ Φ−1(Ny)r1−β(t) (3.14)

as t → ∞. Integrating this relation from t0 to t or from t to ∞ (according to whether γ < α − 1
or γ > α − 1, respectively), realizing that y(t) − y(t0) ∼ y(t) in the former case, and using
Theorem 3.2, we get

y(t) ∼
|Φ−1(Ny)|

|(1 − β)γ + 1| tr
1−β ∈ RV((1 − β)γ + 1) = RV(ϱ),

thus ϑ = ϱ. In view of (3.14), we get |y′| ∈ RV(−γ(1 − β)) = RV(ϱ − 1).

Lemma 3.18. Let (1.11) hold with γ ̸= α − 1. If NSV ∩ (DS0 ∪ IS∞) ̸= ∅, then γ = δ + α,
NSV ∩DS0 = DS00 ∪DS0∞, and NSV ∩ IS∞ = IS∞∞ ∪ IS∞0.
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Proof. Take y ∈ NSV ∩ (DS0 ∪IS∞). Then, in view of Proposition 3.1, |(rΦ(y′))′| = |p|yα−1 ∈
RV(δ). If

∫ ∞
a |p(s)|yα−1(s)ds diverges, then limt→∞ |y[1](t)| = ∞, and the Karamata Integra-

tion Theorem (Theorem 3.2) applied to equation (1.1) after integration yields

r(t)|y′(t)|α−1 ∼ |r(t)Φ(y′(t))− r(t)Φ(y′(t0))| ∼
∫ t

t0

|p(s)|yα−1(s)ds ∈ RV(δ + 1)

as t → ∞. Similarly, if
∫ ∞

a |p(s)|yα−1(s)ds converges, then

r(t)|y′(t)|α−1 =
∫ ∞

t
|p(s)|yα−1(s)ds ∈ RV(δ + 1)

by Theorem 3.2. Indeed, limt→∞ y[1](t) = Ny would lead to y′(t) ∼ Φ−1(Ny)r1−β(t), so y ∈
RV(ϱ), ϱ ̸= 0, contradiction. Thus in any case, |y′|α−1 ∈ RV(δ + 1 − γ), and therefore
|y′| ∈ RV((δ + 1 − γ)/(α − 1)) by Proposition 3.1. Since y ∈ DS0 or y ∈ IS∞, in view of the
Karamata Theorem, y ∈ RV((δ + 1 − γ)/(α − 1) + 1) = RV((δ + α − γ)(β − 1)). But y ∈ SV ,
and so it must hold that γ = δ + α.

In spite of the fact that many of the claims which are included in the next statement were
already proved above (as it was within the more general setting), for completeness and easier
reference we prefer to present some conclusions from [19] in the form of individual lemma.

Lemma 3.19 ([19]). Let p < 0, Cγ = 0, and (1.11) hold, where γ = δ + α.

(i) Let δ < −1. If J = ∞, then SSV = DS = DS00 ⊆ G1. If J < ∞, then SSV = DS = DSB0 ⊆
G2. If R = ∞, then SRV (ϱ) = IS = IS∞∞ ⊆ H1. If R < ∞, then SRV (ϱ) = IS = IS∞B ⊆
H3.

(ii) Let δ > −1. If J = ∞, then SSV = IS = IS∞∞ ⊆ G1. If J < ∞, then SSV = IS = ISB∞ ⊆
G2. If R = ∞, then SRV (ϱ) = DS = DS00 ⊆ H2. If R < ∞, then SRV (ϱ) = DS = DS0B ⊆
H4.

Theorem 3.20 ([5]). Let p < 0. Then

P =

{
DSB if J1 = ∞ and J2 < ∞,

DS0 otherwise.

The lower limit a in the integrals in Theorems 3.21, 3.24, 3.26 is taken such that y(t) > 0
and y′(t) ̸= 0 for t ≥ a. In the paper [3], an example is given showing that condition (3.15)
cannot be omitted. As we will see, in our proofs, the cases where (3.15) fails to hold can
fortunately be treated by Theorem 3.24.

Theorem 3.21 ([3, 6]). Let p > 0 and (1.1) be nonoscillatory. Assume that

Jr = ∞ and α ≥ 2 or Jp = ∞ and 1 < α ≤ 2. (3.15)

Then, for y ∈ S ,

y ∈ P if and only if
∫ ∞

a
F [y](t)dt = ∞,

where F [y] = y′/(y2y[1]).
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Theorem 3.22 ([2]). Let p > 0 and (1.1) be nonoscillatory. Assume that Jr + Jp = ∞. Then

y ∈ P if and only if |y[1]| ∈ P̂ ,

where P̂ = {u ∈ Ŝ : u is principal}.

For ξ ∈ (1, ∞), define the function φξ : [0, 1] → R by

φξ(t) =

{
1−tξ

1−t + (1 − t)ξ−1 if t ∈ [0, 1),

ξ if t = 1.
(3.16)

Denote m := min{φβ(t) : t ∈ [0, 1]}, M := max{φβ(t) : t ∈ [0, 1]}, where β is the conjugate
number of α.

Lemma 3.23. It holds that φβ(0) = 2, φβ(1) = β, φβ(1/2) = 2, and m > 1. If 1 < α < 2 (i.e.,
β > 2), then φβ is strictly convex on [0, 1] and, in particular, M = β.

Proof. The equalities φβ(0) = 2, φβ(1) = β, φβ(1/2) = 2 are obvious. The convexity of φβ on
[0, 1] when α ∈ (1, 2) can be demonstrated via standard calculus tools. The equality M = β

follows from the convexity of φβ.

Theorem 3.24 ([13]). Let Jr = ∞ and y ∈ S . Denote TK[y] = r1−βy−K, K ∈ R.

(i) If y ∈ P , then
∫ ∞

a Tm[y](s)ds = ∞.

(ii) If
∫ ∞

a TM[y](s)ds = ∞, then y ∈ P .

Remark 3.25. By means of the reciprocity principle (see Lemma 3.9), with help of Theo-
rem 3.22, the condition Jr = ∞ in Theorem 3.24 can actually be relaxed to Jr + Jp = ∞; Tm, TM

are then appropriately modified. For details see the proofs of Theorems 2.1, 2.2, 2.3, and 2.4,
where this trick is used.

Theorem 3.26 ([2]). Let p > 0 and Jr + Jp < ∞. Then

y ∈ P if and only
∫ ∞

a

1
rβ−1(t)y2(t)

dt = ∞.

In view of their common setting, it is senseful to prove Theorems 2.1 and 2.2 simultane-
ously.

Proof of Theorems 2.1 and 2.2. Let p < 0. If J = ∞ and δ < −1, then SNSV ⊆ DS00 ⊆ G1 by
Lemma 3.12-(i) and Remark 3.13. Since G(t) = Φ−1(Lp(t)/Lr(t))/t and limt→∞ Lp(t)/Lr(t) =
0, we have G1 ⊆ SSV = SNSV by the Representation Theorem (see (1.9)) and Remark 3.4.
From [23] we know that DS ⊆ NSV , thus DS00 ⊆ NSV . In view of (1.4)

S = SNSV ∪ SNRV (ϱ), SNSV ̸= ∅, SNRV (ϱ) ̸= ∅ (3.17)

(which follows from Theorem 3.3), we get SNSV = DS = DS00 = G1. Analogously we obtain
SNSV = IS = IS∞∞ = G1 when J = ∞ and δ > −1. If J < ∞, then in a similar manner
as above we use Lemma 3.12-(ii), the obvious fact G2 ⊆ SV , (3.17), (1.4), Lemma 3.19, and,
in addition, Lemma 3.11-(i), to get SNSV = DS = DSB0 = G2 = B5 when δ < −1 and
SNSV = IS = ISB∞ = G2 = B5 when δ > −1. Note that Lemma 3.11-(i) yields DSB0 ⊆ B5

and ISB∞ ⊆ B5, respectively. The opposite inclusions are obvious, since y belonging to
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B5 is slowly varying and there are no other slowly varying solutions than DSB0 and ISB∞,
respectively, see Remark 3.13. Let R = ∞ and δ < −1. Observe that H1 ⊆ RV(ϱ). Indeed, if
y ∈ H1, then y(t) ∼

∫ t
t0

r1−β(s)E(a, s,−(β − 1)/Φ(ϱ), H)ds ∈ ([γ(1 − β) + 0] + 1) = RV(ϱ),
where we use (1.9), Proposition 3.1, and Theorem 3.2. From Lemma 3.14-(i) and Remark 3.15,
taking into account Lemma 3.19, (3.17), and (1.4), we get SNRV (ϱ) = IS = IS∞∞ = H1.
Lemma 3.14-(iii) gives H1 = H0. Because δ + α = γ and ϱ is the bigger root of (2.3) when
δ < −1, the condition γ + α(ϑ2 − 1) + η2 > −1 from Lemma 3.16 reads as δ < −1 + η(α − 1)
which is assumed in Theorems 2.1, 2.2. Since also all other assumptions of Lemma 3.16 are
satisfied, we may apply it to obtain SNRV (ϱ) ⊆ L(ϱ, η); we use convention (1.15). Since
limt→∞ tL(ϑ, η, t) = 0, from the Representation Theorem (see (1.9)) it follows that L(ϱ, η) ⊆
SNRV (ϱ). Analogously we proceed when R = ∞ and δ > −1. Let us only note that in
this case, ϱ is the lesser root of (2.3) (since ϱ < 0) and therefore we do not need to verify
the condition γ + α(ϑ2 − 1) + η2 > −1 from Lemma 3.16. The case R < ∞ can also be
treated similarly; we use, in addition, Lemma 3.14-(ii) and Lemma 3.11. Next we derive the
relations with P . If δ > −1, then Jp = ∞ by Theorem 3.2, thus J2 = ∞. Hence, P = DS0

by Theorem 3.20. If δ < −1, then, in view of δ + α = γ, we have γ < α − 1, thus r1−β ∈
RV((1− β)γ) with the index greater than −1, and so Jr = ∞ (see Theorem 3.2), which implies
J1 = ∞. Further, by Lemma 3.7, V2(t) ∼ |G(t)|/|δ + 1|β−1 ∈ RV(−1) as t → ∞. Hence, in
general, J2 can converge or diverge. But we see that J2 = ∞ if and only if J = ∞. According to
Theorem 3.20, if J = ∞, then P = DS0, while if J < ∞, then P = DSB. Adding the relations
between P and DS0 resp. P and DSB to the other relations we obtain the complete picture
in the case p < 0.

Let p > 0. First of all note that by Theorem 3.3, (3.17) holds. Assume that δ < −1. Then
γ < α − 1, r1−β thus has the index of regular variation greater than −1, and so Jr = ∞ by
Theorem 3.2. Hence, (1.5) holds. Note that ϱ in (3.17) is now positive. If J = ∞, then by
Lemma 3.12 and Remark 3.13, we get SNSV ∩ IS∞0 ⊆ G1 and SNSV ⊆ IS∞0. In view of
G1 ⊆ SNSV (which follows from (1.9)) and (2.1), we have SNSV = G1 = IS∞0. If R = ∞, then
by Lemma 3.14 and Remark 3.15, SNRV (ϱ) ∩ IS∞0 ⊆ H1 and SNRV (ϱ) ⊆ IS∞0. In view of
H1 ⊆ SRV (ϱ) = SNRV (ϱ) (which follows from (1.9)), we have SNRV (ϱ) = H1 = IS∞0. By
Lemma 3.14, H1 = H0. Assume that J = ∞ and R = ∞. Because of (3.17), (1.5), and the
observations from the previous parts, we have S = SNSV ∪ SNRV (ϱ) ⊆ IS∞0 ⊆ IS = S . If
J < ∞, then by Lemma 3.12 and Remark 3.13, SNSV ⊆ ISB0, SNSV ⊆ G2. If y ∈ ISB, then it
is clearly slowly varying and we get ISB0 = SNSV . Since G2 ⊆ SV and (2.1) holds, we have
SNSV = G2. In view of Lemma 3.11, we obtain SNSV ⊆ B5; the opposite inclusion obviously
holds as well. If R < ∞, then by Lemma 3.14 and Remark 3.15 it follows that IS∞B ⊆ H3 and
SNRV (ϱ) ⊆ IS∞B. From (1.9), Proposition 3.1, and Theorem 3.2, we have H3 ⊆ SNRV (ϱ). If
y ∈ IS∞B, then y[1](t) ∼ Ny ∈ (0, ∞) as t → ∞. Expressing y′ and integrating, Theorem 3.2
and Proposition 3.1 yield

y(t) ∼
∣∣∣∣ Φ(Ny)

γ(1 − β) + 1

∣∣∣∣ tr1−β(t) ∈ RV(γ(1 − β) + 1) = RV(ϱ) (3.18)

as t → ∞. Hence, IS∞B ⊆ SNRV (ϱ). Consequently, in view of the fact that regular variation
of solutions is normalized, we have IS∞B = SNRV (ϱ) = H3. From Lemma 3.11 we get
SNRV (ϱ) ⊆ B6. The opposite inclusion is obvious. The settings J < ∞, R < ∞, or J =

∞, R < ∞, or J < ∞, R = ∞, can be treated by suitable combinations of the above presented
observations. Similarly as in the case p < 0, with the help Lemma 3.16, we show SNRV (ϱ) =

L(ϱ, η); we use convention (1.15).
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The case p > 0 and δ > −1 can be proved analogously to the case p > 0 and δ < −1 (ap-
plying again (3.17), (1.9), Lemma 3.11, Lemma 3.12, Remark 3.13, Lemma 3.14, Lemma 3.16),
and therefore it is omitted.

In the last part of the proof we will show how P is related to the other classes when p > 0.
From the above established classification we see that any y ∈ S must belong either to S1 or S2

under the assumptions of Theorem 2.1 and Theorem 2.2. By Lemma 3.17 we have that F [y] is
regularly varying. Let Ω denote the index of regular variation of F [y].

Assume first that (3.15) holds. If y ∈ SNSV , then Ω = −δ − 2. If δ < −1, then Ω > −1,
and so

∫ ∞
a F [y](s)ds = ∞ by Theorem 3.2. This yields SNSV ⊆ P by Theorem 3.21. Similarly

we obtain SNSV ∩ P = ∅ when δ > −1. Take y ∈ SNRV (ϱ). Then Ω = (β − 1)(δ + 1 −
γ) + ϱ − 2ϱ = −ϱ − 1, see Lemma 3.17. If δ < −1, then ϱ > 0, i.e., −ϱ − 1 < −1, which
implies

∫ ∞
a F [y](s)ds < ∞, and we obtain SNRV (ϱ) ∩ P = ∅ by Theorem 3.21. Similarly we

get SNRV (ϱ) ⊆ P when δ > −1. Altogether, in view of (3.17), P = SNSV when δ < −1, while
P = SNRV (ϱ) when δ > −1.

Assume now that (3.15) fails to hold. The constants m, M will have the same meaning
as in Theorem 3.24. Let Jr = ∞ (this means γ < α − 1, thus, δ < −1 since we assume
γ ̸= α − 1 and δ + α = γ) and α < 2. If y ∈ SNSV , then r1−βy−M ∈ RV(−γ/(α − 1)) by
Proposition 3.1. In view of γ < α− 1, the index is greater −1, and so

∫ ∞
a r1−β(s)y−M(s)ds = ∞

by Theorem 3.2. Hence, SNSV ⊆ P by Theorem 3.24. If y ∈ SNRV (ϱ), then r1−βy−m ∈
RV(−γ/(α − 1)− ϱm). It clearly holds −γ/(α − 1)− ϱm < −1 if and only if (α − 1 − γ)(1 −
m) < 0. The latter inequality holds since m > 1, see Lemma 3.23, and α− 1 > γ. Consequently,∫ ∞

a r1−β(s)y−M(s)ds < ∞ by Theorem 3.2, and so Theorem 3.24 yields SNRV (ϱ) ∩ P = ∅. In
view of (3.17), we have SNSV = P .

Let Jp = ∞ (i.e., δ > −1, i.e., γ > α − 1) and α > 2. Take y ∈ SNRV (ϱ) and note that ϱ < 0
and S = DS . Set u = −y[1]. Then u is positive and satisfies (3.2), thus u ∈ Ŝ. By Lemma 3.17,
u ∈ ŜNSV . Because of our assumptions we have δ̂ < −1 and γ̂ < β − 1, where δ̂ and γ̂

are defined in (3.4). Thus we can apply Theorem 3.24 to reciprocal equation (3.2). Denote
M̂ = max{φα(t) : t ∈ [0, 1]} and note that φα can be understood as a reciprocal counterpart to
φβ. Since r̂1−αu−M̂ ∈ RV(−γ̂(α − 1)), where γ̂(α − 1) > −1, we have

∫ ∞
a r̂1−α(s)u−M̂(s)ds =

∞, which implies u ∈ P̂ . In view of Theorem 3.22, we get y ∈ P , thus SNRV (ϱ) ⊆ P .
Now take y ∈ SNRV (ϱ) and x ∈ SNSV . Then, since we have ty′(t)/y(t) → ϱ < 0 and
tx′(t)/x(t) → 0 with t → ∞, we get y′(t)/y(t) < x′(t)/x(t) for large t, hence x ̸∈ P by
definition. Consequently, SNRV (ϱ) = P .

Proof of Theorem 2.3. Since tα p(t)/r(t) ∈ RV(δ + α − γ) (by Proposition 3.1) and δ + α < γ, we
have Cγ = 0. Consequently (3.17) holds. The following observation will be repeatedly utilized
in the sequel. Thanks to (1.11), |G| ∈ RV((δ + 1 − γ)(β − 1)) and |H| ∈ RV(α − 1 + δ − γ)

by Proposition 3.1. It is easy to see that δ + α < γ is equivalent to (δ + 1 − γ)(β − 1) < −1.
Hence, both the indices of |G| and |H| are less than −1, and so

J < ∞ and R < ∞. (3.19)

(i-a) Let δ < −1, γ < α − 1, and p < 0. Take y ∈ SNSV . Then y ∈ DS . Indeed, if y ∈ IS ,
then y[1] is positive increasing, hence there is A > 0 such that y[1](t) ≥ A for large t, say t ≥ t0.
Consequently, by Theorem 3.2 and Proposition 3.1,

y(t) ≥ y(t0) + Aβ−1
∫ t

t0

r1−β(s)ds ∈ RV(γ(1 − β)) = RV(ϱ).
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Hence, y is greater than or equal to a regularly varying function with a positive index, thus
cannot be slowly varying. Using similar arguments we find that for y ∈ DS , the quasideriva-
tive y[1] (which is negative increasing) must tend to zero. Moreover, y ∈ DSB0. Indeed,
if y ∈ DS00, then γ = δ + α (see Lemma 3.18), which contradicts to δ + α < γ. Hence,
SNSV ⊆ DSB0 ⊆ DS . On the other hand, if y ∈ DS , then it cannot be in NRV(ϱ) since ϱ > 0
(and the functions with a positive index always tend to infinity, see Proposition 3.1), conse-
quently, in view of (3.17), we get DS ⊆ SNSV . Therefore, SNSV = DSB0 = DS . Consider
the class SNRV (ϱ). From the previous part we know that slowly varying solutions cannot be
increasing. Recalling (3.17), we get IS ⊆ SNRV (ϱ). Applying Remark 3.8 and (3.19) we obtain
J2 < ∞ and R1 < ∞. Condition γ < α − 1 implies Jr = ∞ and that is why J1 = ∞ and R2 = ∞,
see Remark 3.8. According to [5, Theorem 1], see also [6, Chapter 4], we get IS = IS∞B.
Moreover y ∈ SNRV (ϱ) cannot be decreasing since ϱ > 0, thus SNRV (ϱ) ⊆ IS . We obtain
SNRV (ϱ) = IS∞B = IS .

It is not difficult to see that the relations of SNSV with G2,B3 and of SNRV (ϱ) with
H3,B4,L(ϱ, η) follow similarly as they were established in the proof of Theorems 2.1 and
2.2, with the help of Lemma 3.12, Remark 3.13, Lemma 3.14, Remark 3.15, Lemma 3.11,
Lemma 3.16, formula (1.9), and [22, Section 5].

(i-b) Let δ < −1, γ < α − 1, and p > 0. Thanks to γ < α − 1 and r1−β ∈ RV(γ(1 − β)), we
have Jr = ∞ (see Theorem 3.2), which implies (1.5). Take y ∈ SNSV . Then limt→∞ y[1](t) = 0.
Indeed, y[1] is positive decreasing and if y[1](t) ∼ Ny > 0 as t → ∞, then as in (3.18), we get
y ∈ RV(ϱ), contradiction with y ∈ SNSV . Moreover, y cannot be in IS∞0 otherwise we would
get γ = δ + α (see Lemma 3.18), which contradicts to δ + α < γ. Consequently, SNSV ⊆ ISB0.
The opposite inclusion is obvious, in view of (2.1). Take y ∈ SNRV (ϱ). From the previous part
we get that y ∈ IS∞0 ∪ IS∞B. We claim that IS∞0 = ∅. Indeed, if y ∈ IS∞0, then as in (3.9)
we obtain

y[1](t) ∼ −tp(t)Φ(y(t))
δ + 1

(3.20)

as t → ∞, which leads to (3.11). Integration of this relation from t to ∞, in view limt→∞ y(t) =
∞, would give J = ∞. This however contradicts to (3.19). Hence, SNRV (ϱ) ⊆ IS∞B. In fact,
we have the equality here because of SNSV = ISB0 and (3.17). The relations of SNSV and
SNRV (ϱ) with G,H,L,B type classes can be treated as in the part (i-a).

(ii-a) Let δ > −1, γ > α − 1, and p < 0. Take y ∈ SNSV . Then y ∈ IS . Indeed, if
y ∈ DSNSV , then y[1] is negative increasing, thus limt→∞ y[1](t) ∈ (−∞, 0]. But at the same
time, as in (3.10) we get (3.20), where |tpΦ(y(t))| ∈ RV(δ + 1). Hence, y[1](t) ∈ RV(δ + 1),
which yields limt→∞ y[1](t) = ∞, contradiction with y ∈ DS . We have IS = ISB∞ ∪ IS∞∞.
But if y ∈ IS∞∞, then γ = δ + α by Lemma 3.18, contradiction with γ > δ + α. Thus
SNSV ⊆ ISB∞. The opposite inclusion clearly holds as well, in view of (2.1). Consider the
class SNRV (ϱ). First note that DS = DS0B. Indeed, similarly as in the proof of the part (i-a),
from (3.19), Lemma 3.7, and Remark 3.8, we find that J1 < ∞, J2 = ∞, R1 = ∞, and R2 < ∞,
and the claim follows by [5, Theorem 1], see also [6, Chapter 4]. Since ϱ < 0, y ∈ SNRV (ϱ)

cannot be in IS (see Proposition 3.1), therefore SNRV (ϱ) ⊆ DS0B. On the other hand, if
y ∈ DS0B, then y[1](t) ∼ Ny < 0 as t → ∞ which yields (3.18), and so DS0B ⊆ SNRV (ϱ).

(ii-b) Let δ > −1, γ > α − 1, and p > 0. Since p ∈ RV(δ), we have Jp = ∞, and
so (1.6) holds. Take y ∈ SNSV . Then y[1] is negative decreasing and from (3.20), we get
limt→∞ y[1](t) = −∞. Moreover, y cannot be in DS0∞, otherwise we would get γ = δ + α,
see Lemma 3.18. Consequently, SNSV ⊆ DSB∞. The opposite inclusion is obvious. Take
y ∈ SNRV (ϱ). We know that y ∈ DS0∞ ∪ DS0B. We claim that y ̸∈ DS0∞. Indeed, if
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y ∈ DS0∞, then from (3.10) we get (3.11). Since y(t) → 0 as t → ∞, integration of (3.11) yields
J = ∞, contradiction with (3.19). Thus, SNRV (ϱ) ⊆ DS0B and in view of SNSV ⊆ DSB∞ and
(3.17), we get DS0B ⊆ SNRV (ϱ). The relations of SNSV and SNRV (ϱ) with G,H,L,B type
classes in the setting of (ii-a) and (ii-b) can be treated as in the part (i).

(iii) Let δ < −1 and γ > α − 1. Then Jp < ∞ and Jr < ∞. Hence, clearly Ji < ∞, Ri < ∞,
i = 1, 2. Assume that p < 0. By [5, Theorem 1], see also [6, Chapter 4], we get IS = ISB.
Hence, IS ⊆ SSV = SNSV , in view of (2.1). If y ∈ IS , then from (1.1), (y[1](t))′ ∼ −Mα−1

y p(t)
as t → ∞, where My = limt→∞ y(t), and because of the convergence of Jp, we get IS = ISBB.
Indeed, y[1] is positive increasing and if limt→∞ y[1](t) = ∞, then Jp = ∞, contradiction. By
[5, Theorem 1], see also [6, Chapter 4], we get DS = DS0B ∪DSB, where both subclasses are
nonempty. As in (3.18), we obtain y ∈ RV(ϱ) provided y ∈ DS0B, thus DS0B ⊆ SNRV (ϱ).
Since ϱ < 0 and except of DS0B all other possible subclasses (ISB,DSB) are subsets of SV ,
we get SNRV (ϱ) ⊆ DS0B. Further, in view of [5, Theorem 1], DSB = DSB0 ∪ DSBB, where
both subclasses are nonempty. Altogether we get DSB0 ∪DSBB ∪ ISBB = SNSV .

From Lemma 3.11 we get DS0B ⊆ B4, DSB0 ⊆ B3, and DSBB ∪ ISBB ⊆ Bj, j = 1, 2.
Lemma 3.12 yields DSB0 ⊆ G2. From Lemma 3.14 and Lemma 3.16, we obtain DS0B ⊆ H4 and
DS0B ⊆ L(ϱ, η), respectively. By definition, if y ∈ B4 ∩DS , then y ∈ DS0B ∪DSBB. Suppose
by a contradiction that y ∈ DSBB. We know that DSBB ⊆ B2. Thus, |Ny − y[1]| ∈ RV(δ+ 1) by
Proposition 3.1. But at the same time we have y ∈ B4, which yields |Ny − y[1]| ∈ RV(α+ δ−γ)

by Proposition 3.1. This implies – because of necessary equality of indices of regular variation
– that γ = α− 1, contradiction. Thus B4 ∩DS ⊆ DS0B. By definition and because of the above
established classification, if y ∈ B3 ∩DS , then y ∈ DSBB ∪DSB0. Let y ∈ DSBB. We know that
DSBB ⊆ B1 by Lemma 3.11. Consequently, by Proposition 3.1, |My − y| ∈ RV(1 + γ(1 − β)).
But at the same time we have y ∈ B3, and so |My − y| ∈ RV((β − 1)(δ + 1 − γ) + 1). For
the indices we then get (β − 1)(α − 1 − γ) = (β − 1)(δ + 1 − γ + α − 1), which gives δ = −1,
contradiction. Thus B3 ∩ DS ⊆ DSB0. By definition, Bj ∩ IS ⊆ ISBB and Bj ∩ DS ⊆ DSBB,
j = 1, 2. If y ∈ G2 ∩DS , then y ∈ DSB. Differentiating the relation which defines G2, applying
Φ to the both sides and multiplying by r, we obtain, as t → ∞, |y[1]| ∼ Kt|p(t)| ∈ RV(δ + 1),
where K is a positive constant. Consequently, in view of Proposition 3.1, y ∈ DSB0. If y ∈ H4

or y ∈ L(ϱ, η), then clearly the only class for y among the ones that are allowed in the setting
δ < −1, γ > α − 1, p < 0 is DS0B.

Assume that p > 0. By [4, Theorems 2 and 4 and their proofs], we have S = ISB0 ∪ISBB ∪
DS0B ∪DSBB with all these subclasses to be nonempty. Hence, IS ∪ DSBB ⊆ SNSV . In view
of (3.18), DS0B ⊆ SNRV (ϱ). Taking into account (3.17), we get DSBB ∪ ISB0 ∪ ISBB = SNSV
and DS0B = SNRV (ϱ). The relations with the classes B1,B2,B3,B4,G2,H3, and L(ϱ, η) can be
shown similarly as in the case p < 0

In the last part of this proof we establish the relations with the class P under the condition
δ+ α < γ. First consider the case p < 0. Let γ < α− 1 and δ < −1. Then, as it was established
in the previous parts, J1 = ∞ and J2 < ∞. Theorem 3.20 now yields P = DSB. From the
previous computations we know that DSB = DS . Let γ > α − 1 and δ > −1. Then, as was
established already earlier, we have J1 < ∞. Theorem 3.20 and the equality DS0 = DS (which
holds to be true) in this case yield P = DS . If δ < −1 and γ > α − 1, then Jp < ∞ and
Jr < ∞. Consequently, J1 < ∞ and thus Theorem 3.20 yields P = DS0. The above established
classification implies DS0 = DS0B, hence P = DS0B.

Let p > 0. If y ∈ SNSV , then r1−βy−M ∈ RV(−γ/(α − 1)) by Proposition 3.1. If γ < α − 1
and δ < −1, then

∫ ∞
a Tm[y](s)ds = ∞, and hence SNSV ⊆ P , in view of Theorem 3.24.

Since ϱ > 0, ty′(t)/y(t) → 0 and tx′(t)/x(t) → ϱ as t → ∞ for x ∈ SNRV (ϱ), we get
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SNRV (ϱ) ∩ P = ∅ by definition. Consequently, SNSV = P . Assume that γ > α − 1 and
δ > −1. Take y ∈ SNRV (ϱ). Then by the classification made in the previous parts, we obtain
y ∈ S2, S2 being defined in Lemma 3.17, and F [y] ∈ RV(−ϱ − 1) (see Lemma 3.17), F being
defined in Theorem 3.21. Since ϱ < 0, we have

∫ ∞
a F [y]ds = ∞. Assuming (3.15), we get

SNRV (ϱ) ⊆ P by Theorem 3.21. Further, SNSV ∩ P = ∅ by definition, since for x ∈ SNSV ,
tx′(t)/t → 0 as t → ∞ and ϱ < 0. Thus SNRV (ϱ) = P . If (3.15) fails to hold, then we can
proceed similarly as at the end of the proof of Theorems 2.1 and 2.2, since the discussion made
there is valid no matter whether δ + α = γ or δ + α < γ. We again obtain SNRV (ϱ) = P . It
remains to examine principal solutions when δ < −1 and γ > α − 1, i.e., Jp + Jr < ∞ under
the condition p > 0. We will use Theorem 3.26. If y ∈ SNSV , then r1−βy−2 ∈ RV(γ(1 − β)).
The index is less than −1, thus

∫ ∞
a r1−β(s)y−2(s)ds < ∞ and SNSV ∩P = ∅ by Theorem 3.26.

If y ∈ SNRV (ϱ), then r1−βy−2 ∈ RV(γ(1 − β) − 2ϱ) = RV(−1 − ϱ). In view of ϱ < 0, the
index is greater than −1, thus

∫ ∞
a r1−β(s)y−2(s)ds = ∞, and SNRV (ϱ) ⊆ P by Theorem 3.26.

Hence, in view of (3.17), SNRV (ϱ) = P .

Proof of Theorem 2.4. Let p < 0. Since

S = SNRV (ϑ1) ∪ SNRV (ϑ2), SNRV (ϑi) ̸= ∅, i = 1, 2, (3.21)

S = IS ∪ DS , and ϑ1 < 0 < ϑ2 (see Lemma 3.6), in view of Proposition 3.1, we get
IS = SNRV (ϑ2) and DS = SNRV (ϑ1). Thanks to the positivity of ϑ2, we have IS =

SNRV (ϑ2) ⊆ IS∞ ⊆ IS by Proposition 3.1. Take y ∈ SNRV (ϑ2) = IS = IS∞. Since y[1]

is positive increasing, we have IS∞ = IS∞∞ ∪ IS∞B. But if y ∈ IS∞B, we get y ∈ RV(ϱ)
by Lemma 3.17-(ii), contradiction because of ϑ2 ̸= ϱ (see Lemma 3.6). Therefore IS = IS∞∞.
Similarly we find that DS ⊆ SNRV (ϑ1) ⊆ DS0 = DS00 ∪ DS0B = DS00 ⊆ DS , and the
equalities follow. From Lemma 3.16, SNRV (ϑi) ⊆ L(ϑi, ηi), i = 1, 2. Condition (1.2) and
r ∈ NRV(γ) ∩ C1 imply limt→∞ tL(ϑi, ηi, t) = 0. Hence, by the Representation Theorem (see
(1.9)), L(ϑi, ηi) ⊆ SNRV (ϑi), i = 1, 2. In view of Theorem 3.20, P = DSB or P = DS0. But
DSB = ∅, thus only the latter possibility occurs. Note that J2 = ∞ by (1.2).

Let p > 0. Since we assume that Cγ ∈ (0, Kα], we have γ ̸= α − 1, otherwise Kα would
be zero. Let γ < α − 1. Then Jr = ∞ by Theorem 3.2, and so (1.5) holds. The class ISB0

is empty because of (3.21), where ϑ1, ϑ2 are positive by Lemma 3.6. The class IS∞B is also
empty. Indeed, if y ∈ IS∞B, then y ∈ RV(ϱ) by Lemma 3.17. But according to Lemma 3.6,
0 < ϑ1 ≤ ϑ2 < ϱ, contradiction. Thus IS ⊆ SNRV (ϑ1) ∪ SNRV (ϑ2) ⊆ IS∞0 ⊆ IS . Let
γ > α − 1. Then Jp = ∞ since p(t) ∼ Cγt−αr(t) ∈ RV(γ − α). Thus (1.6) holds. Similarly as
before (using Lemma 3.6 and Lemma 3.17), we get DSB∞ = ∅ = DS0B. Consequently, DS ⊆
NRV(ϑ1) ∪ NRV(ϑ2) ⊆ DS0∞ ⊆ DS . The inclusions SNRV (ϑi) ⊆ L(ϑi, ηi) ⊆ SNRV (ϑi),
i = 1, 2, can be proved analogously as in the case p < 0.

Finally we show the relations with the class P when p > 0. Take y ∈ SNRV (ϑ), where
ϑ = ϑ1 or ϑ = ϑ2. From the previous part we know that y ∈ IS∞0 ∪ DS0∞ ⊆ S1. Recall that
δ = γ − α and γ ̸= α − 1. Assume that (3.15) holds. From Lemma 3.17 and Proposition 3.1, we
get F [y] ∈ RV(Ω), F being defined in Theorem 3.21, where Ω = ϑ − 1 − 2ϑ − δ − 1 − (α −
1)ϑ = α − γ − 2 − αϑ. Clearly, Ω ≷ −1 if and only if ϑ ≷ (α − 1 − γ)/α. Since Cγ ∈ (0, Kα],
from Lemma 3.6 we have ϑ1 < (α − 1 − γ)/α < ϑ2. Thus

∫ ∞
a F [y](s)ds = ∞ when ϑ = ϑ1

while
∫ ∞

a F [y](s)ds < ∞ when ϑ = ϑ2 by Theorem 3.2. Theorem 3.21 yields SNRV (ϑ1) ⊆ P
and SNRV (ϑ2) ∩ P = ∅. In view of (3.21), we get P = SNRV (ϑ1). Now assume that (3.15)
fails to hold and let Jr = ∞ (i.e., in our setting, γ < α − 1) and α < 2. The constant M
is defined in Theorem 3.24. If y ∈ SNRV (ϑ1), then r1−βy−M ∈ RV(−γ(β − 1) − Mϑ1) by
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Proposition 3.1. For the index we have −γ(β − 1)− Mϑ1 > −1 if and only if Mϑ1(α − 1) <
α − 1 − γ. From Lemma 3.23 we know that M = β; recall we assume α < 2. Thus the
inequality Mϑ1(α − 1) < α − 1 − γ reads as ϑ1 < (α − 1 − γ)/α which is true by Lemma 3.6.
Consequently,

∫ ∞
a TM[y](s)ds = ∞, and so Theorem 3.24 yields SNRV (ϑ1) ⊆ P . The class

SNRV (ϑ2) will be treated later. Now assume that (3.15) fails to hold in the sense that Jp = ∞
and α > 2. Note that then δ > −1 and γ > α − 1, and so SNRV (ϑ1) ∪ SNRV (ϑ2) = DS =

DS0∞ ⊆ S1, where ϑ1, ϑ2 are negative. Take y ∈ SNRV (ϑ1) and set u = −y[1]. Then u ∈ Ŝ ,
see Lemma 3.9. We want to show that u ∈ P̂ ; P̂ is the set of principal solutions in Ŝ .
Denote ϑ̂1 = γ − α + ϑ1(α − 1) + 1. Then, owing to Lemma 3.17, u ∈ RV(ϑ̂1). Recall that
γ̂ is the index of regular variation of r̂ and let M̂ = max{φα(t) : t ∈ [0, 1]}. Thanks to
Proposition 3.1, we have r̂1−αu−M̂ ∈ RV(Ψ̂), where Ψ̂ = −γ̂(α − 1)− ϑ̂1M̂. Since we assume
α > 2, we have β < 2, and Lemma 3.23 yields M̂ = α. Recalling γ̂ = (α − γ)/(α − 1),
for the index Ψ̂ we get Ψ̂ = −α + γ − α(γ − α + ϑ1(α − 1) + 1). It is now easy to see that
Ψ̂ > −1 if and only if ϑ1 < (α − 1 − γ)/α where the last inequality is true by Lemma 3.6.
Hence,

∫ ∞
a r̂1−α(s)u−M̂(s)ds = ∞, and noting that

∫ ∞
a r̂1−α(s)ds = ∞ (since γ̂(1 − α) > −1),

applying Theorem 3.24 to reciprocal equation (3.2), we get u ∈ P̂ . According to Theorem 3.22
we have y ∈ P , and so again SNRV (ϑ1) ⊆ P . The rest of the observations is made under
the general assumption γ ̸= α − 1. Take yi ∈ SNRV (ϑi), i = 1, 2. Then, no matter whether
(3.15) holds or does not hold, limt→∞ ty′i(t)/yi(t) = ϑi, i = 1, 2, and since ϑ1 < ϑ2, we get
y′1(t)/y1(t) < y′2(t)/y2(t) for large t, which implies SNRV (ϑ2) ∩ P = ∅. Altogether we get
SNRV (ϑ1) = P .

4 Acknowledgment

The research has been supported by the grant GA20-11846S of the Czech Science Foundation.
The author would like to thank the anonymous reviewer for careful reading and his/her
valuable comments.

References

[1] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Encyclopedia of
Mathematics and its Applications, Vol. 27, Cambridge Univ. Press, 1987. MR1015093;
Zbl 0617.26001

[2] M. Cecchi, Z. Došlá, M. Marini, Half-linear equations and characteristic properties of
the principal solution, J. Differential Equations 208(2005), 494–507. https://doi.org/10.
1016/j.jde.2005.10.020; MR2193852; Zbl 1069.34048

[3] M. Cecchi, Z. Došlá, M. Marini, Corrigendum to: “Half-linear equations and character-
istic properties of the principal solution” [J. Differential Equations 208 (2005) 494–507], J.
Differential Equations 221(2006), No. 1, 272–274.]. https://doi.org/10.1016/j.jde.2005.
10.020; MR2193852; Zbl 1096.34023

[4] M. Cecchi, Z. Došlá, M. Marini, On intermediate solutions and the Wronskian for half-
linear differential equations, J. Math. Anal. Appl. 336(2007), 905–918. https://doi.org/
10.1016/j.jmaa.2006.12.083; MR2352988; Zbl 1130.34025

https://www.ams.org/mathscinet-getitem?mr=1015093
https://zbmath.org/?q=an:0617.26001
https://doi.org/10.1016/j.jde.2005.10.020
https://doi.org/10.1016/j.jde.2005.10.020
https://www.ams.org/mathscinet-getitem?mr=2193852
https://zbmath.org/?q=an:1069.34048
https://doi.org/10.1016/j.jde.2005.10.020
https://doi.org/10.1016/j.jde.2005.10.020
https://www.ams.org/mathscinet-getitem?mr=2193852
https://zbmath.org/?q=an:1096.34023
https://doi.org/10.1016/j.jmaa.2006.12.083
https://doi.org/10.1016/j.jmaa.2006.12.083
https://www.ams.org/mathscinet-getitem?mr=2352988
https://zbmath.org/?q=an:1130.34025


Half-linear differential equations 27

[5] M. Cecchi, Z. Došlá, M. Marini, I. Vrkoč, Integral conditions for nonoscillation of
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