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1 . Introduction

In this paper we consider a mathematical model for the frictional contact between

a deformable body and a rigid obstacle. We consider here materials having an

elastic-viscoplastic constitutive law of the form

σ̇ = Eε(u̇) +G(σ, ε(u)), (1.1)

where E and G are constitutive functions. In this paper, we consider the case of

small deformations, we denote by ε = (εij) the small strain tensor and by σ =

(σij) the stress tensor. A dot above a variable represents the time derivative. The

contact is modeled with a bilateral contact or a Signorini’s contact conditions and

the associated friction law is chosen as

|στ | ≤ g(t),
|στ | < g(t) ⇒ u̇τ = 0,
|στ | = g(t) ⇒ there exists λ ≥ 0 such that στ = −λu̇τ ,

(1.2)

where u̇τ (respectively στ ) represents the tangential velocity (respectively tangential

force).

The engineering literature concerning this topic is extensive. Existence and unique-

ness results for quasistatic problems involving (1.1) and Tresca’s friction law, in

which the friction bound is given, have been obtained by Amassad and Sofonea in

2 for the bilateral case, by Licht in 7 and Cocou, Pratt and Raous in 5 for linearly

elastic materials and by Amassad, Sofonea and Shillor in 3 in the case of perfectly

plastic materials. Here we extend these results to the case of the friction yield limit

g depends on time and of Signorini’s contact conditions.

The paper is organised as follows. In section 2 some functional and preliminary

material are recalled. In section 3, the mechanical model including bilateral con-

tact and a version of Tresca’s friction law where the friction bound depends on time

(1.2) is stated together with a variational formulation coupling of the constitutive

law (1.1) and a variational inequality including the equilibrium equation and the

boundary conditions. In section 4, we show the existence and uniqueness result for

this first problem (Theorem 3.1). Sections 5 and 6 are devoted to an analysis of

problem with Signorini’s nonpenetration conditions and Tresca’s friction law (1.2).

The existence of a solution to the problem is stated in Theorem 5.2 and proved by

using an iterative method. The uniqueness part is an open problem.
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The authors thank the referee for the detailed lecture of this work and his sugges-

tions.

2 . Notation and preliminaries

In this section we present the notation we shall use and some preliminary material.

For further details we refer the reader to references 1. and 2. We denote by SM the

space of second order symmetric tensors on RM (M = 2, 3), “·”and | · | represent the

inner product and the Euclidean norm on SM and RM , respectively. Let Ω ⊂ RM

be a bounded and regular domain with a boundary Γ. We shall use the notation

H = L2(Ω)M , H = { (σij) | σij = σji ∈ L2(Ω) }
H1 = H1(Ω)M , H1 = { σ ∈ H| (σij,j) ∈ H }.

Here and below, i, j = 1, ..,M, summation over repeated indices is implied, and the

index that follows a comma indicates a partial derivative. H, H, H1 and H1 are

real Hilbert spaces endowed with the inner products given by

〈u, v〉H =

∫
Ω

uivi dx, 〈σ, τ〉H =

∫
Ω

σijτij dx,

with

〈u, v〉H1 = 〈u, v〉H + 〈ε(u), ε(v)〉H

and

〈σ, τ〉H1 = 〈σ, τ〉H + 〈Div σ,Div τ〉H

respectively. Here ε : H1 −→ H and Div : H1 −→ H are the deformation and the

divergence operators, respectively, defined by ε(v) = (εij(v)), εij(v) = 1
2
(vi,j + vj,i)

and Div σ = (σij,j).

Since the boundary Γ is Lipschitz continuous, the unit outward normal vector ν on

the boundary is defined a.e. For every vector field v ∈ H1 we denote by vν and vτ

the normal and the tangential components of v on the boundary given by

vν = v · ν, vτ = v − vνν. (2.1)

Similary, for a regular (say C1) tensor field σ : Ω −→ SM we define its normal and

tangential components by

σν = (σν) · ν, στ = σν − σνν (2.2)
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and we recall that the following Green formula holds (valid in regular cases):

〈σ, ε(v)〉H + 〈Div σ, v〉H =

∫
Γ

σν · v da ∀v ∈ H1 (2.3)

where da is the surface measure element.

3 . Persistent contact and time dependent Tresca

friction law

In this section we describe a model for the process, present its variational formula-

tion, list the assumptions imposed on the problem data and state our first result.

The setting is as follows. An elastic-viscoplastic body occupies the domain Ω and is

acted upon by given forces and tractions. We assume that the boundary Γ of Ω is par-

titioned into three disjoint measurable parts Γ1, Γ2, and Γ3, such that measΓ1 > 0.

The body is clamped on Γ1 × (0, T ) and surface tractions ϕ2 act on Γ2 × (0, T ).

The solid is frictional contact with a rigid obstacle on Γ3 × (0, T ) and this is where

our main interest lies. Moreover, a volume force of density ϕ1 acts on the body in

Ω× (0, T ).

We assume a quasistatic process and use (1.1) as the constitutive law and (1.2)

as the boundary contact conditions. With these assumptions, the mechanical prob-

lem of frictional contact of the viscoplastic body may be formulated classicaly as

follows:

Find a displacement field u : Ω×[0, T ] −→ RM and a stress field σ : Ω×[0, T ] −→ SM

such that

σ̇ = Eε(u̇) +G(σ, ε(u)) in Ω× (0, T ), (3.1)

Div σ + ϕ1 = 0 in Ω× (0, T ), (3.2)

u = 0 on Γ1 × (0, T ), (3.3)

σν = ϕ2 on Γ2 × (0, T ), (3.4)

uν = 0, |στ | ≤ g(t) on Γ3 × (0, T ), (3.5)

|στ | < g(t) ⇒ u̇τ = 0,
|στ | = g(t) ⇒ there exists λ ≥ 0 such that στ = −λu̇τ ,

u(0) = u0, σ(0) = σ0 in Ω. (3.6)
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To obtain a variational formulation of the contact problem (3.1)-(3.6) we need ad-

ditional notations. Let V denote the closed subspace of H1 defined by

V = { v ∈ H1 | v = 0 on Γ1}.

We note that the Korn’s inequality holds, since meas(Γ1) > 0, thus

|ε(u)|H ≥ C|u|H1 ∀u ∈ V. (3.7)

Here and below, C represents a positive generic constant which may depend on Ω,

Γ, G and T, and do not depend on time or on the input data ϕ1, ϕ2, g, u0 or σ0 and

whose value may change from line to line.

Let 〈u, v〉V = 〈ε(u), ε(v)〉H be the inner product on V, then by (3.7) the norms | · |H1

and | · |V are equivalent on V , and (V, | · |V ) is a Hilbert space.

Next, we denote by f(t) the element of V ′ given by (γ is the trace operator)

〈f(t), v〉V ′,V = 〈ϕ1(t), v〉H + 〈ϕ2(t), γv〉L2(Γ2)M ∀v ∈ V, t ∈ [0, T ], (3.8)

and let j : L2(Γ3)× V −→ R be the friction functional

j(g(t), v) =

∫
Γ3

|g(t, x)||vτ (x)|da ∀v ∈ V, t ∈ [0, T ], (3.9)

and let us denote by Uad the space of admissible displacements defined by

Uad = { v ∈ V | vν = 0 on Γ3}.

The space Uad is closed in V and is endowed with this topology.

In the study of the contact problem (3.1)-(3.6) we make the following assumptions

on the data :

E : Ω× SM → SM is a symmetric and positively definite tensor, i.e.
(a) Eijkh ∈ L∞(Ω) ∀i, j, k, h = 1, ..,M
(b) Eσ · τ = σ · Eτ ∀σ, τ ∈ SM , a.e. in Ω
(c) there exists α > 0 such that Eσ · σ ≥ α|σ|2 ∀σ ∈ SM ,

(3.10)

G : Ω× SM × SM → SM and
(a) there exists k > 0 such that

|G(x, σ1, ε1)−G(x, σ2, ε2)| ≤ k(|σ1 − σ2|+ |ε1 − ε2|)
∀ σ1, σ2, ε1, ε2 ∈ SM , a.e. in Ω

(b) x 7→ G(x, σ, ε) is a measurable function with respect to the
Lebesgue measure on Ω, for all σ, ε ∈ SM

(c) x 7→ G(x, 0, 0) ∈ H,

(3.11)
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ϕ1 ∈ H1(0, T ;H), ϕ2 ∈ H1(0, T ;L2(Γ2)
M), (3.12)

g ∈ H1(0, T ;L2(Γ3)), (3.13)

u0 ∈ Uad, 〈σ0, ε(v)〉H + j(g(0), v) ≥ 〈f(0), v〉V ′,V ∀v ∈ Uad. (3.14)

Using (3.1)-(3.6),(2.3) we obtain the following variational formulation of the me-

chanical problem

Problem FV : Find a displacement field u : [0, T ] −→ Uad and σ : [0, T ] −→ H
such that

σ̇(t) = Eε(u̇(t)) +G(σ(t), ε(u(t))) a.e. t ∈ (0, T ), (3.15)

〈σ(t), ε(v)− ε(u̇(t))〉H + j(g(t), v)− j(g(t), u̇(t)) ≥ 〈f(t), v − u̇(t)〉V ′,V

∀v ∈ Uad, a.e. t ∈ (0, T ),
(3.16)

u(0) = u0, σ(0) = σ0. (3.17)

Our main result of this section, which will be established in the next is the following

theorem:

Theorem 3.1. Assume that (3.10) − (3.14) hold. Then there exists a unique

solution (u, σ) of the problem FV satisfying

u ∈ H1(0, T ;Uad), σ ∈ H1(0, T ;H1).

4 . Proof of Theorem 3.1

The proof of Theorem 3.1 is based on a time discretization method followed by a

fixed point arguments, similar to those in 2 and is carried out in several steps.
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In the first step we assume that the viscoplastic part of the stress field is a known

function η ∈ L2(0, T ;H). Let zη ∈ H1(0, T ;H) be given by

zη(t) =

∫ t

0

η(s)ds+ z0, where z0 = σ0 − Eε(u0). (4.1)

We consider the following nonlinear variational problem

Problem FVη : Find a displacement field uη : [0, T ] −→ Uad and ση : [0, T ] −→ H
such that

ση(t) = Eε(uη(t)) + zη(t) a.e. t ∈ (0, T ), (4.2)

〈ση(t), ε(v)− ε(u̇η(t))〉H + j(g(t), v)− j(g(t), u̇η(t)) ≥ 〈f(t), v − u̇η(t)〉V ′,V

∀v ∈ Uad, a.e. t ∈ (0, T ),
(4.3)

uη(0) = u0. (4.4)

We have the following result

Proposition 4.1. There exists a unique solution (uη, ση) to problem FVη. Moreover

uη ∈ H1(0, T ;Uad), ση ∈ H1(0, T ;H1).

Proposition 4.1 may be obtained using similar arguments as in reference 2. However,

for the convenience of the reader, we summarize here the main ideas of the proof. For

this, let N ∈ N, h = T
N
, tn = nh, gn = g(tn), fn = f(tn), zn

η = zη(tn), ∀n = 0, .., N.

We introduce the bilinear form a : V × V −→ R defined by a(u, v) = 〈Eε(u), ε(v)〉H
and we consider the sequence of variational inequalities

Problem FV n+1
η : Find un+1

η ∈ Uad such that

a(un+1
η , v − un+1

η ) + j(gn+1, v − un
η )− j(gn+1, un+1

η − un
η ) ≥

〈fn+1, v − un+1
η 〉V ′,V − 〈zn+1

η , ε(v)− ε(un+1
η )〉H ∀v ∈ Uad

(4.5)

u0
η = u0. (4.6)

Lemma 4.2. For all n = 0, .., N − 1, there exists a unique solution un+1
η to problem

(4.5)− (4.6). Moreover, there exists C > 0 such that

|un
η |V ≤ C(|gn|L2(Γ3) + |fn|V ′ + |zn

η |H) ∀n = 0, ..., N, (4.7)
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|un+1
η −un

η |V ≤ C(|gn+1−gn|L2(Γ3)+|fn+1−fn|V ′+|zn+1
η −zn

η |H) ∀n = 0, ..., N−1. (4.8)

Proof. The problem (4.5) is equivalent to the following minimization problem

Find un+1
η ∈ Uad such that Jn

η (un+1
η ) = inf

v∈Uad

Jn
η (v) where

Jn
η (v) =

1

2
a(v, v) + j(gn+1, v − un

η )− 〈fn+1, v〉V ′,V + 〈zn+1
η , ε(v)〉H. (4.9)

The functional Jn
η is proper, continuous, strictly convex and coercive on Uad. There-

fore, the problem (4.9) has a unique solution un+1
η ∈ Uad, a.e. t ∈ (0, T ). In the

case n ∈ {1, 2, ..., N}, the inequality (4.7) may be obtained by taking v = 0 in

(4.5) and using (3.10), (3.11), in the case n = 0, the same inequality may be ob-

tained using (3.14). The inequality (4.8) also follows from (4.5),(3.10) and (3.11).

We now consider the function uN
η : [0, T ] −→ Uad defined by

uN
η (t) = un

η +
(t− tn)

h
(un+1

η − un
η ) ∀t ∈ [tn, tn+1], n = 0, ..., N − 1. (4.10)

We obtain

Lemma 4.3. There exists an element uη ∈ H1(0, T ;Uad) such that, passing to a

subsequence again denoted (uN
η )N , we have

uN
η ⇀ uη weak ? in L∞(0, T ;Uad), (4.11)

u̇N
η ⇀ u̇η weak in L2(0, T ;Uad). (4.12)

Proof. Using (4.7)-(4.8) and having in mind the regularities g ∈ H1(0, T ;L2(Γ3)),

f ∈ H1(0, T ;V ′) and zη ∈ H1(0, T ;H), we obtain that

|uN
η (t)|V ≤ |un

η |V + |un+1
η |V ∀t ∈ [tn, tn+1],

≤ C(|g|C([0,T ];L2(Γ3)) + |f |C([0,T ];V ′) + |η|L2(0,T ;H)),
(4.13)

|u̇N
η (t)|L2(0,T ;V ) ≤ C(|ġ|L2(0,T ;L2(Γ3)) + |ḟ |L2(0,T ;V ′) + |η|L2(0,T ;H)). (4.14)

Lemma 4.3 follows now from (4.13)-(4.14) and using standard compactness

arguments.

We turn now to prove Proposition 4.1:
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Proof of Proposition 4.1. Let N ∈ N and let us consider the functions ũN
η :

[0, T ] → Uad, g̃
N : [0, T ] → L2(Γ3), f̃

N : [0, T ] → V ′ and z̃N
η : [0, T ] → H defined by

ũN
η (t) = un+1

η , g̃N(t) = gn+1, f̃N(t) = fn+1,

z̃N
η (t) = zn+1

η ∀t ∈ [tn, tn+1], n = 0, N − 1.
(4.15)

Substituting (4.10) and (4.15) in (4.4), after integration on [0, T ], we obtain∫ T

0

a(ũN
η (t), v(t)− u̇N

η (t))dt+

∫ T

0

j(g̃N(t), v(t))dt−
∫ T

0

j(g̃N(t), u̇N
η (t))dt

≥
∫ T

0

〈f̃N(t), v(t)− u̇N
η (t)〉V ′×V dt−

∫ T

0

〈z̃N
η (t), ε(v(t))− ε(u̇N

η (t))〉Hdt

∀v ∈ L2(0, T ;Uad).

(4.16)

From (4.10),(4.14) and (4.15) it results that∫ T

0

|ũN
η (t)− uN

η (t)|2V dt ≤ Ch2(|ġ|2L2(0,T ;L2(Γ3)) + |ḟ |2L2(0,T ;V ′) + |η|2L2(0,T ;H)) (4.17)

and, therefore

|ũN
η − uN

η |L2(0,T ;Uad) −→ 0. (4.18)

Let now consider the element uη ∈ H1(0, T ;V ) given by Lemma 4.3, it follows, for

all v ∈ L2(0, T ;V ) ∫ T

0

a(ũN
η (t), v(t))dt −→

∫ T

0

a(uη(t), v(t))dt, (4.19)

∫ T

0

j(g̃N(t), v(t))dt −→
∫ T

0

j(g(t), v(t))dt, (4.20)∫ T

0

〈z̃N
η (t), ε(v(t))− ε(u̇N

η (t))〉Hdt −→
∫ T

0

〈zη(t), ε(v(t))− ε(u̇η(t))〉Hdt, (4.21)∫ T

0

〈f̃N(t), v(t)− u̇N
η (t)〉V ′,V dt −→

∫ T

0

〈f(t), v(t)− u̇η(t)〉V ′,V dt. (4.22)

Moreover, we can write∫ T

0

a(ũN
η (t), u̇N

η (t))dt=

∫ T

0

a(ũN
η (t)−uN

η (t), u̇N
η (t))dt+

∫ T

0

a(uN
η (t), u̇N

η (t))dt, (4.23)

using again (4.11)-(4.12), (4.18) and standard lower semicontinuity arguments, we

obtain

lim
N

∫ T

0

a(ũN
η (t)− uN

η (t), u̇N
η (t))dt = 0, (4.24)
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lim inf
N

∫ T

0

a(uN
η (t), u̇N

η (t))dt = 1
2
[lim inf

N
a(uN

η (T ), uN
η (T ))− a(u0, u0)]

≥
∫ T

0

a(uη(t), u̇η(t))dt,

(4.25)

lim inf
N

∫ T

0

j(g̃N(t), u̇N
η (t))dt ≥

∫ T

0

j(g(t), u̇η(t))dt. (4.26)

Using now (4.19)-(4.26) and Lebesgue points for an L1 function we obtain

a(uη(t), v − u̇η(t)) + 〈zη(t), ε(v)− ε(u̇η(t))〉H + j(g(t), v)− j(g(t), u̇η(t))
≥ 〈f(t), v − u̇η(t)〉V ′,V , ∀v ∈ V, a.e. t ∈ (0, T ).

(4.27)

Let now ση ∈ H1(0, T ;H) be given by (4.2). Using (4.27) and (4.1) it follows that

(uη, ση) is a solution for (4.2),(4.3). Moreover, since uN
η (0) = u0 ∀N ∈ N, using

(4.11) and (4.12) we deduce (4.4). Using (4.27) and (4.2) we obtain (4.3) and by

choosing v = uη(t)± ψ with ψ ∈ D(Ω)M , as test functions in (4.3) we get

Divση(t) + ϕ1(t) = 0 in Ω, ∀t ∈ [0, T ].

Therefore, by (3.12) we obtain that

ση ∈ H1(0, T ;H1).

This concludes the existence part of Proposition 4.1. The uniqueness part is an easy

consequence of (4.3),(4.4).

Proposition 4.1 and (3.11) allow us to consider the operator Λ : L2(0, T ;H) −→
L2(0, T ;H) defined by

Λη(t) = G(ση(t), ε(uη(t))) ∀η ∈ L2(0, T ;H), (4.28)

for t ∈ [0, T ], where, for every η ∈ L2(0, T ;H), (uη, ση) denotes the solution of the

variational problem FVη. We have

Lemma 4.4. The operator Λ has a unique fixed point η? ∈ L2(0, T ;H).

Proof. Let η1, η2,∈ L2(0, T ;H) and t ∈ [0, T ]. For the sake of simplicity we

denote zi = zηi
, ui = uηi

, σi = σηi
, for i = 1, 2. Using (4.2),(4.3) and after some

manipulations, we obtain

a(u1−u2, u̇1− u̇2) ≤ − d

dt
〈z1−z2, ε(u1)−ε(u2)〉H+ 〈η1−η2, ε(u1)−ε(u2)〉H. (4.29)



E lectron. J. M ath. Phys. Sci. 2002 , 1 , 1 57

Using (3.9) we deduce

C|u1(t)− u2(t)|2V ≤ |z1(t)− z2(t)|H +

∫ t

0

|η1(s)− η2(s)|H|u1(s)− u2(s)|V ds, (4.30)

for all t ∈ [0, T ]. Using (4.1) we obtain

C|u1(t)− u2(t)|2V ≤
∫ t

0

|η1(s)− η2(s)|2Hds+

∫ t

0

|u1(s)− u2(s)|2V ds, (4.31)

and, by Gronwall-type inequality, we find

|u1(t)− u2(t)|2V ≤ C

∫ t

0

|η1(s)− η2(s)|2Hds. (4.32)

Using now (4.2), (3.10), (4.1) and (4.32) we obtain

|σ1(t)− σ2(t)|2H ≤ C

∫ t

0

|η1(s)− η2(s)|2Hds. (4.33)

Therefore, form (4.28), (3.11), (4.32) and (4.33) we get

|Λη1(t)− Λη2(t)|2H ≤ C

∫ t

0

|η1(s)− η2(s)|2Hds, (4.34)

for all t ∈ [0, T ]. Iterating this inequality n times we obtain

|Λnη1 − Λnη2|2L2(0,T ;H) ≤
CnT n

n!
|η1 − η2|2L2(0,T ;H), (4.35)

which implies that for n large enough a power Λn of Λ is a contraction in L2(0, T ;H).

Thus, there exists a unique element η? ∈ L2(0, T ;H) such that Λnη? = η?. Moreover,

η? is the unique fixed point of Λ.

We now have all the ingredients needed to prove Theorem 3.1.

Proof of Theorem 3.1. Using Proposition 4.1 and Lemma 4.4 it is easy to

see that the couple of functions u = uη? , σ = ση? , given by (4.2),(4.4) for η = η?

represents a solution of the problem (3.15)-(3.17). So, we proved the existence part

in Theorem 3.1. The uniqueness part in this Theorem follows from the uniqueness

of the fixed point of the operator Λ defined by (4.28).
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5 . Unilateral contact and time dependent Tresca

friction law

In this section we consider a version of the problem which involves the unilateral

contact with Tresca’s friction law. The physical setting is the same as in section 3.

In the model we replace the bilateral contact (uν = 0) in (3.5) by the Signorini’s

contact conditions given by

uν ≤ 0, σν ≤ 0, uνσν = 0 on Γ3 × [0, T ]. (5.1)

The associated friction law is a version of Tresca’s law considered in the first problem

i.e:

|στ | ≤ g(t), |στ | < g(t) ⇒ u̇τ = 0, on Γ3 × [0, T ]
|στ | = g(t) ⇒ there exists λ ≥ 0 such that στ = −λu̇τ .

(5.2)

The classical formulation of the mechanical problem is to find a displacement field

u : Ω× [0, T ] −→ RM and a stress field σ : Ω× [0, T ] −→ SM such that (3.1)-(3.4),

(3.6), (5.1),(5.2) hold.

In order to obtain a variational formulation for the problem, we need additional

notations and assumptions. We denote by K the set of admissible displacement

functions

K = { v ∈ V | vν ≤ 0 on Γ3 }. (5.3)

K is a closed and convex subset of V and it is endowed with the V− topology.

For every σ ∈ H1, let 〈·, ·〉 denote the duality pairing between H(Γ3) and its dual

with

〈σν , vν〉 =

∫
Γ3

σνvνda ∀v ∈ V

where

H(Γ3) = {w|Γ3 | w ∈ H
1
2 (Γ), w = 0 on Γ1 }

and we assume that

u0 ∈ K, 〈σ(0), ε(v)−ε(u0)〉H+j(g(0), v−u0) ≥ 〈f(0), v−u0〉V ′,V ∀v ∈ K. (5.4)

Using the notation and arguments as those in section 3 and (5.3), we are in a position

to give this lemma
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Lemma 5.1. If (u, σ) are sufficiently regular functions satisfying (3.1) −
(3.4),(5.1), (5.2) and (3.6) then

u(t) ∈ K ∀t ∈ [0, T ], (5.5)

〈σ(t), ε(v)− ε(u̇(t))〉H + j(g(t), v)− j(g(t), u̇(t)) ≥ 〈f(t), v − u̇(t)〉V ′,V +

+〈σν(t), vν − u̇ν(t)〉 ∀v ∈ V, a.e. t ∈ (0, T ),
(5.6)

〈σν(t), wν − uν(t)〉 ≥ 0 ∀w ∈ K, ∀t ∈ [0, T ]. (5.7)

Lemma 5.1, (3.1) and (3.6) lead us to consider the following variational formulation

of the problem with Signorini’s contact conditions and a version of Tresca’s law:

Problem FVs: Find a displacement field u : [0, T ] −→ K and a stress field

σ : [0, T ] −→ H such that

σ̇(t) = Eε(u̇(t)) +G(σ(t), ε(u(t))) a.e. t ∈ (0, T ), (5.8)

〈σ(t), ε(v)− ε(u̇(t))〉H + j(g(t), v)− j(g(t), u̇(t)) ≥ 〈f(t), v − u̇(t)〉V ′,V +

+〈σν(t), vν − u̇ν(t)〉 ∀v ∈ V, a.e. t ∈ (0, T ),
(5.9)

〈σν(t), wν − uν(t)〉 ≥ 0 ∀w ∈ K, ∀t ∈ [0, T ], (5.10)

u(0) = u0, σ(0) = σ0. (5.11)

One has the following theorem

Theorem 5.2. Let T > 0 and assume that (3.10) − (3.14) and (5.4) hold. Then

there exists a solution (u, σ) of problem FVs. Moreover, the solution satisfies

u ∈ H1(0, T ;V ) ∩ C([0, T ];K), σ ∈ H1(0, T ;H1).

Remark 5.3. The question of uniqueness of a solution is still an open problem.
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6 . Proof of Theorem 5.2

Let us first notice that it is sufficient to prove Theorem 5.2 for a time T0 small

enough independent of the data (initial data, right hand side). Indeed, suppose

that we have proved existence of a solution (u, σ) on the interval [0, T0]. In order to

construct a solution (u, σ) which will be in H1(0, T ;V )×H1(0, T ;H) on [0, 2T0], we

just have to obtain the compatibility condition (5.4) at time T0. Taking v = u̇(t)

and v = 0 in (5.9) for 0 ≤ t ≤ T0, we obtain

〈σ(t), ε(v)〉H+j(g(t), v) ≥ 〈f(t), v〉V ′,V +〈σν(t), vν〉 ∀v ∈ V, a.e. t ∈ (0, T ), (6.1)

on the other hand, (5.10) yields easily to

〈σν(t), uν(t)〉 = 0, 〈σν(t), wν〉 ≥ 0 ∀w ∈ K, ∀t ∈ [0, T ].

Then for v = w − u(T0) in (6.1) for t = T0 we get

〈σ(T0), ε(w)− ε(u(T0))〉H + j(g(T0), w − u(T0)) ≥ 〈f(T0), w − u(T0)〉V ′,V ∀w ∈ K,

which is the compatibility condition written at time T0. If (u1, σ1) ∈ H1(0, T ;V )×
H1(0, T ;H) solution of FVs taken on (0, T0) and (u2, σ2) ∈ H1(0, T ;V )×H1(0, T ;H)

solution of FVs taken on (T0, 2T0) with initial data (u1(T0), σ1(T0)). Then, (u11(0,T0)+

u21(T0,2T0), σ11(0,T0) + σ21(T0,2T0)) is in H1(0, T ;V ) × H1(0, T ;H) and solves FVs on

(0, 2T0). Theorem 5.2 will then be proved by splitting the interval [0, T ] on interval

of length T0.

The proof of Theorem 5.2 will be accomplished out in two steps, we suppose in

the sequel that the assumptions of Theorem 5.2 are fulfilled.

Step 1: The first step consists of studying an equivalent incremental formulation

that we derive from discretization like in section 4. For this, let N ∈ N, h = T
N

,

tn = nh, gn = g(tn), fn = f(tn), we consider the sequence of variational inequalities:

Problem FV n+1
s : Find a displacement field un+1 ∈ K, and a stress field σn+1 ∈ H

such that

σn+1 = Eε(un+1) +
n+1∑
i=1

hG(σi, ε(ui)) + σ0 − Eε(u0), (6.2)
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〈σn+1, ε(v)− ε(un+1)〉H + j(gn+1, v − un)− j(gn+1, un+1 − un)

≥ 〈fn+1, v − un+1〉V ′,V + 〈σn+1
ν , vν − un+1

ν 〉 ∀v ∈ V,
(6.3)

〈σn+1
ν , wν − un+1

ν 〉 ≥ 0 ∀w ∈ K, (6.4)

u0 = u0, σ0 = σ0. (6.5)

Proposition 6.1. The problem FV n+1
s has a unique solution (un+1, σn+1) ∈ K×H

for all n = 0, .., N − 1.

In order to prove Proposition 6.1 we need some preliminary results.

Fixed point technique: We assume that the viscoplastic part of the stress field

ηn = G(σn, ε(un)) ∈ H is given, and we denote by zn
η = h

n∑
i=1

ηi + z0 where

z0 = σ0 − Eε(u0). We consider the following auxiliary problem

Problem FV n+1
sη : Find a displacement field un+1

η ∈ K such that

a(un+1
η , v − un+1

η ) + j(gn+1, v − un
η )− j(gn+1, un+1

η − un
η ) ≥ 〈fn+1, v − un+1

η 〉V ′,V

−〈zn+1
η , ε(v)− ε(un+1

η )〉H ∀v ∈ K,

u0
η = u0.

(6.6)

We have the following result

Lemma 6.2. There exists a unique solution un+1
η ∈ K to problem FV n+1

sη .

Proof. Problem (6.6) is equivalent to the following minimization problem

Find un+1
η ∈ K, Jn+1

η (un+1
η ) = inf

v∈K
Jn+1

η (v) (6.7)
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where Jn+1
η (v) = 1

2
a(v, v)+ j(gn+1, v−un

η )−〈fn+1, v〉V ′,V + 〈zn+1
η , ε(v)〉H. The func-

tional Jn+1
η is proper, continuous, strictly convex and coercive on K. Therefore,

problem (6.7) has a unique solution un+1
η ∈ K.

Analysis of nonlinear static inequality: The purpose in this paragraph is to in-

vestigate the abstract static systems of the from

σ = Eε(u) + Z where Z = hη + z (6.8)

a(u, v− u) + j(g, v−w)− j(g, u−w) ≥ 〈f, v− u〉V ′,V − 〈Z, ε(v)− ε(u)〉H ∀v ∈ K,
(6.9)

in which the unknowns are the functions u : Ω −→ K, and σ : Ω −→ H. We obtain

abstract results which will be applied in the study of (6.6). In the study of (6.8)-(6.9)

we consider the following assumptions :

w ∈ K, g ∈ L2(Γ3), f ∈ V ′, Z ∈ H. (6.10)

It is straightforward to show that (6.8)-(6.9) has a unique solution u ∈ K, σ ∈ H.
The previous result and (3.11) allow us to consider the operator Λ : H −→ H defined

by

Λη = G(σ, ε(u)), (6.11)

where Λ = Λ(w, g, f, z, ·).

Lemma 6.3. There exists a constant C > 0 and N0 such that

∀(w, g, f, z) ∈ K×L2(Γ3)×V ′×H, ∀N ≥ N0 |Λ(η1)−Λ(η2)|H ≤
C

N
|η1−η2|H.

The maps Λ(w, g, f, z, ·) are then uniform contractions with respect to the variable

(w, g, f, z, ·) in H for a large N. In particular, for all (w, g, f, z) there exists a unique

η? = η?(w, g, f, z) such that

Λ(w, g, f, z, η?) = η?.
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Proof. Let η1, η2 ∈ H, and take the difference between the two inequalities

written for ηi, (i = 1, 2), we obtain

a(u1 − u2, u1 − u2) ≤ 〈Z2 − Z1, ε(u1)− ε(u2)〉H, (6.12)

after some algebraic manipulations, and (6.8) we find

|u1 − u2|V ≤ Ch|η1 − η2|H =
CT

N
|η1 − η2|H. (6.13)

Here and below C represents a positive generic constant whose value may change

from line to line. Using (6.8) and (6.13) we get

|σ1 − σ2|H ≤ C|u1 − u2|V + |Z1 − Z2|H ≤ CT
N
|η1 − η2|H. (6.14)

So, from (6.11),(6.13) and (6.14) it results

|Λη1 − Λη2|H ≤ C(|σ1 − σ2|H + |u1 − u2|V ) ≤ CT

N
|η1 − η2|H. (6.15)

Lemma 6.4. For all n = 0, .., N − 1, there exists a unique ηn+1
? ∈ H such that

Λ(un, gn+1, fn+1, zn
? , η

n+1
? ) = ηn+1

? where un = un(ηn
? ) and zn

? = z0 + hη1
? + ...hηn

? .

Proof. In order to prove this lemma we shall use Lemma 6.3 with the following

notations:

u = un+1, σ = σn+1, w = un, g = gn+1, f = fn+1, z = zn
? .

1) Initialization. Let w = u0, g = g1, f = f 1, z = z0 = σ0 − Eε(u0). It follows from

Lemma 6.3 that there exists a unique fixed point η1
? such that

Λ(u0, g1, f1, z0, η1
?) = η1

?.

2) Step 2. From the initializing step, u1 = u1(η1
?) is carried out.

Let w = u1 = u1(η1
?), g = g2, f = f 2, z = z1

? = z0 + hη1
?. Using Lemma 6.3, we can

prove that there exists a unique fixed point η2
? such that

Λ(u1, g2, f2, z1
? , η

2
?) = η2

?.

3) Step n+1. In this step, let
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w = un = un(ηn
? ), g = gn+1, f = fn+1, z = zn

? = z0 + hη1
? + ... + hηn

? . Since in this

case the assumptions (3.12) and (3.13) are satisfied, we may apply Lemma 6.3 and

conclude that there exists a unique fixed point ηn+1
? such that

Λ(un, gn+1, fn+1, zn
? , η

n+1
? ) = ηn+1

? ,

zn+1
? = zn

? + hηn+1
? .

Proof of Proposition 6.1. Let ηn+1
? be the unique fixed point of the map

Λ(un, gn+1, fn+1, zn
? , ·) and let un+1 be the solution of (6.6) for ηn+1 = ηn+1

? . Then

un+1 is a solution of (6.1)-(6.5). The uniqueness part of the solution is obtained

from the uniqueness of the fixed point of the operator Λ(un, gn+1, fn+1, zn
? , ·).

Step 2 : Asymptotic Analysis

By Proposition 6.1 we get that for all n = 0, .., N − 1 there exists a unique pair of

functions (un+1, σn+1) ∈ K ×H satisfying problem (FV n+1
s ).

In order to study the behaviour of (un+1, σn+1) for all n = 0, .., N−1 when N →∞,

we introduce the following notations

ũN(t) = un+1, σ̃N(t) = σn+1,

uN(t) = un + t−tn
h

(un+1 − un),

z̃N(t) = zn+1 =

∫ tn+1

0

G(σ̃N(s), ε(ũN(s))ds+ σ0 − Eε(u0) ∀t ∈ [tn, tn+1].

(6.16)

Proposition 6.5. There exists a couple of functions (u, σ) ∈ (H1(0, T ;V ) ∩
C([0, T ], K))×L∞(0, T ;H) such that passing to a subsequence still denoted (uN , σN),

we have

uN ⇀ u weak ? in L∞(0, T ;K), (6.17)

u̇N ⇀ u̇ weak in L2(0, T ;V ), (6.18)

σ̃N ⇀ σ weak ? in L∞(0, T ;H). (6.19)

Proof. For 1 ≤ i ≤ N , we write

wi = |σi|H + |ui|V , (6.20)
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and i0 is an index with wi0 = sup
1≤i≤N

wi. We recall that

σi = Eε(ui) +
i∑

j=1

hG(σj, ε(uj)) + σ0 − Eε(u0). (6.21)

Now we derive a priori estimates for (un, σn, un+1 − un) :

A priori estimate I. Using (6.20),(6.21) and (3.11), we obtain

wi ≤ C0|ui|V + hk

i∑
j=1

wj + hi|G(0, 0)|H + w0,

≤ C0|ui|V + hkiwi0 + hi|G(0, 0)|H + w0,

(6.22)

which imply with i = i0, that for T < 1
k
, we have

wi0 ≤
C0|ui0 |V + T |G(0, 0)|H + w0

1− Tk
. (6.23)

Taking v = 0 as the test function in (6.6) we obtain

a(un+1, un+1) ≤ j(gn+1,−un)− j(gn+1, un+1 − un) + 〈fn+1, un+1〉V ′,V

−
n+1∑
j=1

h〈G(σj, ε(uj)), ε(un+1)〉H − 〈σ0 − Eε(u0), ε(un+1)〉H,
(6.24)

and using the V-ellipticity of a, we obtain for 0 ≤ n ≤ N − 1

|un+1|V ≤ C(|gn+1|L2(Γ3) + |fn+1|V ′ + kh

n+1∑
j=1

wj + h(n+ 1)|G(0, 0)|H + w0). (6.25)

If we take n+ 1 = i0 in the previous inequality, we get

|ui0 |V ≤ C1(|gi0|L2(Γ3) + |f i0|V ′ + khi0wi0 + hi0|G(0, 0)|H + w0), (6.26)

therefore, using the estimate (6.26) in (6.23), for T = T0 <
1

(C0C1+1)k
, we get

|ui0 |V ≤ C(|gi0 |L2(Γ3) + |f i0|V ′ +
T

1− Tk
|G(0, 0)|H +

1

1− Tk
w0). (6.27)

From (6.23) and (6.27), we have the following bound

wi0 ≤ C(|g|H1(0,T ;L2(Γ3)) + |f |H1(0,T ;V ′) + |G(0, 0)|H + |σ0|H + |u0|V ). (6.28)
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Hence, from (6.20) and (6.28) we deduce that, for T small enough (= T0 <<
1
k
), the

sequences (un) and (σn) are bounded in K and H respectively for n = 1, ..., N and

we conclude from (6.16) that

(uN) is a bounded sequence in L∞(0, T ;K), (6.29)

(σ̃N) is a bounded sequence in L∞(0, T ;H). (6.30)

A priori estimate II. In the sequel, we derive a priori estimate for the time

derivative u̇N . We take the difference between the two inequalities (6.6) written at

time tn and tn+1 and take respectively un and un+1 as test functions, we obtain

a(un+1 − un, un+1 − un) + h〈G(σn+1, ε(un+1)), ε(un+1)− ε(un)〉H ≤

j(gn, un+1 − un−1)− j(gn, un − un−1)− j(gn+1, un+1 − un)

+〈fn+1 − fn, un+1 − un〉V ′,V ,

(6.31)

use the V-ellipticity of a(·, ·) and (3.9), we get

|un+1 − un|V ≤ C(|gn+1 − gn|L2(Γ3) + |fn+1 − fn|V ′ + h|G(σn+1, ε(un+1))|H). (6.32)

With hypothesis on G and (3.11), we obtain

|un+1 − un|V ≤C(|gn+1 − gn|L2(Γ3)+|fn+1 − fn|V ′ +hk(|σn+1|H + |un+1|V )

+h|G(0, 0)|H) ≤

C(|gn+1 − gn|L2(Γ3) + |fn+1 − fn|V ′ + hkwi0 + h|G(0, 0)|H),

(6.33)

and after division of (6.33) by h, integration in [0, T ] and using (6.28), we get∫ T

0

|u̇N(t)|2V dt =

∫ T

0

|un+1 − un|2V
h2

dt

≤ C(|ġ|2L2(0,T ;L2(Γ3)) + |ḟ |2L2(0,T ;V ′) + |σ0|2H + |u0|2V + |G(0, 0)|2H).
(6.34)

Inequality (6.34) leads to

(u̇N) is a bounded sequence in L2(0, T ;V ). (6.35)

We need the following result
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Lemma 6.6. Any weak limit of the sequence (uN , σ̃N) in H1(0, T ;V )×L∞(0, T ;H)

is a strong limit point in L2(0, T ;V )× L2(0, T ;H).

Proof. Using (6.1)-(6.4) and (6.16) we obtain

a(ũN(t), v − u̇N(t)) + 〈z̃N(t), ε(v)− ε(u̇N(t))〉H + j(g̃N(t), v)

−j(g̃N(t), u̇N(t)) ≥ 〈f̃N(t), v − u̇N(t)〉V ′,V + 〈σ̃N
ν (t), vν − u̇N

ν (t)〉

∀v ∈ V, a.e. t,

(6.36)

〈σ̃N
ν (t), wν − ũN

ν (t)〉 ≥ 0 ∀w ∈ K, ∀t ∈ [0, T ]. (6.37)

Taking v = 0 and v = 2u̇N(t) as test functions in (6.36), we get

a(ũN(t), v)+〈z̃N(t), ε(v)〉H+j(g̃N(t), v)≥〈f̃N(t), v〉V ′,V +〈σ̃N
ν (t), vν〉 ∀v ∈ V. (6.38)

To show the strong convergence, we take v = ũN+p(t) − ũN(t) in (6.38) and v =

ũN(t)− ũN+p(t) in the same inequality satisfied by ũN+p(t), which give

a(ũN+p(t), ũN(t)− ũN+p(t)) + 〈z̃N+p(t), ε(ũN(t))− ε(ũN+p(t))〉H

+j(g̃N+p(t), ũN(t)− ũN+p(t))

≥ 〈f̃N+p(t), ũN(t)− ũN+p(t)〉V ′,V + 〈σ̃N+p
ν (t), ũN

ν (t)− ũN+p
ν (t)〉,

(6.39)

a(ũN(t), ũN+p(t)− ũN(t)) + 〈z̃N(t), ε(ũN+p(t))− ε(ũN(t))〉H

+j(g̃N(t), ũN+p(t)− ũN(t))

≥ 〈f̃N(t), ũN+p(t)− ũN(t)〉V ′,V + 〈σ̃N
ν (t), ũN+p

ν (t)− ũN
ν (t)〉.

(6.40)

We add the two inequalities (6.39),(6.40) to obtain

a(ũN+p(t)− ũN(t), ũN+p(t)− ũN(t)) ≤ j(g̃N+p(t), ũN(t)− ũN+p(t))

+j(g̃N(t), ũN+p(t)− ũN(t)) + 〈f̃N+p(t)− f̃N(t), ũN+p(t)− ũN(t)〉V ′,V−

〈z̃N+p(t)−z̃N(t), ε(ũN+p(t))−ε(ũN(t))〉H+〈σ̃N+p
ν (t)−σ̃N

ν (t), ũN+p
ν (t)−ũN

ν (t)〉.
(6.41)

By the inequality (6.37) we have

〈σ̃N+p
ν (t)− σ̃N

ν (t), ũN+p
ν (t)− ũN

ν (t)〉 ≤ 0 ∀t ∈ [0, T ], (6.42)
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and from (6.41)-(6.42) it follows that

|ũN+p(t)− ũN(t)|2V ≤ C(sup
N
|g̃N(t)|L2(Γ3)|ũN+p

τ (t)− ũN
τ (t)|L2(Γ3)M

+|f̃N+p(t)− f̃N(t)|2V ′ + |z̃N+p(t)− z̃N(t)|2H).

(6.43)

Having in mind that

|ũN+p
τ (t)− ũN

τ (t)|L2(Γ3)M ≤ |ũN+p
τ (t)− uN+p

τ (t)|L2(Γ3)M

+|uN+p
τ (t)− uN

τ (t)|L2(Γ3)M + |uN
τ (t)− ũN

τ (t)|L2(Γ3)M .
(6.44)

Since (uN) is bounded in H1(0, T ;V ), the sequence (uN
|Γ) is relatively compact in

C([0, T ], L2(Γ)M) and therefore there exists a subsequence, still denoted by (uN)N

such that

∀ε > 0, ∃Nε, ∀N ≥ Nε, ∀t ∈ [0, T ] |uN+p
τ (t)− uN

τ (t)|L2(Γ3)M ≤ ε. (6.45)

On another hand by (6.16) it follows that

|uN
τ (t)− ũN

τ (t)|L2(Γ3)M ≤ C|un+1 − un|V ≤ C T
N
|u̇N(t)|V , (6.46)

where (u̇N)N is bounded in L2(0, T ;V ). Combining (6.44)-(6.46), we obtain that

there exists a positive constant L2 = L2(g, f, u0, σ0, G(0, 0)) depending on all these

arguments such that∫ T

0

|ũN+p
τ (t)− ũN

τ (t)|2L2(Γ3)Mdt ≤ CL2(
1

N2 + 1
(N+p)2

+ ε2)

≤ CL2(
1

N2 + ε2).

(6.47)

Now, we focus on the last term of (6.43). First, recall that

zN(t) =

∫ t

0

G(σ̃N(s), ε(ũN(s)))ds+ σ0 − Eε(u0). (6.48)

Furthermore, we have

|z̃N+p(t)− z̃N(t)|H ≤ |z̃N+p(t)− zN+p(t)|H + |zN+p(t)− zN(t)|H

+|zN(t)− z̃N(t)|H.
(6.49)

From (6.16), (6.48) we can rewrite z̃N as

z̃N(t) = zN(t) +

∫ tn+1

t

G(σ̃N(s), ε(ũN(s)))ds ∀t ∈ [tn, tn+1], (6.50)
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so, we have

|z̃N(t)− zN(t)|H = |
∫ tn+1

t

G(σ̃N(s), ε(ũN(s)))ds|H

≤ k

∫ tn+1

t

(|σ̃N(s)|H + |ũN(s)|V )ds+ h|G(0, 0)|H

≤ Ch(|g|H1(0,T ;L2(Γ3)) + |f |H1(0,T ;V ′) + |G(0, 0)|H + |σ0|H + |u0|V ),

(6.51)

on another hand we have

|zN+p(t)−zN(t)|H= |
∫ t

0

(G(σ̃N+p(s), ε(ũN+p(s)))−G(σ̃N(s), ε(ũN(s))))ds|H

≤ kC

∫ t

0

(|σ̃N+p(s)− σ̃N(s)|H + |ũN+p(s)− ũN(s)|V )ds.

(6.52)

Using (6.49),(6.51) and (6.52), we get the estimate

|z̃N+p(t)− z̃N(t)|2H≤ C
N2 (|g|2H1(0,T ;L2(Γ3))+|f |2H1(0,T ;V ′)+|G(0, 0)|2H+|σ0|2H + |u0|2V )

+k2C

∫ t

0

(|σ̃N+p(s)− σ̃N(s)|2H + |ũN+p(s)− ũN(s)|2V )ds.

(6.53)

We integrate the inequality (6.43) with respect to t over the interval [0, T ] and use

(6.47) and (6.53) together to yield∫ T

0

|ũN+p(t) −ũN(t)|2V dt ≤ CL(ε+ 1
N

+ 1
N2 )+

C

∫ T

0

∫ t

0

(|σ̃N+p(s)− σ̃N(s)|2H + |ũN+p(s)− ũN(s)|2V )dsdt.

(6.54)

Moreover, we obtain from (6.16),(6.21) and (6.54) that∫ T

0

|σ̃N+p(t)− σ̃N(t)|2Hdt ≤ C(

∫ T

0

|ũN+p(t)− ũN(t)|2V dt+

∫ T

0

|z̃N+p(t)− z̃N(t)|2Hdt)

≤ LC(ε+
1

N
+

1

N2
) + C

∫ T

0

∫ t

0

(|σ̃N+p(s)− σ̃N(s)|2H + |ũN+p(s)− ũN(s)|2V )dsdt.

(6.55)

Summing up the two last inequalities it follows∫ T

0

(|ũN+p(t)− ũN(t)|2V + |σ̃N+p(t)− σ̃N(t)|2H)dt ≤

CL(ε+ 1
N

+ 1
N2 ) + C

∫ T

0

∫ t

0

(|σ̃N+p(s)− σ̃N(s)|2H+|ũN+p(s)−ũN(s)|2V )dsdt,

(6.56)
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and, by a Gronwall-type inequality, we find∫ T

0

(|ũN+p(t)− ũN(t)|2V + |σ̃N+p(t)− σ̃N(t)|2H)dt ≤ CL(ε+
1

N
+

1

N2
). (6.57)

where L is a constant wich may depend T , k, g, f , G(0, 0), σ0 and u0. Therefore,

Lemma 6.6 is proved.

Proof of Theorem 5.2. Using Lemma 6.6, we have

uN , ũN −→ u strongly in L2(0, T ;V ), (6.58)

σ̃N −→ σ strongly in L2(0, T ;H). (6.59)

From the convergences (6.58)-(6.59) and (3.11), it results

G(σ̃N , ε(ũN)) −→ G(σ, ε(u)) strongly in L2(0, T ;H), (6.60)

(6.2) and (6.60) yield

σ̇(t) = Eε(u̇(t)) +G(σ(t), ε(u(t))). (6.61)

Notice that (6.61) proves that σ ∈ H1(0, T ;H).

We now prove that inequalities (6.36) and (6.37) have a limit when N tends to

infinity and that these limit are inequalities of the original formulation FVs. Using

the strong convergence of σ̃N in L2(0, T ;H) and (6.35), we find that

∫ T

0

〈σ̃N
ν (t), u̇N

ν (t)〉dt −→
∫ T

0

〈σν(t), u̇ν(t)〉dt. (6.62)

Furthermore, from (6.58)-(6.59), we have∫ T

0

〈σ̃N
ν (t), uN

ν (t)〉dt −→
∫ T

0

〈σν(t), uν(t)〉dt. (6.63)

Combining (6.61)-(6.63) and the other straightforward convergences, one can easily

prove that all the terms appearing in (6.36) and (6.37) have a limit and that it gives

the desired result FVs. Every solution (u, σ) in H1(0, T ;V ) × H1(0, T ;H) satisfies

in Ω × (0, T ) the equation Div(σ) + varphi1 = 0. This proves that we have the

regularity σ ∈ H1(0, T ;H1). So far, we have proved Theorem 5.2.
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