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NONLOCAL FRACTIONAL PROBLEMS AND ∇-THEOREMS

DIMITRI MUGNAI

In memory of Anna Aloe

Abstract. We prove the multiplicity result in [12] under more general as-
sumptions. More precisely, we prove the existence of three nontrivial solutions

for a nonlocal problem when a parameter approaches one of the eigenvalues of

the leading operator, without assuming the Ambrosetti-Rabinowitz condition.

1. Introduction

In this article we prove the existence of three nontrivial solutions for a class
of nonlocal problems when a parameter approaches one of the eigenvalues of the
leading operator and when the nonlinear terms has superlinear and subcritical
behaviour. The result is in the spirit of [12], but here the result is proved under
more general assumptions.

Going into details, we consider a class of problems near resonance whose proto-
type is

(−∆)su = λu+ f(x, u) in Ω

u = 0 in Rn \ Ω.
(1.1)

Here Ω ⊂ Rn is a bounded domain with Lipschitz continuous boundary, λ ∈ R,
f is a Carathéodory function which is superlinear and subcritical in the sense of
the fractional Sobolev exponent. Moreover, s ∈ (0, 1) and (−∆)s is the fractional
Laplace operator, which (up to normalization factors) may be defined as

− (−∆)su =
∫

Rn

u(x+ y) + u(x− y)− 2u
|y|n+2s

dy , x ∈ Rn. (1.2)

Actually, we shall consider more general nonlocal operators, in place of (−∆)s, and
thus we will focus on problems of the form

−LKu = λu+ f(x, u) in Ω

u = 0 in Rn \ Ω,
(1.3)

where the nonlocal operator LK is defined as

LKu(x) =
∫

Rn

(
u(x+ y) + u(x− y)− 2u(x)

)
K(y) dy , x ∈ Rn, (1.4)
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and K : Rn \ {0} → (0,+∞) is such that

K(−x) = K(x) for any x ∈ Rn \ {0}, (1.5)

mK ∈ L1(Rn), where m = min{|x|2, 1}, (1.6)

there exists θ > 0 such that K ≥ θ|x|−(n+2s) for every x ∈ Rn \ {0}. (1.7)

We notice that, similarly to [4, Lemma 3.5], an equivalent formulation for LK is
given, as usual up to some positive constant, by

LKu(x) = P.V.
∫

Rn

(
u(x)− u(y)

)
K(x− y) dy

= lim
ε→0

∫
|x|≥ε

(
u(x)− u(y)

)
K(x− y) dy

(1.8)

for every x ∈ Rn, P.V. standing for the “Cauchy principal value”.
Before stating our result, we recall that the “boundary condition” u = 0 in

Rn \ Ω leads to settle the problem in a particular functional setting, namely, in
view of (1.8), a weak solution of (1.3) is a function u ∈ X0 such that∫

Rn×Rn

(u(x)− u(y))(ϕ−ϕ(y))K(x− y) dxdy = λ

∫
Ω

uϕdx+
∫

Ω

f(x, u)ϕdx (1.9)

for every ϕ ∈ X0. Here X0 is defined as follows: first, X is the linear space

X =
{
u ∈M(Rn) : u|Ω ∈ L2(Ω) and the map

(x, y) 7→ (g(x)− g(y))
√
K(x− y) ∈ L2

(
Rn × Rn \ (CΩ× CΩ), dxdy

)}
,

where CΩ := Rn \ Ω. Finally,

X0 = {g ∈ X : g = 0 a.e. in Rn \ Ω}.
We recall that

〈u, v〉X0 :=
∫

Rn×Rn

(
u(x)− u(y)

)(
ϕ− ϕ(y)

)
K(x− y) dx dy

makes X0 a Hilbert space, see [26, Lemma 7].
Moreover, we also need to recall that −LK admits a sequence

{
λk
}
k∈N of eigen-

values having finite multiplicity and with the property that
0 < λ1 < λ2 ≤ · · · ≤ λk ≤ λk+1 ≤ . . . ,

λk → +∞ as k → +∞. (1.10)

In addition, if ek is the eigenfunction corresponding to λk normalized in L2(Ω),
then

{
ek
}
k∈N is an orthonormal basis of L2(Ω) and an orthogonal basis of X0, see

[25, 27].
Finally, we say that eigenvalue λk, k ≥ 2, has multiplicity m ∈ N if

λk−1 < λk = · · · = λk+m−1 < λk+m,

and in such a case the set of all eigenfunctions associated to λk coincides with
span{ek, . . . , ek+m−1}.

In this article, for any k ∈ N we set

Hk = span{e1, . . . , ek},

H⊥k =
{
u ∈ X0 : 〈u, ej〉X0 = 0 for any j = 1, . . . , k

}
,
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so that Hk has precisely dimension k.
In this way, the variational characterization of the eigenvalues (see [27]) gives∫

Rn×Rn

|u(x)− u(y)|2K(x− y) dx dy ≥ λk+1

∫
Ω

|u|2 dx for all u ∈ H⊥k . (1.11)

On the other hand, by the orthogonality properties of the eigenvalues, a standard
Fourier decomposition gives∫

Rn×Rn

|u(x)− u(y)|2K(x− y) dx dy ≤ λk
∫

Ω

|u|2 dx for all u ∈ Hk. (1.12)

The aim of this paper is to exploit a critical point theorem of mixed type, one
of the so-called ∇-theorems, introduced by Marino and Saccon [10] (see also [9,
11, 17]), which permit to provide multiplicity results in a very elegant way. These
theorems have been successfully employed in several contexts, see, for instance,
[8, 18, 19, 20, 22, 23, 28, 29, 30]. In particular, one theorem of this type was used
in [12] for showing a multiplicity result for a problem like (1.3), assuming that f
satisfies a growth condition of the Ambrosetti-Rabinowitz type. Here we want to
obtain the same result in a more general setting. Indeed, we assume:

(A1) f : Ω × R → R is a Carathéodory function satisfying the following con-
ditions: there exist a1, a2 > 0 and q ∈ (2, 2∗), 2∗ = 2n/(n − 2s) such
that

|f(x, t)| ≤ a1 + a2|t|q−1 a.e. x ∈ Ω, t ∈ R ; (1.13)

lim
|t|→0

f(x, t)
|t|

= 0 uniformly in x ∈ Ω ; (1.14)

f(x, t)t− 2F (x, t) > 0 for a.e. x ∈ Ω and all t ∈ R, t 6= 0, (1.15)

lim
|t|→∞

F (x, t)
t2

= +∞ uniformly in x ∈ Ω, (1.16)

there exist positive constants p > max
{

2n
n+2s (q − 1), q − 1

}
, a3 > 0 and

R > 0 such that

f(x, t)t− 2F (x, t) ≥ a3|t|p for a.e. x ∈ Ω and every |t| ≥ R; (1.17)

F (x, t) ≥ 0 for a.e. x ∈ Ω and all t ∈ R. (1.18)

Here

F (x, t) :=
∫ t

0

f(x, τ)dτ for a.e. x ∈ Ω and all t ∈ R. (1.19)

As an example for f we can take f(x, t) = a(x)|t|q−2t, with a ∈ L∞(Ω), infΩ a >
0 (see [21]) and q ∈ (2, 2∗).

Remark 1.1. The common Ambrosetti-Rabinowitz condition, i.e. there exists
µ > 2 and R ≥ 0 such that

(AR) 0 < F (x, t) ≤ f(x, t)t,

for a.e. x ∈ Ω and all |t| > R, is not sufficient to ensure that F (x, ·) can be
estimated from below by a superquadratic power, while it would be if (AR) holds
for every (x, t) ∈ Ω̄×R (see [21]). For this reason, it seems natural, in this general
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context, to assume a priori some kind of control from below, as we do in (1.17),
though we do not require p > 2. Indeed,

2n
n+ 2s

(q − 1) ≥ 2

if and only if

q ≥ 4
n+ s

n+ 2s
> 2∗,

which is not an admissible occurrence.
On the other hand, by (1.13) and (1.19) it is clear that p ≤ q.

Very close assumptions on f were assumed in [6] for studying a fourth order
problem in bounded domains through the same approach via∇−theorems. Inspired
by [6], our main result reads as follows.

Theorem 1.2. Let s ∈ (0, 1), n > 2s and Ω be an open bounded subset of Rn
with continuous boundary. Let K : Rn \ {0} → (0,+∞) satisfy (1.5)–(1.7) and let
f satisfy (A1). Then, for every eigenvalue λk of −LK , k ≥ 2, there exists a left
neighborhood Ok of λk such that problem (1.3) admits at least three nontrivial weak
solutions for all λ ∈ Ok.

Corollary 1.3. Under the assumptions of Theorem 1.2, for every k ≥ 2 there exists
a left neighborhood Ok of the k−th eigenvalue λk of (−∆)s, such that, if λ ∈ Ok,
then (1.1) admits at least three nontrivial weak solutions.

This article is organized in the following way: in Section 2 we recall some notions
and notations which will be used throughout the paper. In Section 3 we prove
that the energy functional associated to the problem enjoys some good geometric
structures. In Section 4 we prove the∇-condition, the main ingredient of the critical
point tool that we shall use, which is Theorem 5.1. Finally, in Section 5 we prove
the main multiplicity result of this paper, i.e. Theorem 1.2, by coupling the result of
the ∇-theorem due to Marino and Saccon in [10] with a classical Linking theorem
(see [24, Theorem 5.3]), obtaining the existence of three nontrivial solutions for
problem (1.3). We remark that while the existence of two nontrivial solutions near
resonance is free due to bifurcation theory, the fine estimates on the critical value
provided by Theorem 5.1 permit to compare the critical value obtained with a
Linking Theorem and find a third nontrivial solution, being the energy of the last
solution higher than that of the former two ones.

A last comment on the notation: we will use several times the symbol c or C
to denote absolute constants, which, however, may be different from previous ones
denoted in the same way.

2. Preliminaries

First of all, we need some notation. In the sequel we endow the space X0 with
the norm defined as (see [26, Lemma 6])

‖g‖ =
(∫

Rn×Rn

|g(x)− g(y)|2K(x− y)dx dy
)1/2

, (2.1)

which is obviously related to the so-called Gagliardo norm

‖g‖Hs(Ω) = ‖g‖L2(Ω) +
(∫

Ω×Ω

|g(x)− g(y)|2

|x− y|n+2s
dx dy

)1/2

(2.2)
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of the usual fractional Sobolev space Hs(Ω). For further details on the fractional
Sobolev spaces we refer to [1, 4, 14] and to the references therein. We only recall
the following embeddings, which will be repeatedly used and for whose proofs we
refer to [26]:

X0 ↪→ Lν(Ω) for every ν ∈ [1, 2∗],

X0 ↪→↪→ Lν(Ω) for every ν ∈ [1, 2∗).
(2.3)

Problem (1.9) has a variational structure: indeed, it is the Euler-Lagrange equa-
tion of the functional Jλ : X0 → R defined as

Jλ(u) =
1
2

∫
Rn×Rn

|u(x)− u(y)|2K(x− y) dx dy − λ

2

∫
Ω

u2 dx−
∫

Ω

F (x, u) dx.

Note that when functional Jλ is Fréchet differentiable at u ∈ X0, we have that for
any ϕ ∈ X0

〈J ′λ(u), ϕ〉 =
∫

Rn×Rn

(
u(x)− u(y)

)(
ϕ− ϕ(y)

)
K(x− y) dx dy

− λ
∫

Ω

uϕdx−
∫

Ω

f(x, u)ϕdx,

where we have denoted by 〈·, ·〉 the duality between X ′0 and X0. Thus, critical
points of Jλ are solutions to problem (1.9). We remark that (A1) ensures that
Jλ is actually of class C1, and so we can find solutions to (1.9) by looking for
critical points to Jλ. This is what we shall do using the ∇-theorem in the form of
Theorem 5.1 (see Section 5) and the classical Linking Theorem.

We conclude this section recalling that problems of the form (1.3) have been
widely investigated in latest years, under different assumptions on λ and f . The
literature in this context is huge, and we only refer to some recent papers and the
references therein, quoting, in addition to the already cited ones, [2, 3, 5, 7, 13, 15].

3. Geometry of the ∇-theorem

In this section we show that if k and m in N are such that

λk−1 < λ < λk = · · · = λk+m−1 < λk+m, (3.1)

then Jλ satisfies the geometric setting of Theorem 5.1 with

X1 := Hk−1, X2 := span {ek, . . . , ek+m−1} X3 := H⊥k+m−1 .

Proposition 3.1. Let k and m in N be such that (3.1) holds and let f satisfy (A1).
Then, there exist ρ,R, with R > ρ > 0, such that

sup
{u∈X1,‖u‖≤R}∪{u∈X1⊕X2:‖u‖=R}

Jλ(u) < inf
{u∈X2⊕X3:‖u‖=ρ}

Jλ(u) .

Proof. Take u ∈ X1. Then by (1.18) it is straightforward to see that

Jλ(u) ≤ λk−1 − λ
2

∫
Ω

u2dx ≤ 0, (3.2)

since λk−1 < λ. Moreover, by (1.16) there exists M > 0 such that

F (x, t) ≥ (λk − λ)t2 −M
for a.e. x ∈ Ω and all t ∈ R. Thus, if u ∈ X1 ⊕X2, we obtain

Jλ(u) ≤ λk − λ
2

∫
Ω

u2dx− (λk − λ)
∫

Ω

u2dx+M |Ω| = −λk − λ
2

∫
Ω

u2dx+M |Ω|,
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and, being all norms equivalent in X1 ⊕X2, we obtain that

lim
u∈X1⊕X2, ‖u‖→∞

Jλ(u) = −∞. (3.3)

Now, by (1.13) and (1.14) we obtain that, fixed ε > 0, there exists Mε > 0 such
that

F (x, t) <
ε

2
t2 +Mε|t|q for a.e. x ∈ Ω and all t ∈ R.

Then, if u ∈ X2 ⊕X3, by (1.11) and (2.3) we obtain

Jλ(u) ≥ 1
2

(
1− λ+ ε

λk

)
‖u‖2 −Mε

∫
Ω

|u|qdx ≥ 1
2

(
1− λ+ ε

λk

)
‖u‖2 − M̃ε‖u‖q

for some M̃ε > 0. Choosing ε < λk − λ, we can find ρ > 0 so small that

inf
{u∈X2⊕X3:‖u‖=ρ}

Jλ(u) > 0. (3.4)

By (3.2), (3.3) and (3.4), the claim follows. �

4. ∇-condition

To prove the ∇−condition, we denote by PC : X0 → C the orthogonal projection
of X0 onto a closed subspace C, and we recall the following concept.

Definition 4.1. Let C be a closed subspace of X0 and a, b ∈ R ∪ {−∞,+∞}. We
say that Jλ verifies (∇)(Jλ, C, a, b) if there exists γ > 0 such that

inf
{
‖PC∇Jλ(u)‖ : a ≤ Jλ(u) ≤ b,dist(u,C) ≤ γ

}
> 0 .

Roughly speaking, the condition (∇)(Jλ, C, a, b) requires that Jλ has no critical
points u ∈ C such that a ≤ Jλ(u) ≤ b, with some uniformity. The main purpose of
this section is to prove the following result.

Proposition 4.2. Let k and m in N be such that (3.1) holds and let f satisfy (A1).
Then, for any σ > 0 with σ < min{λk+m − λk, λk − λk−1} there exists εσ > 0 such
that for any λ ∈ [λk−1 + σ, λk+m − σ] and for any ε′, ε′′ ∈ (0, εσ), with ε′ < ε′′,
functional Jλ satisfies (∇)(Jλ, Hk−1 ⊕H⊥k+m−1, ε

′, ε′′).

Of course, in our case C = Hk−1⊕H⊥k+m−1, and without mentioning any longer,
we assume (3.1) and (A1). We start by proving the following result.

Lemma 4.3. For any σ such that 0 < δ < min{λk+m−λk, λk−λk−1} there exists
εσ > 0 such that for any λ ∈ [λk−1 + σ, λk+m− σ] the unique critical point u of Jλ
constrained on Hk−1 ⊕H⊥k+m−1 with Jλ(u) ∈ [−εσ, εσ], is the trivial one.

Proof. We argue by contradiction and we suppose that there exists σ̄ > 0, a se-
quence {µj}j∈N in R with

µj ∈ [λk−1 + σ̄, λk+m − σ̄] (4.1)

and a sequence {uj}j∈N ⊂ Hk−1 ⊕H⊥k+m−1 \ {0} such that

〈J ′µj
(uj), ϕ〉 = 0 for any ϕ ∈ Hk−1 ⊕H⊥k+m−1 and any j ∈ N, (4.2)

Jµj
(uj) =

1
2

∫
Rn×Rn

|uj − uj(y)|2K(x− y) dx dy

− µj
2

∫
Ω

|uj |2 dx−
∫

Ω

F (x, uj) dx→ 0 as j → +∞ .

(4.3)
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By (1.17) and (1.13) we obtain the existence of a4 > 0 such that

f(x, t)t− 2F (x, t) ≥ a3|t|p − a4 for a.e. x ∈ Ω and all t ∈ R. (4.4)

Taking ϕ = uj in (4.2) and using (4.4), we obtain that for any j ∈ N,

2Jµj (uj)− 〈J ′µj
(uj), uj〉 =

∫
Ω

(f(x, uj)uj − F (x, uj)) dx

≥ a3

∫
Ω

|uj |pdx− a5

for some positive constant a5. Hence, by (4.2) and (4.3), we immediately get that

(uj)j∈N is bounded in Lp(Ω). (4.5)

Now, let vj ∈ Hk−1 and wj ∈ H⊥k+m−1 be such that uj = vj +wj for any j ∈ N.
Choosing ϕ = vj −wj in (4.2) and taking into account the orthogonality properties
of vj and wj , we have that for any j ∈ N

0 = 〈J ′µj
(uj), vj − wj〉

=
∫

Rn×Rn

|vj(x)− vj(y)|2K(x− y) dx dy

−
∫

Rn×Rn

|wj(x)− wj(y)|2K(x− y) dx dy

− µj
∫

Ω

|vj |2 dx+ µj

∫
Ω

|wj |2 dx−
∫

Ω

f(x, uj)(vj − wj) dx .

(4.6)

By (1.12) and (1.11), equation (4.6) implies that for any j ∈ N,∫
Ω

f(x, uj)(vj − wj) dx =
∫

Rn×Rn

|vj(x)− vj(y)|2K(x− y) dx dy

−
∫

Rn×Rn

|wj(x)− wj(y)|2K(x− y) dx dy

− µj
∫

Ω

|vj |2 dx+ µj

∫
Ω

|wj |2 dx

≤ λk−1 − µj
λk−1

‖vj‖2 +
µj − λk+m

λk+m
‖wj‖2

≤ − σ̄

λk−1
‖vj‖2 −

σ̄

λk+m
‖wj‖2

≤ − σ̄

λk+m
‖uj‖2.

(4.7)

Hence, there exists C > 0 such that

‖uj‖2 ≤ C
∫

Ω

f(x, uj)(vj − wj) dx for all j ∈ N. (4.8)

Now, since
2n

n+ 2s
(q − 1) ≤ p < 2∗,

we immediately get that

1 <
p

p− q + 1
≤ 2∗,
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and so, by (2.3), there exists C > 0 such that

‖u‖ p
p−q+1

≤ C‖u‖ for every u ∈ X0. (4.9)

As a consequence, by the Hölder inequality and (4.5), we obtain∫
Ω

|uj |q−1|vj − wj | dx ≤ ‖uj‖q−1
p ‖vj − wj‖p−q+1 ≤ c‖vj − wj‖L2∗ (Ω) (4.10)

for some c > 0. Moreover, by (1.13) we obtain∣∣ ∫
Ω

f(x, uj)(vj − wj) dx
∣∣ ≤ a1

∫
Ω

|vj − wj | dx+ a2

∫
Ω

|uj |q−1|vj − wj | dx.

(4.11)
Hence, by (4.11), (2.3), (4.8) and (4.10), we obtain the existence of two constants
C1, C2 > 0 such that for all j ∈ N

‖uj‖2 ≤ C1‖vj − wj‖+ C2‖vj − wj‖ = C3‖vj + wj‖ = C3‖uj‖,
and so (uj)j∈N is bounded in X0. Then, we can assume that there exists u∞ ∈
Hk−1 ⊕H⊥k+m−1 such that, by (4.2),∫

Rn×Rn

(
uj(x)− uj(y)

)(
ϕ(x)− ϕ(y)

)
K(x− y) dx dy

→
∫

Rn×Rn

(
u∞(x)− u∞(y)

)(
ϕ− ϕ(y)

)
K(x− y) dx dy for any ϕ ∈ X0 ,

(4.12)

uj → u∞ in Lq(Rn)

uj → u∞ a.e. in Rn
(4.13)

as j → +∞. Now, taking ϕ = uj in (4.2) and using (4.4), we obtain that for any
j ∈ N

0 = 2Jµj
(uj)− 〈J ′µj

(uj), uj〉 =
∫

Ω

(
f(x, uj)uj − F (x, uj)

)
dx.

Passing to the limit in the equation above, by (1.13) and (4.13), we obtain

0 =
∫

Ω

(f(x, u∞)u∞ − F (x, u∞)) dx,

and so (1.15) implies u∞ ≡ 0.
From (4.8) we also obtain

‖uj‖2 ≤ C
(∫

Ω

|f(x, uj)|
q

q−1 dx
)
‖vj − wj‖Lq(Ω)

≤ C̃
(∫

Ω

|f(x, uj)|
q

q−1 dx
)
‖vj − wj‖

= C̃
(∫

Ω

|f(x, uj)|
q

q−1 dx
)
‖uj‖

for some C̃ > 0 and all j ∈ N. Since uj 6= 0, we obtain

‖uj‖ ≤ C
(∫

Ω

|f(x, uj)|
q

q−1 dx
)

(4.14)

for some C > 0 and all j ∈ N. Now, if uj → 0 in X0, from (4.14) and (1.14) we
would get

1 ≤ lim
j→∞

C

( ∫
Ω
|f(x, uj)|

q
q−1 dx

)
‖uj‖

= 0,
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which is absurd. Hence, we can assume that there is A > 0 such that ‖uj‖ ≥ C for
all j ∈ N. Hence, (4.14) and the fact that uj → 0 in Lq(Ω) would give

A ≤ lim
j→∞

C
(∫

Ω

|f(x, uj)|
q

q−1 dx
)

= 0,

again a contradiction. The proof is complete. �

Before going on, we recall that, as showed in [12], we have

∇Jλ(u) = u− L−1
K (λu+ f(x, u)) (4.15)

for all u ∈ X0, where

L−1
K : Lν(Ω)→ X0 is a compact operator for all ν ∈ [1, 2∗). (4.16)

Moreover,

〈u,L−1
K v〉X0 =

∫
Ω

uv dx (4.17)

for every u, v ∈ X0. The second lemma we need in order to prove the ∇-condition
is the following one.

Lemma 4.4. Let {uj}j∈N be a sequence in X0 such that

{Jλ(uj)}j∈N is bounded in R , (4.18)

Pspan{ek,..., ek+m−1}uj → 0 in X0, (4.19)

PHk−1⊕H⊥k+m−1
∇Jλ(uj)→ 0 in X0 as j → +∞. (4.20)

Then, {uj}j∈N is bounded in X0.

Proof. Assume by contradiction that {uj}j∈N is unbounded in X0; hence, we can
assume that

‖uj‖ → +∞ (4.21)
as j → +∞ and that there exists u∞ ∈ X0 such that

uj
‖uj‖

⇀ u∞ in X0

uj
‖uj‖

→ u∞ in Lν(Ω) for any ν ∈ [1, 2∗)
(4.22)

as j → +∞.
Now, for shortness, set Pspan{ek,..., ek+m−1} =: P , PHk−1⊕H⊥k+m−1

=: Q, and write

uj = Puj +Quj ,

where Puj → 0 as j →∞ by (4.19).
First, by (1.13) and Hölder’s inequality, since p > q−1, we have that there exists

c1 > 0 such that for a.e. x ∈ Ω and all j ∈ N

|f(x, uj)Puj | ≤ c1‖Puj‖∞
(
1 + ‖uj‖q−1

p

)
.

Recalling (4.15), we have

〈Q∇Jλ(uj), uj〉X0 = 〈∇Jλ(uj), uj〉X0 − 〈P∇Jλ(uj), uj〉X0

= ‖uj‖2 − λ
∫

Ω

|uj |2 dx−
∫

Ω

f(x, uj)uj dx

− 〈P
(
uj − L−1

K (λuj + f(x, uj))
)
, uj〉X0 .

(4.23)
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Since 〈Pu, v〉X0 = 〈u, Pv〉X0 for any u, v ∈ X0, by (4.17) (4.23) reads

〈Q∇Jλ(uj), uj〉X0 = 2Jλ(uj) + 2
∫

Ω

F (x, uj)dx−
∫

Ω

f(x, uj)ujdx

− ‖Puj‖2 + λ

∫
Ω

|Puj |2 dx+
∫

Ω

f(x, uj)Pujdx.
(4.24)

As a consequence, by (1.17) there exists c2 > 0 such that

2Jλ(uj)− 〈Q∇Jλ(uj), uj〉X0 =
∫

Ω

(f(x, uj)ujdx− 2F (x, uj)) dx

+ ‖Puj‖2 − λ
∫

Ω

|Puj |2 dx−
∫

Ω

f(x, uj)Puj dx

≥ a3

∫
Ω

|uj |pdx− c2 + ‖Puj‖2 − λ
∫

Ω

|Puj |2 dx

− c1‖Puj‖∞
(
1 + ‖uj‖q−1

p

)
.

Recalling (4.18)-(4.20) and that p > q − 1, we easily obtain

lim
j→∞

‖uj‖q−1
p

‖uj‖
= 0, (4.25)

since X2 has finite dimension, and so all norms are equivalent. As a consequence
of (4.25) we also get

u∞ = 0. (4.26)
Now, by (4.18), (4.21) and (4.26) we obtain

Jλ(uj)
‖uj‖2

=
1
2
− λ

2

∫
Ω
|uj |2 dx
‖uj‖2

−
∫

Ω
F (x, uj) dx
‖uj‖2

→ 0,

which implies that ∫
Ω
F (x, uj) dx
‖uj‖2

→ 1
2

(4.27)

as j → +∞. But, by (1.13), proceeding as for (4.9),∣∣ ∫
Ω

F (x, uj) dx
∣∣ ≤ a1

∫
Ω

|uj | dx+
a2

q

∫
Ω

|uj |qdx ≤ ã1‖uj‖+ ã2‖uj‖q−1
p ‖uj‖,

and by (4.25) we obtain a contradiction with (4.27). �

As a consequence of Lemmas 4.3 and 4.4, we are able to prove Proposition 4.2.

Proof of Proposition 4.2. Assume by contradiction that there exists σ > 0 such
that for every ε0 > 0 there exist λ̄ ∈ [λk−1 + σ, λk+m − σ] and ε′ < ε′′ in (0, ε0)
such that

(∇)(Jλ̄, Hk−1 ⊕H⊥k+m−1, ε
′, ε′′) does not hold. (4.28)

Take ε > 0 associated to σ according to Lemma 4.3.
By (4.28) we can find a sequence {uj}j∈N in X0 such that

Jλ̄(uj) ∈ [ε′, ε′′] for all j ∈ N ,

dist(uj , Hk−1 ⊕H⊥k+m−1)→ 0

PHk−1⊕H⊥k+m−1
∇Jλ̄(uj)→ 0 in X0

(4.29)

as j → +∞.
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By Lemma 4.4 we obtain that {uj}j∈N is bounded in X0, and so there exists
u∞ ∈ X0 such that, up to a subsequence,

uj ⇀ u∞ in X0

uj → u∞ in Lν(Ω) for any ν ∈ [1, 2∗)
uj → u∞ a.e. in Ω

(4.30)

as j → +∞.
Now, by (4.15) we have

PHk−1⊕H⊥k+m−1
∇Jλ̄(uj) = uj − Pspan{ek,..., ek+m−1}uj

− PHk−1⊕H⊥k+m−1
L−1
K (λ̄uj + f(x, uj)).

(4.31)

Hence, recalling that L−1
K : Lq

′
(Ω) → X0 is a compact operator, see (4.16), and

that f(x, uj) → f(x, u∞) in Lq
′
(Ω) by Krasnoselskii’s Theorem, see [16, Theorem

2.75], we obtain that

PHk−1⊕H⊥k+m−1
L−1
K (λ̄uj + f(x, uj))→ PHk−1⊕H⊥k+m−1

L−1
K (λ̄u∞ + f(x, u∞))

as j → +∞ and so, taking into account (4.29), (4.30) and (4.31), we deduce that

uj → PHk−1⊕H⊥k+m−1
L−1
K (λ̄u∞ + f(x, u∞)) = u∞ in X0 (4.32)

as j → +∞.
Moreover, again by (4.29), we obtain that u∞ is a critical point of Jλ̄ constrained

on Hk−1 ⊕ H⊥k+m−1. Hence, Lemma 4.3 yields that u∞ ≡ 0. However, 0 < ε′ ≤
Jλ̄(uj) for every j ∈ N, so that, by continuity of Jλ̄, we find Jλ̄(u∞) > 0, which is
absurd. �

5. Proof of Theorem1.2

The proof of Theorem 1.2 relies on the combination of Theorem 5.1 below with
a classical Linking Theorem, see [24, Theorem 5.3].

Theorem 5.1 ([10, Theorem 2.10]). Let H be a Hilbert space and X1, X2, X3 be
three subspaces of H such that H = X1 ⊕ X2 ⊕ X3 with 0 < dimXi < ∞ for
i = 1, 2. Let I : H → R be a C1,1 functional. Let ρ, ρ′, ρ′′, ρ1 be such that 0 < ρ1,
0 ≤ ρ′ < ρ < ρ′′ and

∆ = {u ∈ X1 ⊕X2 : ρ′ ≤ ‖P2u‖ ≤ ρ′′, ‖P1u‖ ≤ ρ1}, T = ∂X1⊕X2∆ ,

where Pi : H → Xi is the orthogonal projection of H onto Xi , i = 1, 2, and

S23(ρ) = {u ∈ X2 ⊕X3 : ‖u‖ = ρ}, B23(ρ) = {u ∈ X2 ⊕X3 : ‖u‖ < ρ} .

Assume that
a′ = sup I(T ) < inf I(S23(ρ)) = a′′ .

Let a, b be such that a′ < a < a′′, b > sup I(∆) and the assumption (∇)(I, X1 ⊕
X3, a, b) holds; the Palais-Smale condition holds at any level c ∈ [a, b]. Then I has
at least two critical points in I−1([a, b]).

If, furthermore,

−∞ < inf I(B23(ρ)), and a1 < inf I(B23(ρ)),

and the Palais-Smale condition holds at every c ∈ [a1, b], then I has another critical
level between a1 and a′.
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Hence, let us start showing that Jλ satisfies the Palais-Smale condition at any
level, i.e. for all c ∈ R every sequence {uj}j∈N ⊂ X0 such that

Jλ(uj)→ c, (5.1)

J ′λ(uj)→ 0 in X ′0 (5.2)

as j → +∞, admits a strongly convergent subsequence in X0.

Proposition 5.2. Let λ > 0 and let f satisfy (A1). Then, Jλ satisfies the Palais-
Smale condition at any level c ∈ R.

Proof. Let c ∈ R and let {uj}j∈N be a sequence satisfying (5.1) and (5.2). Assume
by contradiction that {uj}j∈N is not bounded, and so assume that ‖uj‖ → ∞ as
j →∞. We claim that

Puj
‖uj‖

→ 0 as j →∞, (5.3)

where P is the same projection of Lemma 4.4. Indeed, by (1.17) we can find
A,B > 0 such that

f(x, t)t− 2F (x, t) ≥ A|t| −B for a.e. x ∈ R and all t ∈ R.

Then

2Jλ(uj)− J ′λ(uj)(uj) =
∫

Ω

(f(x, uj)ujdx− 2F (x, uj)) dx

≥ A
∫

Ω

|uj | dx−B|Ω|

≥ ‖Puj‖1 −A‖Quj‖1 −B|Ω|,

(5.4)

where Q is as in Lemma 4.4.
Now, write Quj = vj + wj , where vj ∈ X1 and wj ∈ X3 for every j ∈ N. As in

(4.9), we obtain ∫
Ω

|uj |q−1|vj |dx ≤ C‖uj‖q−1
p ‖vj‖, (5.5)∫

Ω

|uj |q−1|wj |dx ≤ C‖uj‖q−1
p ‖wj‖ (5.6)

for some C > 0 and all j ∈ N. Hence, by (5.2) and (1.17) there exists c2 > 0 such
that

2Jλ(uj)− 〈∇Jλ(uj), uj〉X0 =
∫

Ω

(f(x, uj)ujdx− 2F (x, uj)) dx

≥ a3

∫
Ω

|uj |pdx− c2,

so that

lim
j→∞

∫
Ω
|uj |pdx
‖uj‖

= 0, (5.7)

and so also (4.25) holds again.
Now, by (5.2), (1.13), (1.12) and (5.5) we obtain

‖vj‖o(1) = 〈∇Jλ(uj),−vj〉X0

= −‖vj‖2 + λ

∫
Ω

v2
jdx+

∫
Ω

f(x, uj)vj dx
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≥
(
− 1 +

λ

λk−1

)
‖vj‖2 − a1‖vj‖1 − a2

∫
Ω

|uj |q−1|vj | dx

≥ λ− λk−1

λk−1
‖vj‖2 − c‖vj‖ − d‖uj‖q−1

p ‖vj‖

=
λ− λk−1

λk−1
‖vj‖2 − ‖vj‖

(
c+ d‖uj‖q−1

p ‖vj‖
)

for some constants c, d > 0 and where o(1)→ 0 as j →∞. By (4.25), the previous
inequality implies that

lim
j→∞

‖vj‖
‖uj‖

= 0. (5.8)

Similarly, by using (1.11), we find

‖wj‖o(1) = 〈∇Jλ(uj), wj〉X0

= ‖wj‖2 − λ
∫

Ω

w2
jdx−

∫
Ω

f(x, uj)wj dx

≥
(

1− λ

λk+m

)
‖vj‖2 − a1‖wj‖1 − a2

∫
Ω

|uj |q−1|wj | dx

≥ λk+m − λ
λk−1

‖wj‖2 − c‖wj‖ − d‖uj‖q−1
p ‖wj‖

=
λk+m − λ
λk+m

‖wj‖2 − ‖wj‖(c+ d‖uj‖q−1
p ‖wj‖),

and by (4.25) we find that

lim
j→∞

‖wj‖
‖uj‖

= 0. (5.9)

By (5.8) and (5.9), recalling that Quj = vj + wj , we finally get

lim
j→∞

‖Quj‖
‖uj‖

= 0. (5.10)

Since by (2.3) there exists c > 0 such that

‖Quj‖1 ≤ c‖Quj‖,

using (5.10) in (5.4), being X2 finite-dimensional, (5.3) holds.
Now, proceeding as in the proof of Lemma 4.4 we finally find that {uj}j∈N is

bounded in X0. By (1.13) it is standard to prove that {uj}j∈N is pre-compact, and
so the Palais-Smale condition holds at every level. �

Lemma 5.3. Assume (3.1) and (A1). Then

lim
λ→λk

sup
u∈Hk+m−1

Jλ(u) = 0.

Proof. First of all, note that Jλ attains a maximum in Hk+m−1 by (1.16).
Now, assume by contradiction that there exist {µj}j∈N, such that

µj → λk (5.11)

as j → +∞, {uj}j∈N in Hk+m−1 and ε > 0 such that for any j ∈ N

Jµj
(uj) = max

u∈Hk+m−1
Jµj

(u) ≥ ε. (5.12)



210 D. MUGNAI EJDE-2018/CONF/25

If {uj}j∈N were bounded, we could assume that uj → u∞ in Hk+m−1. Then, by
(5.11) we would get

Jµj
(uj)→ Jλk

(u∞)
as j → +∞. By (5.12), (1.12) and (1.18) we would find that

ε ≤ Jλk
(u∞) =

1
2
‖u∞‖2 −

λk
2

∫
Ω

|u∞|2 dx−
∫

Ω

F (x, u∞) dx

≤ 1
2

(λk+m−1 − λk)
∫

Ω

|u∞|2 dx−
∫

Ω

F (x, u∞) dx ≤ 0,

which is absurd.
Otherwise, if {uj}j∈N were unbounded in X0, we could assume that ‖uj‖ → +∞

as j → +∞. Therefore, (5.12) and (1.16) would imply

0 < ε ≤ Jµj (uj) =
1
2
‖uj‖2 −

µj
2

∫
Ω

|uj |2 dx−
∫

Ω

F (x, uj) dx. (5.13)

Notice that (1.18) and Fatou’s Lemma imply, since all norms are equivalent in
Hk+m−1, that

lim
j→∞

∫
Ω

F (x, uj)
‖uj‖2

dx = +∞,

and so from (5.13) we would get

0 < ε ≤ Jµj (uj) = ‖uj‖2
(1

2
− µj

2

∫
Ω

|uj |2

‖uj‖2
dx−

∫
Ω

F (x, uj)
‖uj‖2

dx
)

= −∞

another contradiction, and so the lemma holds. �

Applying Theorem 5.1 to Jλ we have a preliminary result.

Proposition 5.4. Assume (3.1) and (A1). Then, there exists a left neighborhood
Ok of λk such that for all λ ∈ Ok, problem (1.3) has two nontrivial solutions ui
such that

0 < Jλ(ui) ≤ sup
u∈Hk+m−1

Jλ(u)

for i = 1, 2.

Proof. To apply Theorem 5.1 to Jλ, fix σ > 0 and find εσ as in Proposition 4.2.
Then, for all λ ∈ [λk−1 + σ, λk+m − σ] and for every ε′, ε′′ ∈ (0, εσ), functional Jλ
satisfies (∇)(Jλ, Hk−1 ⊕H⊥k+m−1, ε

′, ε′′).
By Lemma 5.3 there exists σ1 ≤ σ such that, if λ ∈ (λk − σ1, λk), then

sup
u∈Hk+m−1

Jλ(u) = ε′′. (5.14)

Moreover, since λ < λk, Proposition 3.1 holds and Jλ satisfies the Palais-Smale
condition at any level by Proposition 5.2.

Then, we can apply Theorem 5.1 and find two critical points u1, u2 of Jλ with

Jλ(ui) ∈ [ε′, ε′′], i = 1, 2, (5.15)

i.e. u1 and u2 are nontrivial solutions of (1.3) such that

0 < Jλ(ui) ≤ ε′′, i = 1, 2.

�

We are now ready to conclude with the following result.
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Proof of Theorem 1.2. Mimicking the proof of Proposition 3.1 we see that for every
u ∈ H⊥k+m−1,

Jλ(u) ≥ 1
2

(
1− λ+ ε

λk+m

)
‖u‖2 − M̃ε‖u‖q,

so that, for ε small, there exists ρ > 0 such that

inf
u∈H⊥k+m−1, ‖u‖=ρ

Jλ(u) ≥ 1
2

(
1− λ+ ε

λk+m

)
ρ2 − M̃ερ

q := αρ > 0.

By Lemma 5.3, we can choose λ so close to λk that

sup
u∈Hk+m−1

Jλ(u) < αρ. (5.16)

Hence, the classical Linking Theorem ensures the existence of a solution u3 of
problem (1.3) with

Jλ(u3) ≥ inf
u∈H⊥k+m−1, ‖u‖=%

Jλ(u) ≥ αρ. (5.17)

Choosing σ1 such that in (5.14) ε′′ < αρ, we obtain

Jλ(ui) ≤ sup
u∈Hk+m−1

Jλ(u) < Jλ(u3)

and so u3 6= ui, i = 1, 2. The proof of Theorem 1.2 is complete. �
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