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SEMI-LAGRANGIAN FORWARD METHODS FOR SOME

TIME-DEPENDENT NONLINEAR PARTIAL

DIFFERENTIAL EQUATIONS

DANIEL X. GUO

Abstract. In this article, we study one-step Semi-Lagrangian forward method

for computing the numerical solutions of time-dependent nonlinear partial dif-

ferential equations with initial and boundary conditions in one space dimen-
sion. Comparing with classic Semi-Lagrangian method, this method is more

straight forward to analyze and implement. This method is based on La-

grangian trajectory from the departure points (regular nodes) to the arrival
points by Runge-Kutta methods. The arrival points are traced forward from

the departure points along the trajectory of the path. Most likely the ar-

rival points are not on the regular grid nodes. However, it is convenient to
approximate the high order derivative terms in spatial dimension on regular

nodes. The convergence and stability are studied for the explicit methods.
The numerical examples show that those methods work very efficient for the

time-dependent nonlinear partial differential equations.

1. Introduction

Differential equations in mathematical models are very important part, and de-
pending on how many variables are involved, the formulations of ordinary differ-
ential equations (ODEs), and of partial differential equations (PDEs). For some
equation, we can use the traditional techniques to obtain an explicit or implicit
solutions. However, most realistic mathematical models cannot be solved in this
way; instead, they must be dealt with by computational methods that provide
approximate solutions in some sense, [6, 12, 13].

A lot of numerical methods have been investigated to produce the approxima-
tions of the desired solutions. Semi-Lagrangian methods have been introduced at
the beginning of the eighties [21] and since then have been extensively used in the
numerical simulation of models for weather forecast, oceanography, and for more
general problems in fluid dynamics [4, 18, 20, 24]. The basic idea of the semi-
Lagrangian method is to construct the numerical solution over a set of grid points
by advancing the characteristics, or the trajectory path.

In the article [17], a Semi-Lagrangian backward method (traditional method) was
investigated for its stability and convergence. However there are two disadvantages.
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One is to compute the departure points by an implicit method. In each iteration at
the approximated departure point, a same order interpolation method comparing
to the iteration method is needed on no-regular grids. The computation cost is
increasing according to the order. The another one is to approximate the terms
with spatial derivatives at the irregular grid points. The approximations are not
based on the regular nodes since the departure points most likely is not on the
regular node.

Recently, more applications of semi-Lagrangian method are reported. Typically
they are for the Navier-Stokes equations [7], shallow-water equations [9, 1, 19],
Advection-diffusion equations [11, 2], and Burgers equation [3]. Some even tried to
use semi-Lagrangian forward method [10, 19]. The advantages of semi-Lagrangian
forward method are the overall order of approximation, less computations from
interpolation, and standard discretization of terms involving spatial derivatives.

In this article, we study the stability and convergence of semi-Lagrangian forward
method. We consider the time-dependent nonlinear differential equation

ut + uux = f(t, x, u, ux, ...), t > 0, x ∈ Ω ⊂ Rn,

with initial-value and boundary conditions. Where n ≥ 1 could be any positive
integer. On the Lagrangian trajectory path, those equations could be considered as
ODEs. To obtain a numerical approximation of the solution, the arrival and depar-
ture points at tn+1 and t = tn are needed. One could be specified on regular nodes,
but the other one needs to be computed. For example, if the arrival points are on the
grid, then the departure points must be calculated [17]. In this article, the depar-
ture points are fixed on regular grids, but the arrival points must be computed and
most likely they are not on the regular grid. Also Runge-Kutta methods could be
applied to different types of partial differential equations [5, 8, 22, 27]. In the paper
[16], the truncation error of the first-order Semi-Lagrangian method was studied.
The complete numerical analysis including stability and convergence is presented in
this paper for the first-order and the second-order Semi-Lagrangian methods. The
numerical analysis and numerical example showed that it is possible to construct
overall order-two/three one-step difference method for the time-dependent partial
differential equations.

This article is organized as follows: Section 2 shows the specified partial dif-
ferential equations with given initial-value and boundary conditions to be studied;
In Section 3, the arrival point is computed; An one-step difference method is con-
structed and analyzed in Section 4; In Section 5, the Semi-Lagrangian methods are
investigated; Numerical examples are presented in Section 6; The final section is
the summary and the consideration of future work.

2. Time-dependent partial differential equations

In this article, we will focus on the partial differential equation

du(t, x)

dt
= f(t, x, u), t > 0, x ∈ Ω,

with initial-value condition

u(0, x) = u0(x), x ∈ Ω,

where Ω is a domain in one, two, or three dimensions. The boundary condition is
provided for u(t, x) on ∂Ω if it is needed.



EJDE-2018/CONF/26 SEMI-LAGRANGIAN FORWARD METHODS FOR SOME PDES 99

The total derivative reads
d

dt
=

∂

∂t
+ u · ∂

∂x
,

where u is the velocity field and x is the spatial variable. In this article, the
dimension one is considered for demonstration. It is more complicated for higher
dimensions and it will be reported later.

For examples, the Kortweg-de-Vries (KdV) equation

ut + uux + δ2uxxx = 0,

with boundary and initial conditions. Where δ is a given constant. Also the Navier-
Stokes equation reads

ut + (u · ∇)u = f + ν∆u−∇p,
div u = 0,

with boundary and the initial conditions. Even the reformulated Shallow-Water
equations [14, 15] have the similar form.

To focus on the proposed method, we will study the general time-dependent
differential equation

du

dt
=
∂u

∂t
+ u

∂u

∂x
= g(t, x, u), 0 < t < T, a ≤ x ≤ b

u(0, x) = u0(x), a ≤ x ≤ b
(2.1)

with boundary conditions about x and g(t, x, u) = f(t, x) +Lu, where L is a linear
derivative operator in spatial x, for example Lu = cuxx, or cuxxx, where c is given
constant. The one-step forward explicit methods for the problem (2.1) are proposed.
Also we study the stability and convergence of these methods for problem (2.1).

Theorem 2.1. If g(t, x, u) is a continuous function of t and x, and satisfies the
Lipschitz condition in u in the region 0 ≤ t ≤ T , a ≤ x ≤ b, −∞ < u < ∞, and
the first order derivative of u0(x) is continuous on [a, b], then there exists at least
a differentiable solution u(t, x) of the initial-value boundary problem (2.1).

This result can be found in many books on partial differential equations, such
as [26, page 282].

3. Computing the arrival points

It is well-known that the exact solution of the problem (2.1) for most cases is
hard to find. The approximations to u will be computed first at the given points,
called grid points, in the domain [0, T ] × [a, b]. At other points in the domain,
the approximate solutions are calculated from the interpolation of the approximate
solutions on the grid points.

Now assume that the grid points are equally distributed throughout the domain
[0, T ] × [a, b]. Let N and M be two positive integer numbers. The grid points are
formed by calculating

tk = kτ, for k = 0, 1, 2, . . . , N ;

xi = a+ ih, for i = 0, 1, 2, . . . ,M ;

with the step sizes τ = T/N and h = (b− a)/M .
Assume that all solutions u on (tk, x

k
i ) for i = 0, 1, . . . ,M are known, and we

need to find the solutions u on (tk+1, x
k+1
i ) for i = 0, 1, 2, . . . ,M . From the view of
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Lagrangian trajectory, the particles on arrival points at t = tk+1 shall come from
some points, called departure points at t = tk along the trajectory of path. To
compute the arrival point xk+1

A at t = tk+1 for the departure point xkD, we consider
the equation

dx

dt
= u. (3.1)
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Figure 1. Departure and arrival points on grid.

Note that the arrival point xk+1
A may not be any of xi, i = 0, 1, . . . ,M at t = tk+1

as shown in Figure 1. Then the arrival point xk+1
A is calculated by integrating the

equation along the trajectory from the departure point xkD as

xk+1
A = xkD +

∫ tk+1

tk

u dt, xkD ∈ {xi : i = 0, 1, . . . ,M}.

It is obvious that Euler’s method will provide the first order approximation as

xk+1
A ≈ xkD + τu(tk, x

k
D).

This is an explicit equation about xk+1
A . It is possible to obtain a higher order

approximation by combining the computation of solution u(tk+1, x
k+1
A ) at the time

t = tk+1, like, the modified Euler’s method.

4. One-step forward difference method

For the problem (2.1), along the trajectory of the path, we propose a general
one-step forward difference method in the form

w0
D = u0(x0D), x0D ∈ {xi : i = 0, 1, . . . ,M},

xk+1
A = xkD + τwkD,

wk+1
A = wkD + τφ(tk, x

k
D, w

k
D, τ, h),

wk+1
D Calculated from linear interpolation of wk+1

A

(4.1)

for k = 0, 1, . . . , N−1, where φ(t, x, u, τ, h) is a continuous function of t, x, τ , and h
and satisfies the Lipschitz condition in u. xkD is the departure point on the regular

grids; xk+1
A is the arrival point and most likely is not any of the regular grids like
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showed in the Figure 1, like xk+1
A1 or xk+1

A2 ; wkD and wk+1
A are approximations of

u(tk, x
k
D) and u(tk+1, x

k+1
A ) respectively for k = 0, 1, . . . , N − 1.

Note that wk+1
D is calculated from linear interpolation of wk+1

A . If we consider a
higher order difference method, a higher order interpolation is needed. Assuming
that τ = O(h) (or τ = αh, α > 0 a constant), and let u(t, x) be the unique solution
of the initial-value problem (2.1). We define the local truncation error for each time
step as follows.

Definition 4.1. The local truncation error of the difference method (4.1) to the
problem (2.1) is defined as

εk+1(τ) =
uk+1
A − [ukD + τφ(tk, x

k
D, u

k
D, τ, h)]

τ
=
uk+1
A − ukD

τ
− φ(tk, x

k
D, u

k
D, τ, h),

where ukD = u(tk, x
k
D) and uk+1

A = u(tk+1, x
k+1
A ) on the departure and arrival points

respectively.

We need two lemmas whose proofs can be found in any numerical analysis book,
for example [6].

Lemma 4.2. For all t ≥ −1 and any positive m, we have 0 ≤ (1 + t)m ≤ emt.

Lemma 4.3. If s and t are positive real numbers, {ak}nk=0 is a sequence satisfying
a0 ≥ −t/s, and

ak+1 ≤ (1 + s)ak + t, for each k = 0, 1, 2, . . . , n− 1,

then

ak+1 ≤ e(k+1)s
(
a0 +

t

s

)
− t

s
.
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Figure 2. Different arrival points on grid.

Theorem 4.4. The initial-value boundary problem (2.1) is approximated by a one-
step difference method (4.1). Suppose that there exists a number τ0 > 0 such that
φ(t, x, w, τ, h) is continuous and satisfies a Lipschitz condition in all variables with
Lipschitz constant L on the set

D = {(t, x, w, τ, h)| 0 ≤ t ≤ T, a ≤ x ≤ b,−∞ < w <∞, 0 ≤ τ ≤ τ0, 0 ≤ h ≤ ατ0}.
Then
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(i) the difference method (4.1) is stable;
(ii) the difference method (4.1) is convergent if and only if it is consistent,

which is equivalent to

φ(t, x, w, 0, 0) = g(t, x, w), for all 0 ≤ t ≤ T, a ≤ x ≤ b,−∞ < w <∞;

(iii) if a function ε exists and, for each k = 0, 1, . . . , N , the local truncation
error εk(τ) satisfies |εk(τ)| ≤ ε(τ) whenever 0 ≤ τ ≤ τ0, then there exists
a constant C such that

max
D
|u(tk, x

k
D)− wkD| ≤ eTL max

D
|u0(x0D)− w0

D|+
ε(τ) + Ch

L
(eTL − 1)

≤ ε(τ) + Ch

L
(eTL − 1), for k = 1, 2, . . . , N.

Proof. Let u and v be two solutions of the initial-value problem (1) with the initial
values u0 and v0 respectively. There exist three constants M , K1, and K2 such
that

|u|, |v| ≤M, |∂u
∂x
|, |∂u
∂t
|, |∂v
∂x
|, |∂v
∂t
| ≤ K1, |∂

2u

∂x2
|, |∂

2v

∂x2
| ≤ K2. (4.2)

and

τK1 ≤ 1/2. (4.3)

(i) Suppose that {ukD}Nk=0 and {vkD}Nk=0 satisfy the difference equation (4.1) with
the initial-values u0 and v0 respectively. Let

EkD = ukD − vkD for the point (tk, x
k
D)

and

Ek = max{|EkD|, for all regular grid points (departure points) at t = tk}.

Without lose generality, let the arrival points be as in the Figure 2. If xk+1
D2 is

located in between xk+1
Au2

and xk+1
Av2

, the procedure is very similar. Then

uk+1
D2 = ωuu

k+1
Au2

+ (1− ωu)uk+1
Au1

, vk+1
D2 = ωvv

k+1
Av2

+ (1− ωv)vk+1
Av1

, (4.4)

where

ωu =
xk+1
D2 − x

k+1
Au1

xk+1
Au2
− xk+1

Au1

, ωv =
xk+1
D2 − x

k+1
Av1

xk+1
Av2
− xk+1

Av1

,

and 0 ≤ ωu, ωv ≤ 1. Then from (4.4),

|uk+1
D2 − v

k+1
D2 |

= |ωuuk+1
Au2

+ (1− ωu)uk+1
Au1
− ωvvk+1

Av2
− (1− ωv)vk+1

Av1
|

≤ |ωuuk+1
Au2
− ωuvk+1

Av2
+ (1− ωu)uk+1

Au1
− (1− ωu)vk+1

Av1
|

+ |ωuvk+1
Av2
− ωvvk+1

Av2
+ (1− ωu)vk+1

Av1
− (1− ωv)vk+1

Av1
|

≤ ωu|uk+1
Au2
− vk+1

Av2
|+ (1− ωu)|uk+1

Au1
− vk+1

Av1
|+ |ωu − ωv‖vk+1

Av2
− vk+1

Av1
|.

(4.5)

For each departure point, for example xkD1, it reads from (4.1),

uk+1
Au1

= ukD1 + τφ(tk, x
k
D1, u

k
D1, τ, h) and vk+1

Av1
= vkD1 + τφ(tk, x

k
D1, v

k
D1, τ, h).
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Then

|uk+1
Au1
− vk+1

Av1
| ≤ |ukD1 − vkD1|+ τ |φ(tk, x

k
D1, u

k
D1, τ, h)− φ(tk, x

k
D1, v

k
D1, τ, h)|

≤ |ukD1 − vkD1|+ τL|ukD1 − vkD1| ≤ (1 + τL)|ukD1 − vkD1|

≤ (1 + τL)|EkD1| ≤ (1 + τL)Ek.

(4.6)

Similarly,
|uk+1
Au2
− vk+1

Av2
| ≤ (1 + τL)Ek. (4.7)

From the definition of ωu and ωv and (4.1), we have

|ωu − ωv| =
∣∣xk+1
D2 − x

k+1
Au1

xk+1
Au2
− xk+1

Au1

−
xk+1
D2 − x

k+1
Av1

xk+1
Av2
− xk+1

Av1

∣∣
=
∣∣ h− τukD1

h+ τ(ukD2 − ukD1)
− h− τvkD1

h+ τ(vkD2 − vkD1)

∣∣
=
|hτ(ukD2 − vkD2) + τ2(ukD1v

k
D2 − vkD1u

k
D2)|

|h+ τ(ukD2 − ukD1)‖h+ τ(vkD2 − vkD1)|
.

From (4.2), it follows that

h(1− τK1) ≤ |h+ τ(ukD2 − ukD1)| ≤ h(1 + τK1).

Similarly,
h(1− τK1) ≤ |h+ τ(vkD2 − vkD1)| ≤ h(1 + τK1).

Then with help of (4.2) and (4.3),

|ωu − ωv|

≤ τ

h(1− τK1)2
[
|ukD2 − vkD2|+

τ

h
(|ukD1 − vkD1‖vkD2|+ |ukD2 − vkD2‖vkD1|)

]
≤ τ

h(1− τK1)2
(1 + 2αM)Ek, (where τ = αh)

≤ 4
τ

h
(1 + 2αM)Ek.

(4.8)

Putting (4.6), (4.7), and (4.8) in (4.5), with the help of (4.2), yields

|uk+1
D2 − v

k+1
D2 |

≤ ωu(1 + τL)Ek + (1− ωu)(1 + τL)Ek + 4
τ

h
(1 + 2αM)EkhK1

≤ [1 + τL+ 4τK1(1 + 2αM)]Ek

(4.9)

i.e.

|Ek+1
D | ≤ [1 + τL+ 4τK1(1 + 2αM)]Ek,

Ek+1 ≤ (1 + τL1)Ek

where L1 = L+ 4K1(1 + 2αM). Therefore, from Lemmas 4.2 and 4.3,

Ek ≤ (1 + τL1)kE0 ≤ ekτL1E0 ≤ eTL1E0,

where k ≤ N = T/τ . So, the difference method (4.1) is stable.

(ii) Let φ(t, x, w, 0, 0) = g(t, x, w). From the assumptions of φ, g satisfies the
conditions of Theorem 2.1, then the differential equation

dv

dt
= g(t, x, v), 0 < t < T, a ≤ x ≤ b,
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v(0, x) = u0(x), a ≤ x ≤ b,

has a solution v(t, x). The numerical solution satisfies

z0D = u0(x0D), x0D ∈ {xi : i = 0, 1, . . . ,M},

xk+1
A = xkD + τ zkD,

zk+1
A = zkD + τφ(tk, x

k
D, z

k
D, τ, h),

zk+1
D Calculated from linear interpolation of zk+1

A

(4.10)

for k = 0, 1, . . . , N − 1.
By the mean value theorem and referring to the Figure 1,

v(tk+1, x
k+1
A2 ) = v(tk, x

k
D2) + τg(tk + ξτ, xkD2 + ηh, v(tk + ξτ, xkD2 + ηh)),

for some constants ξ and η (0 ≤ ξ, η ≤ 1).
Similarly, define EkD = zkD − v(tk, x

k
D) and Ek = max |EkD| on the regular grid

points (departure points) at t = tk. Subtract this from the numerical solution, we
have

zk+1
A2 − v(tk+1, x

k+1
A2 ) = zkD2 − v(tk, x

k
D2)

+ τ [φ(tk, x
k
D2, z

k
D2, τ, h)− g(tk + ξτ, xkD2 + ηh, v(tk + ξτ, xkD2 + ηh))]

= EkD2 + τ [φ(tk, x
k
D2, z

k
D2, τ, h)− φ(tk, x

k
D2, v(tk, x

k
D2), τ, h)

+ φ(tk, x
k
D2, v(tk, x

k
D2), τ, h)− φ(tk, x

k
D2, v(tk, x

k
D2), τ, 0)

+ φ(tk, x
k
D2, v(tk, x

k
D2), τ, 0)− φ(tk, x

k
D2, v(tk, x

k
D2), 0, 0)

+ φ(tk, x
k
D2, v(tk, x

k
D2), 0, 0)− g(tk + ξτ, xkD2 + ηh, v(tk + ξτ, xkD2 + ηh))],

Thanks to the Lipschitz condition of φ,

|φ(tk, x
k
D2, z

k
D2, τ, h)− φ(tk, x

k
D2, v(tk, x

k
D2), τ, h)| ≤ L|zkD2 − v(tk, x

k
D2)| ≤ L|EkD2|,

|φ(tk, x
k
D2, v(tk, x

k
D2), τ, h)− φ(tk, x

k
D2, v(tk, x

k
D2), τ, 0)| ≤ Lh,

|φ(tk, x
k
D2, v(tk, x

k
D2), τ, 0)− φ(tk, x

k
D2, v(tk, x

k
D2), 0, 0)| ≤ Lτ,

and

|φ(tk, x
k
D2, v(tk, x

k
D2), 0, 0)− g(tk + ξτ, xkD2 + ηh, v(tk + ξτ, xkD2 + ηh))|

≤ |g(tk, x
k
D2, v(tk, x

k
D2))− g(tk + ξτ, xkD2, v(tk, x

k
D2))|

+ |g(tk + ξτ, xkD2, v(tk, x
k
D2))− g(tk + ξτ, xkD2 + ηh, v(tk, x

k
D2))|

+ |g(tk + ξτ, xkD2 + ηh, v(tk, x
k
D2))

− g(tk + ξτ, xkD2 + ηh, v(tk + ξτ, xkD2 + ηh))|

≤ Lξτ + Lηh+ L|v(tk, x
k
D2)− v(tk + ξτ, xkD2 + ηh))|

≤ Lξτ + Lηh+ LK1ξτ + LK1ηh

≤ Lτ + Lh+ LK1τ + LK1h

≤ L(1 +K1)(τ + h).

Then

|Ek+1
A2 | ≤ |E

k
D2|+ Lτ |EkD2|+ Lτh+ Lτ2 + L(1 +K1)τ(τ + h)

≤ (1 + τL)Ek + L(2 +K1)τ(τ + h).
(4.11)
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From the Figure 1, define a constant ω as

ω =
xk+1
D2 − x

k+1
A1

xk+1
A2 − x

k+1
A1

.

Then
zk+1
D2 = ωzk+1

A2 + (1− ω)zk+1
A1

and there exists a constant η such that

v(tk+1, x
k+1
D2 ) = ωv(tk+1, x

k+1
A2 ) + (1− ω)v(tk+1, x

k+1
A1 )

+
1

2!

∂2v(tk+1, η)

∂x2
(xk+1
D2 − x

k+1
A1 )(xk+1

D2 − x
k+1
A2 ),

Then

|zk+1
D2 − v(tk+1, x

k+1
D2 )|

≤ ω|zk+1
A2 − v(tk+1, x

k+1
A2 )|

+ (1− ω)|zk+1
A1 − v(tk+1, x

k+1
A1 )|+ 1

2
K2|xk+1

D2 − x
k+1
A1 ‖x

k+1
D2 − x

k+1
A2 |

≤ ω|Ek+1
A2 |+ (1− ω)|Ek+1

A1 |+
1

2
K2|h+ τv(tk, x

k
D1)|τ |v(tk, x

k
D2)|

≤ ω|Ek+1
A2 |+ (1− ω)|Ek+1

A1 |+
1

2
K2M(1 + αM)τh.

(4.12)

Thanks to (4.11) and the similar result for Ek+1
A1 , it follows that

Ek+1 ≤ (1 + τL)Ek + L(2 +K1)τ(τ + h) +
1

2
K2M(1 + αM)τh

≤ (1 + τL)Ek + L1(τ2 + τh),

where L1 = L(2 +K1) + 1
2K2M(1 + αM).

Thanks to Lemma 4.3 we have

Ek ≤ ekτLE0 +
L1

L
(τ + h)(ekτL − 1),

Ek ≤ eTLE0 +
L1

L
(τ + h)(eTL − 1).

This converges to zero as τ and h (E0 = 0) go to zero. So the numerical solution
converges to the solution of initial-value boundary problem (2.1) if f = g. Therefore
the numerical solution from the difference method (4.1) is convergent.

On the other hand, if we have convergence, then u and v are the same. Suppose
f and g differ at some point.Then we consider the initial-value boundary prob-
lem starting from that point. Two solutions should be different. This leads to a
contradiction.

(iii) Let EkA, EkD, and Ek are defined as in (i). Then from the definition of the
local truncation error, we have

u(tk+1, x
k+1
A ) = u(tk, x

k
D) + τφ(tk, x

k
D, u(tk, x

k
D), τ, h) + τεk+1(τ).

Subtracting this from the difference method yields

Ek+1
A = EkD + τ [φ(tk, x

k
D, w

k
D, τ, h)− φ(tk, x

k
D, u(tk, x

k
D), τ, h)]− τεk+1(τ).

therefore,

|Ek+1
A | ≤ |EkD|+ τL|wkD − u(tk, x

k
D)|+ τ |εk+1(τ)| ≤ (1 + τL)|EkD|+ τ |εk+1(τ)|.
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Using a similar technique as in (4.11) and (4.12), with the assumption for εk(τ)
leads to

Ek+1 ≤ (1 + τL)Ek + τε(τ) +
1

2
K2M(1 + αM)τh.

Then thanks Lemma 4.3, we have

Ek ≤ ekτL(E0 +
ε(τ) + CH

L
)− ε(τ) + Ch

L
,

i.e.,

Ek ≤ eTLE0 +
ε(τ) + Ch

L
(eTL − 1),

for k = 1, 2, . . . , N and C = 1
2K2M(1 + αM). �

5. Semi-Lagrangian forward methods

Now we study the modified semi-Lagrangian forward Euler method for the initial-
value boundary problem (2.1),

w0
D = u0(x0D), x0D ∈ {xi : i = 0, 1, . . . ,M},

k1 = g(tk, x
k
D, w

k
D),

w̄ = wkD + τk1,

xk+1
A = xkD +

1

2
τ(wkD + w̄),

k2 = g(tk+1, x
k+1
A , w̄),

wk+1
A = wkD +

1

2
τ(k1 + k2),

wk+1
D Calculated from second-order interpolation of wk+1

A

(5.1)

for k = 0, 1, . . . , N − 1, for all of arrival points A and k = 0, 1, 2, . . . , N − 1.

Theorem 5.1. If the function g(t, x, u) in (2.1) is continuous and satisfies a Lip-
schitz condition in all variables with Lipschitz constant L on the set

D = {(t, x, w) : 0 ≤ t ≤ T, a ≤ x ≤ b,−∞ < u <∞}.

Then

(i) The difference method (5.1) is stable;
(ii) The difference method (5.1) is convergent.

The stability and convergence of (5.1) could be proved following the similar idea
with Lipschitz continuity in Theorem 4.4.

Theorem 5.2. Suppose h = O(τ) and the function g(t, x, u) in (2.1) is continuous
and differentiable. If εk is the local truncation error of (5.1), then

‖εk(τ)‖L∞ = O(τ2).

Proof. Let u(t, x) be the unique solution with up to order three continuous bounded
partial derivatives on [0, T ]× [a, b], so that for each k = 0, 1, . . . , N − 1,

g(tk+1, x
k+1
A , wkD + τg(tk, x

k
D, w

k
D))

= g(tk, x
k
D, w

k
D) + τ

∂g(tk, x
k
D, w

k
D)

∂t
+ τwkD

∂g(tk, x
k
D, w

k
D)

∂x
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+ τg(tk, x
k
D, w

k
D)
∂g(tk, x

k
D, w

k
D)

∂u
+O(τ2),

and

u(tk+1, x
k+1
A ) = u(tk, x

k
D) + τ

du(tk, x
k
D)

dt
+

1

2
τ2
d2u(tk, x

k
D)

dt2
+O(τ3)

= u(tk, x
k
D) + τg(tk, x

k
D, u

k
D) +

1

2
τ2[

∂g(tk, x
k
D, u

k
D)

∂t

+ ukD
∂g(tk, x

k
D, u

k
D)

∂x
+ g(tk, x

k
D, u

k
D)
∂g(tk, x

k
D, u

k
D)

∂u
] +O(τ3).

From the definition of local truncation error and the method (15), the local trun-
cation error reads

εk+1(τ) =
u(tk+1, x

k+1
A )− u(tk, x

k
D)

τ
− 1

2

[
g(tk, x

k
D, u(tk, x

k
D))

+ g(tk+1, x
k+1
A , u(tk, x

k
D) + τg(tk, x

k
D, u(tk, x

k
D))]

So it is easy to see that the local truncation error at the (k + 1)th step for the
method (5.1) is

‖εk+1(τ)‖L∞ = O(τ2). �

Note that the big difference in forward and backward methods is the computing
of arrival points and departure point. In backward method, it needs the iteration
to find better approximation.

Using similar techniques, the semi-Lagrangian method of order-three is con-
structed as follows

w0
D = u0(x0D), x0D ∈ {xi : i = 0, 1, . . . ,M}

k1 = g(tk, x
k
D, w

k
D)

xk+1
A = xkD + τ wkD +

1

2
τ2k1

k2 = g(tk +
1

2
τ, xD +

1

2
τwkD, w

k
D +

1

2
τk1)

k3 = g(tk+1, x
k+1
A , wkD − τk1 + 2τk2)

wk+1
A = wkD +

1

6
τ(k1 + 4k2 + k3)

wk+1
D Calculated from the third-oder interpolation of wk+1

A

(5.2)

for k = 0, 1, . . . , N − 1. The numerical analysis is much more complicated be-
cause of the need of higher order methods for computing of departure points and
interpolation at the departure points.

6. Numerical experiments

The main computational effort in applying the Semi-Lagrangian forward meth-
ods (SLFW) is the evaluation of g and the interpolation of approximation on depar-
ture points. In the second-order method, the local truncation error is O(τ2), and
the cost is two functional evaluations per step and the computation of the arrival
points. The Semi-Lagrangian method of order three requires three evaluations per
step and the computation of the arrival points, and the local truncation error is
O(τ3).
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Figure 3. Approximated Solution of the initial-value problem.

Example 6.1. Consider the problem

ut + uux = t+ sin(2πx) + 2πu t cos(2πx),

u(0, x) = 0, 0 < t ≤ 1, 0 < x < 1,
(6.1)

with periodic boundary condition for x.
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Figure 4. Contour lines of the difference between the solution
and its approximation.

The exact solution for this problem is u(t, x) = 1
2 t

2 + t sin(2πx). Figure 3 shows
the graph of the approximate solution of u(t, x) by using the Semi-Lagrangian
method of order three with τ = 0.01 and h = 0.01. To focus on the truncation
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Table 1. Numerical orders of the Semi-Lagrangian forward
method (SLFW1), SLFW2, and SLFW3 as applied to the problem
(6.1)

τ 0.1 0.05 0.025 0.02

SLFW1 (‖u−u0‖∞
τ ) 1.2189 1.1656 1.1347 1.1270

SLFW2 (‖u−u0‖∞
τ2 ) 2.0234 2.0242 2.0263 2.0262

SLFW3 (‖u−u0‖∞
τ3 ) 2.7279 2.60209 2.5076 2.4823

error from the proposed Semi-Lagrangian forward methods, the periodic boundary
condition is supplied. For other boundary conditions, the treatment near boundary
is more complicated when the trajectories of the departure points hit the boundary.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

t
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10-4

10-3

10-2

10-1

||
u

-u
0
||

SLFW1

SLFW2

SLFW3

Figure 5. Truncation errors: − ∗ − first-order Semi-Lagrangian
forward method (SLFW1); −+− second-order method (SLFW2);
− ◦ − third-order method (SLFW3).

Figure 4 shows the contour lines of the difference between the exact solution
and the approximation from the Semi-Lagrangian forward method of order three
at the common grid points. The truncation error is increasing as t goes from 0 to
0.5. The contour lines are matching the changes of the function. The larger errors
occur when the function has the bigger changes. The maximum error reached at
about t = 0.5 for some points of x as we expected.

The first-order Semi-Lagrangian forward method, the second-order Semi-Lagrangian
forward method, and the Semi-Lagrangian forward method of order three are com-
pared with τ = 0.01 and h = 0.005 in the Figure 5. The maximum truncation error
presented at the each step of t for those three methods.

In the table 1 and the Figure 6, we studied the numerical orders of convergence
with h = (1/2)τ . It is clear that the first-order Semi-Lagrangian forward method
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Figure 6. Scaling of the error of Semi-Lagrangian methods of
order one, two and three to the problem (6.1)

and the second-order Semi-Lagrangian forward method have the order as we ex-
pected. However, the Semi-Lagrangian forward method of order three is not exactly
order three, but is close to 2.5. The main difficulty for Semi-Lagrangian method of
order three are the calculation of the departure points and the third-order interpo-
lation from arrival points(non-uniform grids) to departure points (uniform grids).

Example 6.2. Consider the Kortweg-deVries (KdV) equation [25]

ut + uux + δ2uxxx = 0

where δ = 0.022 with the initial conditions

u(x, 0) = cos(πx), 0 ≤ x ≤ 2

and ux, uxx, and uxxx are periodic on [0, 2] for all t.
The KdV equation describes the long time asymptotic behaviour of small but

finite amplitude shallow water waves in one dimension. In the equation, u = u(x, t)
measures the elevation (the height of water above the equilibrium level) at time t
and position x. Two different mechanisms are involved: Non-linearity (uux) and
Dispersion (uxxx). The delicate balance between these two effects leads to travelling
waves of permanent form, which is called Solitary Waves, or Solitons.

Various numerical methods are used to approximate the KdV equations. The
comparison of efficiencies of different methods was studied in [23]. The aim here is
to show the efficiency of SLFW as an explicit method applying to KdV equations.
It is possible to apply higher order (higher than order two) to the KdV equations.
By using SLFW, the nonlinear term was perfectly combined in the direction of
moving waves.

In Figure 7, the first-order SLFW is applied to the KdV equations with the
initial condition of u(x, t) = cos(πx) on the interval [0, 2] with ∆x = 0.01 and
∆t = 0.00002. The wave profile at t = 1/π does not produce a shock, but close.
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Figure 7. First-order SLFW method for δ = 0.022: initial values
and solutions at t = 1/π and t = 3.6/π.
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Figure 8. Second-order SLFW method for δ = 0.022: initial val-
ues and solutions at t = 1/π and t = 3.6/π.

When computed at time t = 3.6/π, another shock is also present. The trains of
eight solitons are detected, but not well-defined.

The results present in Figure 8 are from applying the second-order SLFW to the
KdV equations with the initial condition of u(x, t) = cos(πx) on the interval [0, 2]
with ∆x = 0.01 and ∆t = 0.00002. The dot line is the initial wave profile. The
dash line presents the wave profile at t = 1/π. The wave almost produces a shock
and has a noticeable oscillation for x < 1/2. At time t = 3.6/π the profile shows
a train of eight well-defined waves which have developed since the early stage of
evolution.
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7. Conclusions

In this article, one-step Semi-Lagrangian forward methods were proposed and
studied for the first-order time-dependent nonlinear partial differential equations.
The second-order Semi-Lagrangian forward method was proved to be consistent
and stable. When τ goes to zero, the numerical solution converges to the solution
of the corresponding initial-boundary problem.

Theorem 2 in the section 4 and the examples in the section 6 have shown that the
Semi-Lagrangian forward methods can be applied to some time-dependent partial
differential equations. They are very convenient for implementation. The only
disadvantage is that at each time step, spatial linear or higher order interpolation
is needed to find the solutions on the departure points.

In the example, only one spatial variable was used. However, we believe that
Semi-Lagrangian forward methods should work for more spatial variables, but more
complicated for numerical analysis. The computing cost will increase a lot, like
interpolation for more variables at each step. We will report the similar results for
the systems with more spatial variables. Also more terms involving higher order
derivative only in spatial variables will be added to the right side function later.
More work of applications to Shallow-water equations and Navier-Stokes equations
will be reported later.

References

[1] A. Bourchtein, L. Bourchtein; Semi-Lagrangian semi-implicit time-splitting scheme for the

shallow water equations, Int. J. Numer. Meth. Fluids 54 (2007) 453–471.
[2] S. Bak; High-order characteristic-tracking strategy for simulation of a nonlinear advection–

diffusion equation, Numer Methods Partial Differential Eq. 35 (2019) 1756–1776.
[3] S. Bak, P. Kim, D. Kim; A semi-Lagrangian approach for numerical simulation of coupled

Burgers’ equations, Commun Nonlinear Sci Numer Simulat 69 (2019) 31–44.

[4] J. R. Bates, A. McDonald; Multiply-upstream, semi-Lagrangian advective schemes: analysis
and application to a multi-level primitive equation model, Monthly Weather Review, vol 110,

(1982) 1831–1842.

[5] R. Bermejo, J. Carpio; An adaptive finite element semi-Lagrangian implicit-explicit Runge-
Kutta-Chebyshev method for convection dominated reaction-diffusion problems, Applied Nu-

merical Mathematics 58 (2009) 16–39.

[6] R. L. Burden, J. D. Faires; Numerical Analysis, Thomason Brooks/Cole, 2005.
[7] L. Bonaventura, R. Ferretti, L. Rocchi; A fully semi-Lagrangian discretization for the 2D

incompressible Navier-Stokes equations in the vorticity-streamfunction formulation, Applied

Mathematics and Computation 323 (2018) 132–144.
[8] M. P. Calvo, J. de Frutos, J. Novo; Linearly implicit Runge-Kutta methods for advection-

reaction-diffusion equations, Applied Numerical Mathematics 37 (2001) 535–549.
[9] M. F. Carfora; An unconditionally stable semi-Lagrangian method for the spherical atmo-

spherical shallow water equations, Int. J. Numer. Meth. Fluids 34 (2000) 527–558.
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