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1 Introduction

Consider the initial value problem





dy(t)

dt
= Jmy(t) + g(t), t ∈ (t0, T ],

y(t0) = z,

(1)

where y(t), g(t) : R → Rm, z ∈ Rm, and Jm is the stiffness matrix in Rm×m. The initial

value methods (IVMs), such as the Runge-Kutta methods and the waveform relaxation

methods are well-known methods for solving (1), see [26]. This paper however discusses

another class of methods called the boundary value methods (BVMs), see [5].

Using BVMs to discretize (1), we get a linear system

My ≡ (A⊗ Im − hB ⊗ Jm)y = e1 ⊗ z+ h(B ⊗ Im)g,

where y, e1, z, and g are vectors, Im is the m-by-m identity matrix, and A and B are

matrices depending on the multistep rule we used to discretize the time-derivative. The

advantage of using BVMs is that the methods are more stable and the resulting linear

system is hence more well-conditioned. However, the system is in general large and sparse

(with band-structure), and solving it is a major problem in the application of the BVMs.

In this paper, we consider the use the GMRES method, which is one of Krylov subspace

methods, for solving the discrete system. In order to speed up the convergence of the

GMRES iterations, we use the Strang-type preconditioners to precondition the discrete

system. The Strang-type block-circulant preconditioner of M is of the form

S = s(A)⊗ Im − h · s(B)⊗ Jm.

where s(A) and s(B) are the Strang-type circulant preconditioners [9, 12] for A and B,

which will be discussed in §3.

The advantage of the Strang-type preconditioner is that if an Aν1,ν2-stable BVM is

used in (1), then S is invertible and the preconditioned matrix can be decomposed as

S−1M = Im(s+1) + L,
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where the rank of L is at most 2m(ν1+ν2) which is independent of the integration step size

h. It follows that the GMRES method applied to the preconditioned system will converge

in at most 2m(ν1 + ν2) + 1 iterations in exact arithmetic.

The outline of the paper is as follows. In §2, we will give some background knowledge

about the linear multistep formulae and the preconditioned GMRES method. Then, we

will investigate the properties of the Strang-type block-circulant preconditioner in §3.

The convergence and cost analysis of the method will also be given with a numerical

example. In §4, we use the block-circulant preconditioner with circulant blocks (BCCB

preconditioner) to speed up the convergence rate. A modified version of the Strang-type

BCCB preconditioner will be proposed in this section to handle the problem for singular or

nearly singular stiffness matrix Jm. In §5, we will combine the idea of waveform relaxation

method and the BVM to solve (1). We will use the well-known circulant and skew-circulant

decomposition for splitting of the stiffness matrix Jm. Comparisons between this method

and the classical splitting methods are also given. We will briefly discuss the applications of

the Strang-type preconditioner with BVMs for solving the differential algebraic equations

(DAEs) and delay differential equations (DDEs) in §6.

2 Background

Before discussing how to solve (1), we first give some background information on linear

multistep formulae and the preconditioned GMRES method in this section.

2.1 Linear Multistep Formulae

Consider an initial value problem





y′ = f(t, y), t ∈ (t0, T ],

y(t0) = y0.
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The µ-step linear multistep formula (LMF) over a uniform mesh with stepsize h is defined

as follows:

µ∑

j=0

αjyn+j − h
µ∑

j=0

βjfn+j = 0 (2)

where yn is the discrete approximation to y(tn), fn denotes f(tn, yn), and the coefficients

satisfies

µ∑

j=0

αj = 1,

µ∑

j=0

βj = 1.

To get the solution by (2), we need µ initial conditions y0, y1, · · · , yµ−1. Since only y0 is

provided from the original problem, we have to find additional conditions for the remaining

values y1, y2, · · · ,, yµ−1. The method in (2) with the (µ−1) additional conditions is called

Initial Value Methods (IVMs). An IVM is called implicit if βµ 6= 0 and explicit if βµ = 0.

If an IVM is applied to an initial value problem on the interval [t0, tN+µ−1], we have the

following discrete problem

ANy = hBN f +




∑µ−1
i=0 (αiyi − hβifi)

...

α0yµ−1 − hβ0fµ−1

0

...

0




, (3)

where y = (yµ, yµ+1, · · · , yN+µ−1)
T and f = (fµ, fµ+1, · · · , fN+µ−1)

T ,

AN =




αµ
...

. . .

α0
. . .

. . .
. . .

α0 · · · αµ




N×N
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and

BN =




βµ
...

. . .

β0
. . .

. . .
. . .

β0 · · · βµ




N×N

.

Note that the matrices AN and BN are lower triangular Toeplitz matrices. We recall that

a matrix is said to be Toeplitz if its entries are constant along its diagonals. Moreover, the

linear system (3) can be solved easily by forward recursion. A classical example of IVM

is the second order backward differentiation formulae (BDF),

3yn+2 − 4yn+1 + yn = 2hfn+2,

which is a two-step method with α0 = 1, α1 = −4, α2 = 3 and β2 = 2.

Instead of using µ initial conditions for solving (1) by (2), we can also use the so-called

Boundary Value Methods (BVMs). Given ν1, ν2 ≥ 0 such that ν1 + ν2 = µ, then the

corresponding BVM requires ν1 initial addition conditions y0, y1, · · · , yν1−1 and ν2 final

addition conditions yN , yN+1, · · · , yN+ν2−1, which are called (ν1, ν2)-boundary conditions.

Note that the class of BVMs contains the class of IVMs (i.e. ν1 = µ, ν2 = 0).

The discrete problem generated by a µ-step BVM with (ν1, ν2)-boundary conditions

can be written in the following matrix form

Ay = hBf +




∑ν1−1
i=0 (αiyi − hβifi)

...

α0yν1−1 − hβ0fν1−1

0

...

0

αµyN − hβµfN
...

∑ν2
i=1(αν1+iyN−1+i − hβν1+ifN−1+i)




,
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where y = (yν1 , yν1+1, · · · , yN−1)
T , f = (fν1 , fν1+1, · · · , fN−1)

T , A andB ∈ R(N−ν1)×(N−ν1)

are defined as follows,

A =




αν1 · · · αµ
...

. . .
. . .

. . .

α0
. . .

. . .
. . . αµ

. . .
. . .

...

α0 · · · αν1




, B =




βν1 · · · βµ
...

. . .
. . .

. . .

β0
. . .

. . .
. . . βµ

. . .
. . .

...

β0 · · · βν1




.

Note that the coefficient matrices are Toeplitz with lower bandwidth ν1 and upper band-

width ν2. An example of BVMs is the third order generalized backward differentiation

formulae (GBDF),

2yn+1 + 3yn − 6yn−1 + yn−2 = 6hfn,

which is a three-step method with (2, 1)-boundary conditions where α0 = 1, α1 = −6,

α2 = 3, α4 = 2 and β2 = 6.

Although IVMs are more efficient than BVMs (which cannot be solved by forward

recursion), the advantage in using BVMs over IVMs comes from their stability properties.

For example, the usual BDF are not A-stable for µ > 2 but the GBDF are Aν,µ−ν-stable

for any µ ≥ 1, see for instances [1, 4] and [5, p. 79 and Figures 5.1–5.3].

2.2 Preconditioned GMRES Method

The generalized minimal residual (GMRES) method was proposed in 1986 as a Krylov

subspace method for solving nonsymmetric linear systems Ax = b. Unlike the normalized

conjugate gradient method, the GMRES method does not require computation of the

action of AT on a vector. The k-th iteration of the GMRES method is the solution to the

least squares problem

min
x∈x0+Kk

‖b−Ax‖2
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where x0 is the initial iterate, Kk = span{r0, Ar0, · · · , Ak−1r0} is the k-th Krylov subspace

and r0 = b−Ax0. If A = I+L, where I is the identity matrix, then the GMRES method

will converge in at most rank(L)+ 1 iterations in exact arithmetic, see [12, 23] for details.

Also, it is well-known that for any circulant matrix Cn, it can be diagonalized by the

discrete Fourier matrix Fn, i.e.,

Cn = F ∗
nΛnFn, (4)

where the entries of Fn are given by

(Fn)j,k =
1√
n
e2πijk/n, 0 ≤ j, k ≤ n− 1, (5)

and Λn is a diagonal matrix holding the eigenvalues of Cn. We note that Λn can be

obtained in O(n logn) operations by taking the fast Fourier transform (FFT) of the first

column of Cn. Once Λn is obtained, the products Cny and C−1
n y for any vector y can

be computed by FFTs in O(n logn) operations. Thus, if we use a circulant matrix to

precondition the Toeplitz system, then in each GMRES iteration, we need to solve the

preconditioned system

C−1
n Ax = C−1

n b,

which can be done in O(n logn) operations by using Strang’s embedding algorithm with

FFTs, see [9]. For more details about the circulant preconditioners for Toeplitz systems,

we refer to [9, 12].

3 Strang-Type Preconditioners with BVMs

In this section, we construct the Strang-type block-circulant preconditioner for solving the

systems discretized by BVMs. The main advantage of the Strang-type preconditioners is

that the preconditioned systems are invertible and the operation cost for each iteration is

smaller than that of the direct solvers.
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3.1 Block-BVMs and Their Matrix Forms

By using the LMF stated in (2), the µ-step block-BVM over a uniform mesh h for (1) is

defined as follows:

µ−ν∑

i=−ν

αi+νys+i = h

µ−ν∑

i=−ν

βi+νfs+i, n = ν, . . . , s− µ+ ν. (6)

Here, yn is the discrete approximation to y(tn), fn = Jmyn+gn and gn = g(tn). Also, (6)

requires ν initial conditions and µ−ν final conditions which are provided by the following

(µ− 1) additional equations:

µ∑

i=0

α
(j)
i yi = h

µ∑

i=0

β
(j)
i fi, j = 1, . . . , ν − 1, (7)

and

µ∑

i=0

α
(j)
µ−iys−i = h

µ∑

i=0

β
(j)
µ−ifs−i, j = s− µ+ ν + 1, . . . , s. (8)

The coefficients α(j) and β(j) in (7) and (8) should be chosen such that the truncation

errors for these initial and final conditions are of the same order as that in (6). By

combining (6), (7) and (8), the discrete system of (1) is given by the following block form

My ≡ (A⊗ Im − hB ⊗ Jm)y = e1 ⊗ z+ h(B ⊗ Im)g. (9)

Here e1 = (1, 0, · · · , 0)T ∈ R(s+1), y = (y0, · · · ,ys)T ∈ R(s+1)m, g = (g0, · · · , gs)T ∈
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R(s+1)m, and A and B are (s+ 1)-by-(s+ 1) matrices given by:

A =




1 · · · 0

α
(1)
0 · · · α

(1)
µ

...
...

... 0

α
(ν−1)
0 · · · α

(ν−1)
µ

α0 · · · αµ

α0 · · · αµ

. . .
. . .

. . .

. . .
. . .

. . .

α0 · · · αµ

0 α
(s−µ+ν+1)
0 · · · α

(s−µ+ν+1)
µ

...
...

...

α
(s)
0 · · · α

(s)
µ




and

B =




0 · · · 0

β
(1)
0 · · · β

(1)
µ

...
...

...

β
(ν−1)
0 · · · β

(ν−1)
µ 0

β0 · · · βµ

β0 · · · βµ

. . .
. . .

. . .

. . .
. . .

. . .

β0 · · · βµ

0 β
(s−µ+ν+1)
0 · · · β

(s−µ+ν+1)
µ

...
...

...

β
(s)
0 · · · β

(s)
µ




.
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3.2 Construction of the Strang-type Preconditioner

In [10], we proposed the following preconditioner for (9):

S = s(A)⊗ Im − hs(B)⊗ Jm, (10)

where

s(A) =




αν · · · αµ α0 · · · αν−1

...
. . .

. . .
. . .

...

α0
. . .

. . . α0

. . .
. . .

. . . 0

. . .
. . .

. . .

0
. . .

. . .
. . .

αµ
. . .

. . . αµ
...

. . .
. . .

. . .
...

αν+1 · · · αµ α0 · · · αν




and s(B) is defined similarly by using {βi}µi=0 instead of {αi}µi=0 in s(A). The {αi}µi=0 and

{βi}µi=0 here are the coefficients in (6). We note that s(A) and s(B) are the generalized

Strang-type circulant preconditioners of A and B respectively, see [9].

We will show that the preconditioner S is invertible provided that the given BVM is

stable and the eigenvalues of Jm are in the negative half of the complex plane C. The

stability of a BVM is closely related to two characteristic polynomials of degree µ, defined

as follows:

ρ(z) ≡ zν
µ−ν∑

j=−ν

αj+νz
j and σ(z) ≡ zν

µ−ν∑

j=−ν

βj+νz
j . (11)

Definition 1 [5, p.101] Consider a BVM with the characteristic polynomials ρ(z) and

σ(z) given by (11). The region

Dν,µ−ν = {q ∈ C : ρ(z)− qσ(z) has ν zeros inside |z| = 1

and µ− ν zeros outside |z| = 1}



Electron. J. Math. Phys. Sci., 2002, 1, 1 24

is called the region of Aν,µ−ν-stability of the given BVM. Moreover, the BVM is said to

be Aν,µ−ν-stable if

C− ≡ {q ∈ C : Re(q) < 0} ⊆ Dν,µ−ν .

Theorem 2 If the BVM for (2) is Aν,µ−ν-stable and hλk(Jm) ∈ Dν,µ−ν where λk(Jm)

(k = 1, · · · ,m) are the eigenvalues of Jm, then the preconditioner S in (10) is invertible.

Proof. Since s(A) and s(B) are circulant matrices, their eigenvalues are given by

gA(z) ≡ αµz
µ−ν + · · ·+ αν + αν−1

1

z
+ · · ·+ α0

1

zν
=
ρ(z)

zν

and

gB(z) ≡ βµz
µ−ν + · · ·+ βν + βν−1

1

z
+ · · ·+ β0

1

zν
=
σ(z)

zν
,

evaluated at ωj = e2πij/(s+1) for j = 0, . . . , s, see [9]. The eigenvalues λjk(S) of S are

therefore given by

λjk(S) = gA(ωj)− hλk(Jm)gB(ωj), j = 0, · · · , s, k = 1, · · · ,m.

Since the BVM is Aν,µ−ν-stable, if hλk(Jm) ∈ Dν,µ−ν , the µ-degree polynomial ρ(z) −

hλk(Jm)σ(z) will have no roots on the unit circle |z| = 1. Thus for all k = 1, · · · ,m,

gA(z)− hλk(Jm)gB(z) =
1

zν
{ρ(z)− hλk(Jm)σ(z)} 6= 0, ∀|z| = 1.

It follows that λjk(S) 6= 0 for all j = 0, · · · , s, and k = 1, · · · ,m. Thus S is invertible.

In particular, we have

Corollary 3 If the BVM is Aν,µ−ν-stable and λk(Jm) ∈ C−, then the preconditioner S is

invertible.

3.3 Convergence Rate and Operation Cost

As we have stated in §2.2, we have the following theorem for the convergence rate.
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Theorem 4 We have

S−1M = I + L

where I is the identity matrix and the rank of L is at most 2mµ. Therefore, when the

GMRES method is applied to solving S−1My = S−1b, the method will converge in at most

2mµ+ 1 iterations in exact arithmetic.

Proof. Let E =M − S, we have by (9) and (10),

E = (A− s(A))⊗ Im − h(B − s(B))⊗ Jm = LA ⊗ Im − hLB ⊗ Jm.

It is easy to check that LA and LB are (s + 1)-by-(s + 1) matrices with nonzero entries

only in the following four corners: a ν-by-(µ + 1) block in the upper left; a ν-by-ν block

in the upper right; a (µ− ν)-by-(µ+ 1) block in the lower right; and a (µ− ν)-by-(µ− ν)

block in the lower left.

Since µ > ν, rank (LA) ≤ µ and rank (LB) ≤ µ. Thus, we have

rank(LA ⊗ Im) = rank(LA) ·m ≤ mµ

and

rank(LB ⊗ Jm) = rank(LB) ·m ≤ mµ.

Therefore

S−1M = Im(s+1) + S−1E = Im(s+1) + L,

where the rank of L is at most 2mµ.

Regarding the cost per iteration, the main work in each iteration for the GMRES

method is the matrix-vector multiplication

S−1Mz = (s(A)⊗ Im − hs(B)⊗ Jm)−1(A⊗ Im − hB ⊗ Jm)z (12)

see for instance Saad [23]. Since A and B are band matrices and Jm is assumed to be

sparse, the matrix-vector multiplication Mz = (A ⊗ Im − hB ⊗ Jm)z can be done very

fast.
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To compute S−1(Mz), since s(A) and s(B) are circulant matrices, we have the follow-

ing decompositions by (4),

s(A) = FΛAF
∗ and s(B) = FΛBF

∗

where ΛA and ΛB are diagonal matrices containing the eigenvalues of s(A) and s(B)

respectively and F is the Fourier matrix defined in (5). It follows that

S−1(Mz) = (F ∗ ⊗ Im)(ΛA ⊗ Im − hΛB ⊗ Jm)−1(F ⊗ Im)(Mz).

This product can be obtained by using FFTs and solving s linear systems of order m.

Since Jm is sparse, the matrix

ΛA ⊗ Im − hΛB ⊗ Jm

will also be sparse. Thus S−1(Mz) can be obtained by solving s sparse linear systems of

order m. It follows that the total number of operations per iteration is γ1ms log s+γ2smn,

where n is the number of nonzeros of Jm, and γ1 and γ2 are some positive constants. For

comparing the computational cost of the method with direct solvers for the linear system

(9), we refer to [10].

3.4 Numerical Result

Now we give an example to illustrate the efficiency of the preconditioner by solving the

test problems given in [2]. The experiments were performed in MATLAB. We used the

MATLAB-provided M-file “gmres” (see MATLAB on-line documentation) to solve the

preconditioned systems. In our tests, the zero vector is the initial guess and the stopping

criterion is ||rq||2/||r0||2 < 10−6, where rq is the residual after q iterations. In the example,

the BVM we used is the third order generalized Adam’s method (GAM) which has µ = 2.

Its formulae and the additional initial and final conditions can be found in [5, p.153].
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Example 1. Heat equation:




∂u

∂t
=
∂2u

∂x2
,

u(0, t) =
∂u

∂x
(π, t) = 0, t ∈ [0, 2π],

u(x, 0) = x, x ∈ [0, π].

We discretize the partial differential operator ∂2/∂x2 with central differences and step size

equals to π/(m+ 1). The system of ODEs obtained is:




y′(t) = Jmy(t), t ∈ [0, 2π]

y(0) = (x1, x2, · · · , xm)T ,

where Jm is a scaled discrete Laplacian matrix

Jm =
(m+ 1)2

π2




−2 1

1
. . .

. . .

. . .
. . .

. . .

1 −2 1

1 −1




. (13)

Table 1 lists the numbers of iterations required for convergence of the GMRES method

for different m and s. In the table, I means no preconditioner is used and S denotes

the Strang-type block-circulant preconditioner which is defined in (10). We see that the

number of iterations required for convergence, when a circulant preconditioner is used, is

always less than that when no preconditioner is used. As expected from Theorem 2, the

numbers under column S stay constant for increasing s and m.

4 Strang-Type BCCB Preconditioner

The Strang-type preconditioner proposed in §3 is a block-circulant preconditioner. In this

section, Strang-type block-circulant preconditioner with circulant blocks (BCCB precon-

ditioner) is proposed for solving (1) when the stiffness matrix Jm is a Toeplitz matrix in

the Wiener class. The main advantage of the use of BCCB preconditioner is that the

operation cost for each GMRES iteration can be reduced.
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m s I S

24 6 19 4

12 70 4

24 152 4

48 227 3

96 314 3

m s I S

48 6 47 4

12 167 4

24 359 4

48 >400 3

96 >400 3

Table 1: Number of iterations for convergence.

4.1 Construction of BCCB Preconditioners

Instead of using the block-circulant preconditioner, the Strang-type BCCB preconditioner

can also be constructed for solving (9):

S(2) ≡ s(A)⊗ Im − hs(B)⊗ s(Jm) (14)

for Jm being a full Toeplitz matrix. The advantage of BCCB preconditioners is that the

operation cost in each iteration of Krylov subspace methods for the preconditioned system

is much less than that required by using any block-circulant preconditioners.

Similar to Theorem 1 in §3, we can show that if the BVM for (1) is Aν,µ−ν-stable and

the eigenvalues of s(Jm) satisfy

λk(s(Jm)) ∈ C−

for k = 1, · · · ,m, then the preconditioner S(2) is invertible.

For some linear evolutionary partial differential equations, the matrix Jm is usually

Toeplitz and s(Jm) is singular. Note that the eigenvalues of S(2) are given by

λjk(S
(2)) = φj − hψjλk(s(Jm)), j = 0, · · · , s, k = 1, · · · ,m, (15)

where φj and ψj are eigenvalues of s(A) and s(B) respectively. When some eigenvalues of

s(Jm) are zero, then some eigenvalues of S(2) is the same as the eigenvalues of the matrix

s(A). It is well-known that the eigenvalues of the circulant matrix s(A) can be expressed
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as the following sum, see [11],

φj =

µ−ν∑

r=−ν

αr+νω
rj , ω = e2πi/(s+1), j = 0, · · · , s,

where αr+ν are given by (6).

From the characteristic polynomials defined in (11), the coefficients must satisfy the

consistent conditions,

ρ(1) = 0 and ρ′(1) = σ(1).

Thus, we have

φ0 = ρ(1) = 0

for any consistent BVM. From (15), we know that S(2) is singular when some eigenvalues

of s(Jm) are zero. In this case, we move the zero eigenvalue of s(A) to a nonzero value.

More precisely, we change the matrix s(A) = Fdiag(φ0, · · · , φs) F ∗ to

s̃(A) ≡ Fdiag(φ̃0, · · · , φs)F ∗,

where φ̃0 ≡ Re(φs) and F is the Fourier matrix. Define

S̃(2) ≡ s̃(A)⊗ Im − hs(B)⊗ s(Jm), (16)

we can also prove that S̃(2) is invertible, see [16] for a detail.

4.2 Convergence Rate and Operation Cost

Let

E ≡M − S̃(2), E1 ≡M − S, E2 ≡ S − S̃(2)

where S is defined by (10). Then E = E1 + E2. From Theorem 2 in §3, we know that

rank(E1) ≤ 2mµ = O(m)
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where µ is given by the BVM used for (1). For the matrix E2, by (10) and (16), we have

E2 = (s(A)− s̃(A))⊗ Im − hs(B)⊗ (Jm − s(Jm))

= LA ⊗ Im − hs(B)⊗ LJ

where LA ≡ s(A)− s̃(A) and LJ ≡ Jm − s(Jm). Since

LA = Fdiag(φ̃0, 0, · · · , 0)F ∗

is a matrix of rank one, we have

rank(LA ⊗ Im) ≤ 1 ·m = m = O(m). (17)

For s(B)⊗LJ in E2, let Jm be a Toeplitz matrix in the Wiener class (i.e.,
∑∞

k=−∞ |ak| <

∞ where ak is the k-th diagonals of Jm as m→∞). The matrix LJ can be expressed as a

sum of a matrix with low rank and a matrix with small norm, see [8, 12]. More precisely,

for any given ε > 0, there exists a constant C(ε) such that

LJ = U + V with rank(U) ≤ C(ε) and ‖V ‖2 ≤ ε, (18)

when m is sufficiently large. Then we have

s(B)⊗ LJ = s(B)⊗ U + s(B)⊗ V (19)

with

rank(s(B)⊗ U) ≤ s · C(ε) = O(s). (20)

For ‖s(B)⊗ V ‖2, we note that

‖s(B)‖1 =M1 <∞, ‖s(B)‖∞ =M2 <∞,

where M1 and M2 are two constants independent of the size of the matrices. Therefore,

‖s(B)‖2 ≤ (‖s(B)‖1‖s(B)‖∞)1/2 = (M1M2)
1/2 =M3 <∞. (21)

Furthermore, by (18) and (21), we have

‖s(B)⊗ V ‖2 = ‖s(B)‖2‖V ‖2 ≤ εM3. (22)
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By using (17), (19), (20) and (22), we know that for any ε > 0, the matrix E2 can be

decomposed as

E2 = LO(m) + hLO(s) + hW (23)

with

rank(LO(m)) = O(m), rank(LO(s)) = O(s), ‖W‖2 ≤ ε.

Thus, if Jm is a Toeplitz matrix in the Wiener class, then the spectrum of (S̃(2))−1M

is clustered around (1, 0) ∈ C. As a consequence, when the GMRES method is applied to

solving the preconditioned system

(S̃(2))−1My = (S̃(2))−1b,

we can expect a fast convergence rate.

For simplicity, we assume that s + 1 = m in the following analysis of the operation

cost. Regarding the cost in each iteration of the GMRES method, the main work is the

matrix-vector multiplication

(S̃(2))−1Mv ≡ (s̃(A)⊗ Im − hs(B)⊗ s(Jm))−1Mv,

where v is a vector. Since (S̃(2))−1 can be diagonalized by the 2-dimensional Fourier

matrix, the matrix-vector multiplication can be obtained within O(m2 logm) operations

by using FFTs. For the Strang-type block-circulant preconditioner S stated in §3, in

each iteration, there are m Toeplitz systems of order m needed to be solved. Thus, the

complexity in each iteration of our method is much lower.

4.3 Numerical Result

We give two examples to compare the Strang-type BCCB preconditioners S (2) and S̃(2)

with the Strang-type block-circulant preconditioner S. In the examples, the BVM we used

is the fifth order GAM which has µ = 4.



Electron. J. Math. Phys. Sci., 2002, 1, 1 32

Example 2. Consider the wave equation:




ut − ux = 0,

u(x, 0) = sin(x), x ∈ [0, π],

u(π, t) = 0, t ∈ [0, 2π].

We discretize the partial differential operator ∂/∂x with the first order forward differences

and step size ∆x = π/m, xi = i∆x. The system of ODEs is obtained as follows:




y′(t) = Jmy(t), t ∈ [0, 2π],

y(0) = (sin(x1), sin(x2), · · · , sin(xm))T ,

where

Jm =
1

∆x




−1 1

. . .
. . .

. . . 1

−1




.

Example 3. Consider




y′(t) = Jmy(t), t ∈ [0, 1],

y(0) = (1, 2, 3, · · · ,m)T ,

where

Jm =




−6 2 −1

2 −6 2 −1

−1 . . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . −1

. . .
. . .

. . . 2

−1 2 −6




.

Table 2 lists the number of iterations required for convergence of the GMRES method

with different preconditioners. From the table, we see that the numbers of iterations

of S(2) and S̃(2) are slightly larger than those of S. But we should emphasize that the

operation costs per iteration of S(2) and S̃(2) are less than those of S. We remark that for

Example 2, S(2) is singular.
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m s I S S̃(2)

20 16 29 8 14

32 38 7 13

64 70 6 13

128 133 5 13

40 16 68 9 16

32 53 8 15

64 66 7 15

128 120 6 15

80 16 157 10 19

32 126 8 18

64 98 7 18

128 116 6 17

m s I S S(2) S̃(2)

20 16 22 5 9 10

32 38 5 9 9

64 70 4 9 9

128 134 4 9 9

40 16 22 5 9 9

32 37 5 9 9

64 70 4 9 9

128 134 4 9 9

80 16 21 5 9 9

32 37 5 9 9

64 69 4 9 9

128 133 4 9 9

Table 2: Number of iterations for convergence in Examples 2 (left) and 3 (right).

5 Preconditioned Waveform Relaxation

Waveform relaxation (WR) is a classical method to solve (1) by splitting the stiffness

matrix Jm into Q− P . Typical examples of waveform relaxation are the so-called Jacobi

WR and Gauss-Seidel WR. In this section, we use the circulant and skew-circulant de-

composition for splitting the matrix Jm. We call it the C + S version of WR. We will see

that the convergence rate of the C+S version of WR is faster than that of the Jacobi and

Gauss-Seidel WR.

5.1 Waveform Relaxation

By splitting the matrix Jm as

Jm = Q− P, (24)
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we can construct an iteration of the form for (1)





dy(k+1)(t)
dt

+ Py(k+1)(t) = Qy(k)(t) + g(t), t ∈ (t0, T ] ,

y(k+1)(t0) = z,
(25)

where k = 0, 1, · · · , and y(0) is a given initial guess usually given by y(0)(t) = z for

t ∈ [t0, T ]. The iteration (25) is called the waveform relaxation method or dynamic

iteration, see [6]. This method originated from electrical network simulation, see [17]. It

differs from standard iterative techniques in that it is a continuous-in-time analogue of

stationary method by iterating with functions.

The Jacobi and Gauss-Seidel versions of the WR technique are classical methods. To

be more precise, the matrix Jm is first decomposed as Jm = L + D + U , where D is a

diagonal matrix, L is a strictly lower triangular matrix and U is a strictly upper triangular

matrix. The splittings

P = D, Q = L+ U,

and

P = L+D, Q = U,

define, respectively, the Jacobi and Gauss-Seidel WR iterations.

If Jm in (24) is Toeplitz, by using the well-known circulant and skew-circulant decom-

position of Toeplitz matrix, we decompose the matrix Jm as Jm = Q − P , where P is a

circulant matrix and Q is a skew-circulant matrix, see [8]. More precisely, for a Toeplitz

matrix

Tm = (ti−j)
m
i,j=1 = (tk)

m−1
k=0 ,

we can decompose the matrix Tm as

Tm = Cm + Sm (26)
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where

Cm =




c0 c1 · · · cm−2 cm−1

cm−1 c0
. . .

. . . cm−2

...
. . .

. . .
. . .

...

c2
. . .

. . . c0 c1

c1 c2 · · · cm−1 c0




,

Sm =




s0 s1 · · · sm−2 sm−1

−sm−1 s0
. . .

. . . sm−2

...
. . .

. . .
. . .

...

−s2
. . .

. . . s0 s1

−s1 −s2 · · · −sm−1 s0




with c0 + s0 = t0, ck = 1
2(tk + t−m+k) and sk = 1

2(tk − t−m+k), where k = 1, 2, · · · ,m− 1.

The WR method with this new scheme is called the C + S version.

The convergence behavior of the WR methods has been studied extensively in a series

of papers in [19, 21, 22] where the authors formulated the convergence characteristics

of the method in terms of the spectral radius of the corresponding waveform relaxation

operator. To accelerate the WR iterations, the multigrid technique was studied in [25]

and the preconditioning technique was discussed in [6].

5.2 Invertibility of the Strang-type preconditioners

We know that if the BVM for (25) is Aν,µ−ν-stable and the eigenvalues of P satisfy

Re(λk(P )) ∈ C−,

for k = 1, · · · ,m, then the Strang-type block-circulant preconditioner

S = s(A)⊗ Im + hs(B)⊗ P, (27)

is invertible, see Theorem 1 in §3.
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In some cases, there is a λl(P ) which does not satisfy the condition in Theorem 1, say,

Re(λl(P )) /∈ C−. If P is diagonalizable by a unitary matrix, we can “move” λl(P ) into

C− by subtracting λmax + ε from the main diagonal of the matrix P , where

λmax = max
l
{Re(λl(P )) /∈ C−}

and ε is a positive real number. After such a modification, a new matrix P̃ can be written

as

P̃ = P − (λmax + ε)Im.

It yields a new decomposition of the matrix Jm:

Jm = Q̃− P̃

where

Q̃ = Q+ (λmax + ε)Im.

Obviously, all the eigenvalues of P̃ are now in C− and therefore Theorem 1 is still appli-

cable.

5.3 Convergence rate and operation cost

Let M = A⊗ Im−hB⊗P and G = −h(B⊗Q). For the convergence of the WR method,

we require that ρ(M−1G) < 1 where ρ(·) is the spectral radius. For the convergence rate

of the GMRES method, as shown in §3, by Theorem 2, we have S−1M = I + L where

rank(L) ≤ 2mµ. Thus, the GMRES will converge in at most 2mµ+ 1 iterations in exact

arithmetic. Now, we compare the operation cost with different WR splittings for Toeplitz

matrix

Jm = (qi−j)
m
i,j=1 = (qk)

m−1
k=0 .

(i) In the Jacobi WR iterations, sinceM is a block-Toeplitz matrix with Toeplitz blocks

(plus a small rank perturbation), by using Strang’s embedding algorithm with FFTs,
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see [9, 12], Mv can be computed within O(ms logms) operations. Meanwhile,

S = s(A)⊗ Im + q0hs(B)⊗ Im,

therefore, S−1 can be calculated within O(ms log s) operations. Thus, computing

S−1(Mv) requires O(ms logms) operations.

(ii) In the Guass-Seidel WR iterations, we note that

ΛA ⊗ Im + hΛB ⊗ P

is a block diagonal matrix with lower triangular Toeplitz blocks. Therefore, we have

to solve s+1 lower triangular Toeplitz systems of size m-by-m. By using the super-

fast direct Toeplitz solver, see [9], it requires O(sm log2m) operations to calculate

S−1w for some vector w. As in (i), Mv can also be computed within O(ms logms)

operations. Therefore, it requires O(ms logms+ms log2m) operations to compute

S−1(Mv).

(iii) In the C + S version of WR iterations, since the matrix P is a circulant matrix, we

have

S−1(Mv) = (Fs+1 ⊗ Fm)(ΛA ⊗ Im + hΛB ⊗ ΛP )
−1(F ∗

s+1 ⊗ F ∗
m)(Mv)

By using the FFT, S−1 can be calculated within O(ms logms) operations. As in (i),

Mv can also be computed within O(ms logms) operations. Therefore, it requires

O(ms logms) operations to compute S−1(Mv).

Consequently, by Theorem 2, the total complexity of each WR iteration is bounded by

O(m2s logms) operations by using the C + S version and the Jacobi version, while is

bounded by O(m2s logms+m2s log2m) operations by using the Gauss-Seidel version.

5.4 Numerical Result

So far, we have introduced our method which combines the WR iterations, the BVM and

the GMRES method together with the Strang-type preconditioner for solving (1). From
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the preceding analysis, we choose diagonal dominant Toeplitz matrices as our stiffness

matrices in order to guarantee the convergence of the WR iterations. The BVM we used

in the experiments is the fifth order GAM, see [5]. The stopping criterion of the WR

iterations is

‖y(k+1) − y(k)‖2
‖y(k)‖2

≤ 10−6

where y(k) is the solution after the k-th WR iteration.

Example 4 Consider




y′(t) = Jmy(t), t ∈ (0, 1] ,

y(0) = (1, 2, · · · ,m)T ,

where

Jm =




−6 2 −1

2 −6 2 −1

−1 2 −6 . . .
. . .

−1 . . .
. . .

. . . −1
. . .

. . .
. . . 2

−1 2 −6




.

Table 3 shows the number of WR iterations and total CPU time (on a 886MHz PC)

required for convergence with different combinations of matrix sizesm and s. As expected,

the number of iterations required for convergence remains almost constant for increasing

m and s.

6 Application to DAEs and DDEs

In electrical engineering, control theory and biomathematics [7, 14], many problems are

formulated by the so-called differential algebraic equations (DAEs) and delay differential

equations (DDEs). In §6.1, we introduce the DAE solver to solve a system of linear DAEs,

which transforms the system of DAEs into two systems of differential equations. We will
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m s C + S Jacobi GS

20 16 11 18 11

32 11 18 11

64 11 18 11

128 11 17 11

40 16 11 18 11

32 11 19 11

64 11 17 11

128 10 17 11

60 16 11 18 11

32 11 17 11

64 11 17 11

128 10 17 10

m s C + S Jacobi GS

20 16 2.64 3.63 2.47

32 3.02 4.61 2.91

64 4.39 6.54 4.17

128 7.63 11.04 7.74

40 16 2.97 4.72 2.96

32 4.12 6.92 4.23

64 7.52 11.48 7.75

128 27.24 44.54 30.65

60 16 3.63 5.71 3.74

32 5.44 8.95 5.66

64 16.58 25.98 18.90

128 59.75 106.01 64.49

Table 3: Number of WR iterations (left) and total CPU time (sec) (right) for con-

vergence.

show that one of them is a system of ODEs. Thus, we can apply the method discussed in

the previous sections to get the solutions of the discrete system. In §6.2, we introduce the

DDE solver to solve a system of linear DDEs.

6.1 Introduction to DAE Solver

Consider a system of linear DAEs





A
dx(t)

dt
+Bx(t) = f(t), t ∈ (t0, T ],

x(t0) = z,

(28)

where A, B are n-by-n matrices and A is singular. A matrix pencil is defined by λA+B

with λ ∈ C. A pencil is said to be regular if det(λA + B) is not identically zero. When

λA+B is regular, then (28) is solvable and there exists two invertible matrices P and Q
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such that

PAQ =




I 0

0 N




n×n

, PBQ =




G 0

0 I




n×n

.

Here the sum of the matrix sizes of N and G is n and N is a nilpotent matrix, i.e., there

exists a positive integer ν such that N ν = 0 and Nν−1 6= 0, see [3]. To compute the matrix

P and Q, we can follow a constructive approach given in [24].

Applying the coordinate changes P and Q to the DAEs in (28), we have





y′1 +Gy1 = g1(t),

Ny′2 + y2 = g2(t),
(29)

where Q−1x = (yT1 ,y
T
2 )

T and P f = (gT1 ,g
T
2 )

T . The first equation in (29) is a system of

ODEs and a solution exists for any initial value of y1. The second equation has only one

solution

y2(t) =
ν−1∑

i=0

(−1)iN ig
(i)
2 (t)

where g
(i)
2 (t) denotes the i-th order derivative of g2(t) with respect to t. Thus, we can

apply the Strang-type preconditioner with BVM discussed in the previous sections to

solve the first equation in (29) with a given initial condition. For readers interested in the

numerical implementation of our algorithm, we refer to [15].

6.2 Introduction to DDE Solver

We consider the solution of differential equation with multi-delays:





dy(t)

dt
= Jny(t) +D

(1)
n y(t− τ1) + · · ·+D

(s)
n y(t− τs) + f(t), t ≥ t0,

y(t) = φ(t), t ≤ t0,

(30)

where y(t), f(t), φ(t) : R → Rn; Jn, D
(1)
n , · · · , D(s)

n ∈ Rn×n and τ1, · · · , τs > 0 are some

rational numbers.

For (30), in order to find a reasonable numerical solution, we require that the solution

of (30) is asymptotically stable. We have the following lemma, see [20, 27].
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Lemma 5 For any s ≥ 1, if η(Jn) ≡ 1
2λmax(Jn + JTn ) < 0 and

η(Jn) +
s∑

j=1

||D(j)
n ||2 < 0, (31)

then solution of (30) is asymptotically stable.

In the following, for simplicity, we only consider the case of s = 2 in (30). The

generalization to arbitrary s is straightforward. Let

h = τ1/m1 = τ2/m2

be the step size where m1 and m2 are positive integers with m2 > m1 (τ2 > τ1). By using

a BVM with (ν1, ν2)-boundary conditions, we have

µ∑

i=0

αiyp+i−ν1 = h

µ∑

i=0

βi(Jnyp+i−ν1 +D(1)
n yp+i−ν1−m1

+D(2)
n yp+i−ν1−m2

+ fp+i−ν1), (32)

for p = ν1, . . . , N − 1, where µ = ν1 + ν2, and {αi}µi=0, {βi}
µ
i=0 are coefficients of the given

BVM. By providing the values

y−m2
, . . . , y−m1

, . . . , y0, y1, . . . , yν1−1, yN , . . . , yN+ν2−1, (33)

the equation (32) can be written in a matrix form as

My = b (34)

where

M = A⊗ In − hB ⊗ Jn − hC(1) ⊗D(1)
n − hC(2) ⊗D(2)

n , (35)

yT = (yTν1 ,y
T
ν1+1, . . . ,y

T
N−1) ∈ Rn(N−ν1),

and b ∈ Rn(N−ν1) depends on f , the boundary values, and the coefficients of the method.

The matrices A, B, C(1), C(2) ∈ R(N−ν1)×(N−ν1) in (35) are defined as follows,

A =




αν1 · · · αµ
...

. . .
. . .

. . .

α0
. . .

. . .
. . . αµ

. . .
. . .

...

α0 · · · αν1




, B =




βν1 · · · βµ
...

. . .
. . .

. . .

β0
. . .

. . .
. . . βµ

. . .
. . .

...

β0 · · · βν1




,
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C(1) =




0

βµ
. . .

...
. . .

. . .

β0 · · · βµ
. . .

. . .
. . .

. . .

β0 · · · βµ 0




, C(2) =




0

βµ
. . .

...
. . .

. . .

β0 · · · βµ
. . .

. . .
. . .

. . .

β0 · · · βµ 0




,

see [5]. We remark that the first column of C(1) is given by

(0, . . . , 0︸ ︷︷ ︸
m1+ν1−µ

, βµ, . . . , β0, 0, . . . , 0︸ ︷︷ ︸
N−m1−2ν1−1

)T

and the first column of C(2) is given by

(0, . . . , 0︸ ︷︷ ︸
m2+ν1−µ

, βµ, . . . , β0, 0, . . . , 0︸ ︷︷ ︸
N−m2−2ν1−1

)T .

The Strang-type block-circulant preconditioner for (35) is defined as follows:

S = s(A)⊗ In − hs(B)⊗ Jn − hs(C(1))⊗D(1)
n − hs(C(2))⊗D(2)

n (36)

where s(E) is Strang’s circulant preconditioner of matrix E, for E = A, B, C (1) and C(2).

We have the following theorem for the invertability of our preconditioner. The proof of

the theorem is similar to that of Theorem 1.

Theorem 6 [13] If the BVM for (30) is Aν1,ν2-stable and (31) holds, the Strang-type

block-circulant preconditioner S defined in (36) is invertible.

For the convergence rate, we have

Theorem 7 [13] When Krylov subspace methods are applied to solving the preconditioned

system

S−1My = S−1b,

the methods will converge in at most (2µ+m1+m2+2ν1+2)n = O(n) iterations in exact

arithmetic.

For the operation cost of our algorithm, we refer to [13, 18].
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6.3 Numerical Result

We illustrate the efficiency of our preconditioner by solving the following problem. In the

example, the BVM we used is the third order GBDF for t ∈ [0, 4].

Example 5. Consider




y′(t) = Jny(t) +D
(1)
n y(t− 0.5) +D

(2)
n y(t− 1), t ≥ 0,

y(t) = (sin t, 1, . . . , 1)T , t ≤ 0,

where

Jn =




−10 2

2
. . .

. . .

1
. . .

. . .
. . .

. . .
. . .

. . . 2

1 2 −10




, D(1)
n =

1

n




2 −1

−1 . . .
. . .

. . .
. . . −1

−1 2




,

and

D(2)
n =

1

n




2 1

1
. . .

. . .

. . .
. . . 1

1 2




.

Table 4 shows the number of iterations required for convergence of the GMRES method

with different combinations of matrix sizes n and s. We see that the numbers of iterations

required for convergence increase slowly for increasing n and s under the column S.
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