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A SURVEY OF RESULTS AND OPEN PROBLEMS FOR THE
HYDRODYNAMIC FLOW OF NEMATIC LIQUID CRYSTALS

JAY LAWRENCE HINEMAN

Abstract. The mathematical study of the hydrodynamic flow of nematic liq-
uid crystals is a mix of material science, Navier-Stokes theory, and the study

of harmonic maps. In this article, the basic model for the hydrodynamic flow

of nematic liquid crystals is presented – that is, the Ericksen-Leslie equations.
There are a number of simplifications of the Ericksen-Leslie equations exist

in the literature. We give a short survey of the known mathematical results
for the Ericksen-Leslie equations and its simplifications. Along the way, open

problems in analysis and computation for the Ericksen-Leslie system are dis-

cussed.

1. Introduction

Liquid crystals and their mathematical description have a long and rich history
dating back over 100 years. Liquid crystals can be thought of as materials that
exhibit an intermediate phase between liquid and solid. That is, while liquid crystals
may flow like liquids, they exhibit additional structural properties.

Many chemical compounds have liquid crystal phases. For example concentrated
solutions of rigid polymers in suitable solvents, DNA, and certain viruses all exhibit
liquid crystal phases. Since there are many possible microscopic structures, there
are accordingly many liquid crystal phases, for example, nematic, smectic, and
cholesteric.

The simplest example of a liquid crystal phase occurring in nature is the ne-
matic phase for a single chemical species. Physically, in the single-species case,
liquid crystals that exhibit a nematic phase, or nematic liquid crystals for short,
are liquids that are uniformly composed of rod-like molecules whose structure in-
duces a preferred average directional order. A historical example is the compound
MBBA, N-(p-methoxybenzylidene)-p-butylaniline, which is in the nematic phase for
approximately the range temperatures 20◦C to 47◦C and whose length is on the
scale of Angstroms.

For the modeling of a single species of a nematic at a fixed temperature one can
consider a continuum theory which disregards the individual molecular structure.
Such a continuum assumption is valid since the distance over which directional
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order occurs is much larger than the molecular dimensions (that is proportional to
µm versus proportional to Angstroms).

For a more in depth and complete introduction to liquid crystals, their history,
and their mathematical study one should consult the texts of Virga [54], DeGennes
and Prost [17], and or Stewart [51].

This survey we will focus the mathematical theory for the hydrodynamic flow of
nematic liquid crystals. Specifically we will examine the Ericksen-Leslie equations
for the hydrodynamic flow of nematic liquid crystals and simplifications. We begin
in the next section with an outline of the derivation of the Ericksen-Leslie equations
from balance laws. After this we discuss results for modifications and simplifications
of the equations. The Ericksen-Leslie equations have three major facts that make
their analysis difficult.

(1) They are a strongly coupled system of nonlinear equations – they contain a
Navier-Stokes like system and a nonlinear system for the transported heat
flow of harmonic maps.

(2) They contain physically relevant terms beyond those in the standard Navier-
Stokes equations and transported heat flow of harmonic maps.

(3) There is a natural, point-wise nonlinear constraint on the system.

The first fact cannot be avoided and it is noted that in general that mathematical
results about the well-posedness of the Ericksen-Leslie equations cannot surpass
those for Navier-Stokes. Simplification of the Ericksen-Leslie equations have been
employed to deal with the second and third facts. Specifically, the difficulties in-
troduced by the nonlinear constraint can be eliminated by analyzing an associated
penalized system. This is system is analyzed in detail in Section 3.

Recently, the author and others have examined simplifications of the Ericksen-
Leslie equations that retain the original constraint. These works have still simplified
equations and primarily examine a strongly coupled system of the Navier-Stokes
equations and the transported heat flow of harmonic maps. This system, and its
differences from the penalized system are discussed the Sections 4 and 5. The
latter provides an outline of the recent work by the author and C.Y. Wang on local
well-posedness [22].

We record open problems for both the penalized and non-penalized simplifi-
cations of the Ericksen-Leslie equations in both analysis and numerical analysis.
Each of these problem should be viewed as a part of the over-arching problem of
constructing a well-posedness theory for the Ericksen-Leslie equations. For other
directions and problems, the interested reader is encourage to consult the surveys
by Lin and Liu [44] and Lin [42].

Throughout this survey we will consider functions u : Ω → R3 (usually fluid
velocity field) and d : Ω→ S2 (usually the director or orientation field) for Ω ⊂ R3

and where S2 is the unit sphere in R3. We use the convention that upper indices
represent components and lower indices represent derivatives. We also use the
Einstein summation convention throughout – that is, we sum implicitly over any
repeated index. Components are often cumbersome and hence we will often use the
common operators from tensor calculus to provide concise expressions – namely, we
use ·, : for the vector and tensor inner-products respectively, and ∧ for the outer or
cross product of vectors or tensors.
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2. Ericksen-Leslie equations

The Ericksen-Leslie equations for the hydrodynamic flow of nematic liquid crys-
tals can be derived from the following conservation and balance laws in the way that
the Navier-Stokes equations is often derived (for a derivation of the incompressible
Navier-Stokes see [48], [10]). The Ericksen-Leslie equations were derived as result of
extending the earlier hydrostatic theory for liquid crystals given by Oseen, Zocher,
and Frank. In 1961, Ericksen [13] provide conservation laws for the hydrodynamic
system for nematic liquid crystals. The system was completed by Leslie [35] in
1968 with the addition of constitutive relations. For our development we assume
the following conservation and balance laws:

(1) conservation of mass
D

Dt

∫
Ω

ρdV = 0; (2.1)

(2) balance of linear momentum
D

Dt

∫
Ω

ρudV =
∫

Ω

ρfbodydV +
∫
∂Ω

fsurfdS; (2.2)

(3) balance of angular momentum
D

Dt

∫
Ω

ρ(x ∧ u)dV =
∫

Ω

ρ(x ∧ fbody + k)dV +
∫
∂Ω

(x ∧ fsurf + l)dS. (2.3)

Where, Ω ⊂ R3, D
Dt is material or convective time derivative, and

ρ = density, x = position,
u = fluid velocity,

fbody = external body force,

fsurf = surface force (stress),
k = external body moment, and

l = surface moment.

If ρ is constant, the Reynolds transport theorem implies that

∇ · u = 0 (incompressibility). (2.4)

The application of the Reynolds transport theorem in the remaining integral balance
laws yields:

ρ
Dui

Dt
= ρf ibody +∇jF ij (point-wise balance of linear momentum) (2.5)

ρKi + εijkF kj +∇jLij = 0 (point-wise balance of angular momentum) (2.6)

where
f isurf = F ijνj and li = Lijνj , ν = normal to ∂Ω

and F = F ij is the stress tensor and L = Lij is the couple stress tensor.
The equations giving mass conservation (incompressiblity), balance of linear mo-

mentum, and balance of angular momentum can be thought of as kinematic equa-
tions (equations (2.4)-(2.6) respectively). That is, they are equations that describe
motion, but they do not explain the origin of the forces generating the motion.
Dynamic equations would also include the constitutive relations for the material
that describe the origins of forces. One constitutive hypothesis that can be made
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for the derivation of the Ericksen-Leslie equations is a rate of work assumption.
Namely, ∫

Ω

ρ(fbody · u + k · ŵ)dV +
∫
∂Ω

(fsurf · u + l · ŵ)dS

=
D

Dt

∫
Ω

(1
2
ρu · u + σF

)
dV +

∫
Ω

DdV
(2.7)

where D is the rate of viscous dissipation per unit volume, σF is the Oseen-Zocher-
Frank elastic energy density, and ŵ is the axial vector (representing local angular
velocity). The Oseen-Zocher-Frank elastic energy density is assumed to be frame-
indifferent, material-symmetric, even, and positive definite (see [54] or [51]). These
assumptions lead to Frank’s Formula (see [54]) for σF namely:

σF (d,∇d) = k1(div d)2 + k2(d · curl d)2 + k3|d ∧ curl d|2

+ (k2 + k4)(tr(∇d)2 − (div d)2).
(2.8)

Using the point-wise balance of linear momentum (2.5) and point-wise balance
of angular momentum (2.6) one may simplify the rate of work assumption (2.7)
through the application of the Reynolds transport theorem to find the point-wise
relation:

F ij∇juj + Lij∇jwi − wiεijkF kjs =
DσF
Dt

+D. (2.9)

Here, w = ŵ − 1
2∇∧ u is the relative angular velocity.

What remains is to find specific forms of the stress tensor F ijs and the couple
stress tensor Lij . This is done using Ericksen’s identity [13]:

εijk
(
dj
∂σF
∂dk

+∇pdj
∂σF
∂∇pdk

+∇pdj
∂σF
∂∇kdp

)
= 0. (2.10)

One finds that the stress tensor F ij and the couple stress tensor Lij may take the
forms

F ij = −pδij − ∂σF
∂∇jdp

∇idp + F̃ ij

Lij = εiqpdq
∂σF
∂∇jdp

+ L̃ij .

(2.11)

Here, p is the pressure arising from incompressibility and F̃ ij and L̃ij are the
possible dynamic contributions. Thus, one has the following expression for D:

F̃ ij∇jui + L̃ij∇jŵi + ŵiεijkF̃ kj = D. (2.12)

To find constitutive relations for the dynamic terms F̃ ij , L̃ij it is assumed that
the dissipation D is positive. That is,

F̃ ij∇jui + L̃ij∇jŵi + ŵiεijkF̃ kj = D ≥ 0.

This assumption along with material-frame indifference, nematic symmetry, and
linear dependence on di, N i and Sij leads to

L̃ij = 0

F̃ ij = α1d
kSkpdpdidj + α2N

idj + α3d
iN j + α4S

ij + α5d
jSikdk + α6d

iSjkdk.

(2.13)
Where α1, . . . , α6 are the Leslie viscosities and

Sij =
1
2

(uij + uji ) = rate of strain tensor,
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W ij =
1
2

(uij − u
j
i ) = vorticity tensor,

N i =
Ddi

Dt
−W ijdj = co-rotational time flux of the director d.

Further manipulations, including a second application of Ericksen’s identity, and
the fact that didij = 0 lead to the full (isothermal) Ericksen-Leslie equations that
we summarize now.

Summary of the Ericksen-Leslie equations: We may summarize the Ericksen-
Leslie equations in component form as

ρ
Dui

Dt
= ρF i − (p+ σF )i + g̃jdji +Gjd

j
i + F̃ ijj

uii = 0(∂σF
∂dij

)
j
− ∂σF

∂di
+ g̃i +Gi = λdi

didi = 1.

(2.14)

with constitutive relations for the viscous/dynamic stress tensor F̃ ij and vector g̃i

given by

t̃ij = α1d
kSkpdpdidj + α2N

idj + α3d
iN j + α4S

ij + α5d
jSikdk + α6d

iSjkdk

g̃i = −γ1N
i − γ2A

ipdp.

(2.15)
and

f ibody = external body for per unit mass,

Gi = generalized body force,
ρ = density, p = pressure,

σF = Oseen-Zocher-Frank elastic energy density for nematics,

λ = Lagrange multiplier corresponding to the constraint didi = 1,
γ1 = α3 − α2 ≥ 0

γ2 = α3 + α2 = α6 − α5 = Parodi’s relation,

Sij =
1
2

(uij + uji ) = rate of strain tensor,

W ij =
1
2

(uij − u
j
i ) = vorticity tensor,

N i =
Ddi

Dt
−W ijdj = co-rotational time flux of the director d.

(2.16)

3. Penalized simplifications of the Ericksen-Leslie equations

Intuitively, based upon the similarities between isotropic fluid flow modeled by
the Navier-Stokes equation and the Ericksen-Leslie equations, early simplifications
considered the Ericksen-Leslie equations as a system where the microscopic align-
ment is governed by the transported heat flow of harmonic maps into the sphere
and the macroscopic fluid behavior is governed by the Navier-Stokes equations.
This intuitive picture first appeared in the survey by Lin [40] and was in explored
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in detail by Lin and Liu in [38]. Lin and Liu in [38] gave a particular simplifica-
tion of the Ericksen-Leslie equations inspired by the then recent work of Chen and
Struwe [9], [8] on the heat flow harmonic maps. They provided a formulation of the
Ericksen-Leslie equations that avoided the constraint that the director must have
unit length. Specifically they studied the system

ut + (u · ∇)u = ν∆u−∇ · (pI + λ∇d�∇d) (3.1)

∇ · u = 0 (3.2)

dt + (u · ∇)d = γ(∆d− f(d)). (3.3)

in Ω × (0,∞) for Ω ⊂ Rm, m = 2, 3. Here ∇d � ∇d = dijd
i
k. To arrive at this

system:
(1) The elastic constants in Oseen-Zocher-Frank elastic energy density are set

as k1 = k2 = k3 = 1 and k4 = 0. This reduces the Oseen-Zocher-Frank
elastic energy to the simpler Dirichlet energy 1

2

∫
Ω
|∇d|2

(2) The sphere constraint didi = 1 is handled via the penalization F (d) =
1

4ε2 (|d|2 − 1)2. That is, the Oseen-Zocher-Frank elastic energy is replaced
by the functional

∫
Ω

1
2 |∇d|2 + 1

4ε2 (|d|2 − 1)2.
(3) It is assumed for Leslie viscosities α1, . . . , α6 in (2.15) that α1 = α5 = α6 =

0. Hence the Ericksen-Leslie equations are reduced to equations having
only three constants ν, γ, and λ

(4) Body force terms fbody, Gi and other terms are removed.
For the system (3.1)-(3.3), Lin and Liu demonstrated in [38] the following:

Theorem 3.1 (Existence global weak solutions). Under the assumptions that
u0(x) ∈ L2(Ω) and d0(x) ∈ H1(Ω) with d0|∂Ω ∈ H3/2(∂Ω), the system (3.1)-(3.3)
has a global weak solution (u,d) such that

u ∈ L2(0, T,H1(Ω)) ∩ L∞(0, T, L2(Ω))

d ∈ L2(0, T,H2(Ω)) ∩ L∞(0, T,H1(Ω))

for all T ∈ (0,∞).

Theorem 3.2 (Wellposedness for large viscosity). Problem (3.1)-(3.3) has a unique
global classical solution (u,d) provided that u0(x) ∈ H1(Ω), d0(x) ∈ H2(Ω),
dim(Ω) = 2, 3, and ν ≥ ν0(λ, γ,u0,d0).

Many others have studied the system (3.1)- (3.3). Some of the major contribu-
tions have been the following:

(1) Partial Regularity. In [39], Lin and Liu also demonstrated partial regular-
ity of suitable weak solutions to (3.1)-(3.3) in Ω ⊂ R3. This extended the work of
Caffarelli, Kohn, and Nirenberg on the partial regularity of suitable weak solutions
for the Navier-Stokes equations (see [6]). In particular, Lin and Liu were able to
show that for sufficiently smooth initial and boundary data that there exists a suit-
able weak solution such that the singular set of this solution has one-dimensional
parabolic Hausdorff measure zero. Specifically, a suitable weak solution (u,d) to
(3.1)- (3.3) in an open set D ⊂ R3 ×R i. satisfies (3.1)- (3.3) weakly, ii. (u,d) has
the bounds ∫

D∩(R3×t)
(|u|2 + |∇d|2 + F (d))dx < E1 = constant
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D

(|u|2 + |∆d− f(d)|)dxdt < E2 = constant

and, iii. (u,d) satisfies the generalized energy inequality

2
∫ T

0

∫
Ω

(|∇u|2 + |∇2d|2)φdxdt

≤
∫ T

0

∫
Ω

(|u|2 + |∇u|2)(φt + ∆φ)dxdt

+
∫ T

0

∫
Ω

(|u|2 + |∇u|2 + 2P )u · ∇φdxdt

+
∫ T

0

∫
Ω

((u · ∇)d) · ∇φdxdt+
∫ T

0

∫
Ω

∇f(d)∇dφdxdt.

(3.4)

(2) Well-posedness of penalized Ericksen-Leslie equations. Lin and Liu
also examined the existence of global weak solutions to the Ericksen-Leslie equations
in the late 1990s in [41]. Their main result was that under assumption u0 ∈ L2(Ω)
and d0 ∈ H1(Ω) with d0|∂Ω ∈ H3/2(∂Ω), the initial and boundary-value problem
consisting of a penalized version of (2.14); that is,

ρ
Dui

Dt
= −(p− σLL)i + F̃ ijj

uii = 0(∂σF
∂dij

)
j
− ∂σF

∂di
+ g̃i = 0

(3.5)

Here didi = 1 has been excluded, and the energy density must be modified is
modified. For example, σF = 1

2 |∇d|
2+ 1

4ε2 (1−|d|2)2. The system (3.5) retains many
of the structures present in (2.14). Lin and Liu showed under certain assumptions
that the system (3.5) has a global weak solution (u,d) such that

u ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω))

d ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1(Ω))

for all T ∈ (0,∞). To achieve this result Lin and Liu required the following as-
sumptions on the Leslie viscosities to insure control of the norm of d:

α1, α4, α5 + α6 > 0, γ1 < 0, and γ2 = 0. (3.6)

This simplification, as indicated by the authors, may have no physical meaning.
Similar equations for the hydrodynamic flow of nematic liquid crystals were studied
using different techniques by Coutand and Shkoller [12].

Very recently, Wu, Xu, and Liu in [59] continued the investigation of the well-
posedness of the penalized Ericksen-Leslie system. They were able to examine the
general penalized Ericksen-Leslie system with out un-natural assumption on the
Leslie viscosities, namely, γ2 = 0. Their main result [59, Theorem 4.1] states that
the system (3.5) admits a unique global solution for larger viscosity and initial data
(u0,d0) ∈ V ×H2.
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Other simplified models of the hydrodynamical flow of nematic liquid crystals
along the lines of the Lin–Liu equations (3.1)- (3.3) have been proposed and ana-
lyzed. In the works [52, 58, 7], the authors considered

∇ · u = 0
ut + u · ∇u = ∇ · T + F

dt + u · ∇d− αd · ∇u + (1− α)d · ∇Tu = γ(∆d−∇dW (d))
(3.7)

with

T = νS − λ
[
∇d�∇d + α(∆d−∇dW (d))⊗ d− (1− α)d⊗ (∆d−∇dW (d))

]
S = ν(∇u +∇Tu)

for (u,d, p) : Ω × (0, T ) → R3 × R3 × R where u represents the velocity field, d
represents the averaged macroscopic/continuum orientation, p is the hydrodynamic
pressure. The constants ν, λ, and γ represent the viscosity, ratio of kinetic to
potential energy, and the macroscopic relaxation time or Deborah number. The
parameter α ∈ [0, 1] is related to the shape of the liquid crystal molecule—α = 1
yields disc-like molecules, α = 1/2 yields spherical molecules, and α = 1 yields rod
like molecules.

For this model, it is shown in [59] (Theorem 2.1) that under appropriate as-
sumptions on initial data there exists global weak solutions with periodic boundary
conditions. The authors of [7] have a similar result, but with appropriate Dirichlet
and Neumann boundary data for the velocity field and the orientation field.

(3) Limits of sequences of solutions to the penalized equations. In [41]
(Theorem 7.1) it was shown, up to a subsequence, solutions (uε,dε) of the penalized
Ericksen-Leslie equations converge strongly in L2(0, T ;L2(Ω)) × L2(0, T ;H1(Ω))
to the sharp system (2.14) with the addition of matrix defect measure appearing
with the other stress terms. Whether this defect measure is identically zero is an
outstanding and difficult open problem.

4. Non-penalized simplifications of the Ericksen-Leslie equations

Beginning in the late 1980s Hardt, Kinderlehrer and Lin started the mathemat-
ical analysis of static solutions to the Ericksen-Leslie equations or minimizers of
the Oseen-Zocher-Frank elastic energy functional [19]. The equations for static so-
lutions follow naturally from the Ericksen-Leslie equations by setting the velocity
field u to zero. Such equations are the Euler-Lagrange equations of the Oseen-
Zocher-Frank elastic energy functional (

∫
Ω
σF ). Hardt, Kinderlehrer, and Lin used

direct methods to study the Oseen-Zocher-Frank elastic energy functional. They es-
tablished existence and partial regularity of minimizers of the Oseen-Zocher-Frank
functional. To be precise, the major results of their work are summarized in the
following two theorems.

Theorem 4.1 (Existence of minimizers). For d0 : ∂Ω → S2 a Lipshitz map, the
admissible class of minimizers

A(d0) := {d ∈ H1(Ω,S2) : d0 = trace of d on ∂Ω}
is non-empty. Furthermore, for any d0 : ∂Ω→ S2 there exists d ∈ A(d0) such that

F [d] = inf
d∈A(d0)

∫
Ω

σF (d,∇d).
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Theorem 4.2 (Interior partial regularity). If d ∈ H1(Ω,S2) is a minimizer of
F , then d is analytic on Ω \ Z for some relatively closed subset Z of Ω which has
one-dimensional Hausdorff measure zero.

The work of Hardt, Kinderlehrer and Lin [19] inspired many other mathemat-
ical works on the static theory of liquid crystals. Hardt and Lin expanded the
study of defects of nematics in [20]. The authors Cohen [11], Kinderlehrer, Ou [31],
and Hélein [29] examined the stability of static solutions. Lin, Luskin, Alouges,
Ghidaglia, and others explored static solutions of nematic liquid crystals by numer-
ically optimizing the Oseen-Zocher-Frank elastic energy functional (see [47], [1],
[2]). There remain open problems for the static theory of liquid crystals, many of
which revolve around better understanding of the nature of the Oseen-Zocher-Frank
energy functional. Though, not the focus of this survey it worth mentioning a few
very interesting problems for the static theory of liquid crystals.

(1) Monotonicity of Oseen-Zocher-Frank functional. To the best of the
knowledge of the author there is no mathematical proof of monotonicity or example
demonstrating the lack of monotonicity. That is, it is unknown that if d is a static
solution (critical point of the Oseen-Zocher-Frank functional) whether one has∫

Br(x0)

σF (d,∇d) ≤
∫
BR(x0)

σF (d,∇d), 0 < r ≤ R.

As mentioned in the survey [44] by F.H. Lin and C. Liu (without reference), there
exist reliable computations that indicate that the Oseen-Zocher-Frank energy is
monotone.

(2) Numerical exploration of static solutions of nematic liquid crystals.
Beginning with the work Lin and Luskin [47] in the late 1980s many mathemati-
cians have explored techniques for numerical solution of the harmonic map problem.
Namely, Lin and Luskin explored harmonic maps into spheres via relaxation. Start-
ing in the mid 1990s Alouges [1] presented a creative and efficient algorithm to find
harmonic maps by minimization of the Dirichlet energy functional into spheres or
convex targets. The algorithm transforms the numerical difficulty of constraining
the range to a manifold (a nonlinear constraint) present in numerical solution of har-
monic maps into a more tractable constraint on tangent space (a linear constraint).
One of the key properties that allows the Alouges algorithm to work is the fact that
projection onto the target (say the sphere) decreases the Dirichlet energy. The same
is not true for the Oseen-Zocher-Frank functional. Alouges and Ghidaglia were able
to deal with the more general Oseen-Zocher-Frank functional by constructing aux-
illiary functionals that matched the Oseen-Zocher-Frank functional when properly
restricted. Alouges and Ghidaglia in [2] were unable to provide a proof of the con-
vergence of the Alouges algorithm for the Oseen-Zocher-Frank functional. To the
best of the knowledge of the author the program of Alouges and Ghidaglia remains
unfinished.

More recently, Bartels re-imagined the Alouges algorithm in a finite element
context [3]. Bartels found that there must be a restriction upon the finite element
discretization in order to achieve the energy decreasing property. Bartels demon-
strated that the use of acute finite elements yield an energy decreasing algorithm.
The work [3] only explores the Dirichlet energy. A similar analysis of the more
general Oseen-Zocher-Frank functional may be possible if suitable constraint on
the discretization can be found.



158 J. L. HINEMAN EJDE-2014/CONF/21

Although, it is a natural transition to consider the dynamic non-penalized Er-
icksen-Leslie equations (2.14) such an analysis has only recently begun and is as
result still incomplete. Here we discuss known results a non-penalized Lin–Liu
type system (3.1)-(3.3). For this system there are fairly complete results for two
dimensional domains and preliminary results in three dimensions. For the two-
dimensional work, we discuss the work of Lin, Lin and Wang [43] and for three
dimensions, we discuss the work of Hineman and Wang [22]. One should also see
Hong [23] and Xu-Zhang [60] and Hong–Xin [24].

Lin, Lin, and Wang [43] analyzed the simplified Ericksen-Leslie system

ut + u · ∇u− ν∆u +∇P = −λ∇ · (∇d� d) (4.1)

∇ · u = 0 (4.2)

dt + u · ∇d = γ(∆d + |∇d|2d) (4.3)

for u : Ω→ R2 and d : Ω→ S2 where Ω ⊂ R2 and subject to

u0 ∈ H,d0 ∈ H1(Ω,S2), and d0 ∈ C2,β(∂Ω,S2) for some β ∈ (0, 1). (4.4)

Where,

H = closure of C∞0 (Ω,R2) ∩ {u : ∇ · u = 0} in L2(Ω,R2),

J = closure of C∞0 (Ω,R2) ∩ {u : ∇ · u = 0} in H1(Ω,R2), and

H1(Ω,S2) = {d ∈ H1(Ω,R3) : d(x) ∈ S2 a.e. x ∈ Ω}.
They proved the following result.

Theorem 4.3 (Regularity). For 0 < T < +∞ assume

u ∈ L∞([0, T ],H) ∩ L2([0, T ],J)

and d ∈ L2([0, T ], H1(Ω,S2)) is a suitable weak solution of (4.1)-(4.3) with (4.4). If
in addition, d ∈ L2([0, T ], H2(Ω)), then (u,d) ∈ C∞(Ω× (0, T ])∩C2,1

β (Ω̄)× (0, T ].

Theorem 4.4 (Global Weak Solutions of Partial Regularity). For data satisfying
(4.4), there exist global suitably weak solutions u ∈ L∞([0,∞),H) ∩ L2([0,∞),J)
and d ∈ L∞([0,∞), H1(Ω,S2)) of the equations (4.1)-(4.3), which has the following
properties:

(1) There exists L ∈ N depending only on (u0,d0) and 0 < T1 < · · · < TL,
1 ≤ i ≤ L, such that

(u,d) ∈ C∞(Ω× ((0,∞) \ {Ti}Li=1)) ∩ C2,1
β (Ω̄× ((0,∞) \ {Ti}Li=1)).

(2) Each singular time Ti, 1 ≤ i ≤ L, can be characterized by

lim inf
t↑Ti

max
x∈Ω̄

∫
Ω∩Br(x)

(|u|2 + |∇d|2)(y, t)dy ≥ 8π, ∀r > 0.

Moreover, there exist xim → xi0 ∈ Ω, ti ↑ Ti, rim ↓ 0 and a non-constant smooth
harmonic map ωi : R2 → S2 with finite energy such that as m→∞,

(uim,d
i
m)→ (0, ωi) in C2

loc(R2 × [∞, 0]),

where

uim(x, t) = rimu(xim + rimx, t
i
m + (rim)2t), dim(x, t) = d(xim + rimx, t

i
m + (rim)2t).

(3) Set T0 = 0. Then, for 0 ≤ i ≤ L− 1,

|dt|+ |∇2d| ∈ L2(Ω× [Ti, Ti+1 − ε]), |ut|+ |∇2u| ∈ L4/3(Ω× [Ti, Ti+1 − ε])
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for any ε > 0, and for any 0 < TL < T <∞,

|dt|+ |∇2d| ∈ L2(Ω× [TL, T ]), |ut|+ |∇2u| ∈ L4/3(Ω× [TL, T ]).

(4) There exist tk ↑ ∞ and a harmonic map d∞ ∈ C∞(Ω,S2)∩C2,β(Ω̄,S2) with
d∞ = d0 on ∂Ω such that u(·, tk)→ 0 in H1(Ω), d(·, tk)→ d∞ weakly in H1(Ω),
and there exist l ∈ N, points {xi}li=1 ∈ Ω, and {mi}li=1 ⊂ N such that

|∇d(·, tk)|2dx→ |∇d∞|2dx+
l∑
i=1

8πmiδxi .

(5) If (u0,d0) satisfies ∫
Ω

(|u0|2 + |∇d0|2) ≤ 8π, (4.5)

then (u,d) ∈ C∞(Ω× (0,∞))∩C2,1
β (Ω̄× (0,∞)). Moreover, there exist tk ↑ ∞ and

d∞ ∈ C∞(Ω,S2) ∩ C2,β(Ω̄,S2) with d∞ = d0 on ∂Ω such that (u(·, tk),d(·, tk))→
(0,d∞) in C2(Ω).

Though the system treated Lin, Lin and Wang in [43] is a greatly simplified
version of the Ericksen-Leslie equations it preserves the sphere constraint on the
director. This nonlinear constraint seems to make it impossible apply a Galerkin-
type technique to the problem. To prove their main theorem on the local existence
(Theorem 4.4) the authors of [43] approximated weak solutions with strong solutions
that they obtained through fixed point iteration. The proof is completed by using
energy inequalities and the regularity result Theorem 4.3 to determine the maximal
singular time. This method was originally used by Leray in [34] to prove local
existence (and uniqueness) of weak solutions to the Navier-Stokes equation. Many
others have explored and extended the techniques of Leray [50, 16, 30, 15, 18, 48, 33].

The work Lin, Lin, and Wang in [43] did not include results on the uniqueness
of weak solutions of (4.1)-(4.3) but indicated that they believed the solution to be
unique. A proof the uniqueness of solution to (4.1)-(4.3) was given by Lin and
Wang [45], specifically, they proved the following result.

Theorem 4.5. For 0 < T ≤ +∞, u0 ∈ L2(Ω,R2) with ∇·u0 = 0 and d0 : Ω→ S2

with ∇d0 ∈ L2(Ω,R6), suppose that for i = 1, 2 ui ∈ L∞t L2
x ∩L2

tH
1
x(Ω× [0, T ],R2),

∇Pi ∈ L4/3
t L

4/3
x (Ω× [0, T ],R2), and di ∈ L∞t Ḣ1

x ∩ L2
t Ḣ

2
x(Ω× [0, T ],S2) are a pair

of weak solution to (4.1)-(4.3) under either
(1) when Ω = R2, the same initial condition:

(ui,di)|t=0 = (u0,d0), i = 1, 2,

(2) or, when Ω ⊂ R2 is a bounded domain, the same initial and boundary
conditions:

(ui,di) = (u0, d0), on Ω× {0}, (ui,di) = (0,d0), on ∂Ω× (0, T ), i = 1, 2

with d0 ∈ C2,β(∂Ω,S2) for some β ∈ (0, 1).
Then (u1,d1) ≡ (u2,d2) in Ω× [0, T ).

An alternative method for uniqueness of solutions in Serrin’s class [50] to (4.1)-
(4.3) will be discussed in the forthcoming article by Huang and Wang [28]. This
work builds upon the work of Huang and Wang on the uniqueness of heat flow of
harmonic maps investigated in [27].
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As this work is still very recent, there remain many open problems. In the
two-dimensional case it would it would still benefit our understanding of the full
Ericksen-Leslie system to re-introduce various terms into the simplified equations
(4.1)-(4.3). The problems facing closer approximations of the non-penalized Erick-
sen-Leslie will require different tools than were employed for the penalized Ericksen-
Leslie equations (3.5) described above.

5. New findings in three dimensions

Recently, the author and Wang considered the Cauchy problem for a simplified
hydrodynamic system modeling the flow of nematic liquid crystal materials in R3

[21]. Specifically, they considered the system for (u, P,d) : R3×[0, T )→ R3×R×S2,
0 < T ≤ ∞ given by

ut + u · ∇u− ν∆u +∇P = −λ∇ · (∇d�∇d), in R3 × (0, T ),

∇ · u = 0, in R3 × (0, T ),

dt + u · ∇d = γ(∆d + |∇d|2d), in R3 × (0, T ),

(u,d) = (u0,d0), on R3 × {0}

(5.1)

for a given initial data (u0,d0) : R3 → R3 × S2 with ∇ · u0 = 0. Here again
u : R3 → R3 represents the velocity field of the fluid, d : R3 → S2 is a unit
vector field representing the macroscopic molecular orientation of the nematic liquid
crystal material, P : R3 → R represents the pressure function. The constants ν, λ,
and γ are positive constants that represent the viscosity of the fluid, the competition
between kinetic and potential energy, and the microscopic elastic relaxation time
for the molecular orientation field.

Because of the super-critical nonlinear term ∇· (∇d�∇d) in (5.1)1, it has been
an outstanding open problem whether there exists a global Leray-Hopf type weak
solution to (5.1) in R3 for any initial data (u0,d0) ∈ L2(R3,R3) × Ẇ 1,2(R3, S2)
with ∇ · u0 = 0. That is, a solution to (5.1) for which one has:

(1) (u, P,d) is a unique weak solution to (5.1).
(2) (u, P,d) satisfies the natural energy inequality.

Preceding this work, it has been shown that in R3 there exists a local, unique,
strong solution to (5.1) for any initial data u0 ∈W s,2(R3) and d0 ∈W s+1,2(R3,S2)
for s > 3 with ∇ · u0 = 0, see for example [57]. Huang–Wang in[26] established
a blow up criterion for local strong solutions to (5.1), similar to the Beale-Kato-
Majda criterion for the Navier-Stokes equation (see [5]). Li-Wang [36] obtained the
global existence of strong solutions for to (5.1) with small initial data in certain
Besov spaces. In [56], Wang obtained the global (or local) well-posedness of (5.1)
for initial data (u0,d0) belonging to the space BMO−1 × BMO with ∇ · u0 = 0,
which is a invariant space under parabolic scaling associated with (5.1), with small
norms.

The main contribution of this work is the local well-posedness of (5.1) for any
initial data (u0,d0) such that (u0,∇d0) ∈ L3

uloc(R3). Henceforth L3
uloc(R3) denotes

the space of uniformly locally L3-integrable functions. It turns out that L3
uloc(R3) is

also invariant under parabolic scaling associated with (5.1). Similar scaling symme-
try for the Navier-Stokes equation has inspired exploration of the Cauchy problem
with initial data in various Lp spaces (see for example [50, 6, 30, 15]). Uniform local
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spaces space have also been employed in a number of natural ways in the analysis
of the Navier-Stokes equation (see [4, 33]).

Now we give the definition of L3
uloc(R3). The readers can consult the monograph

by Lemarié-Rieusset [33] for applications of the space L3
uloc(R3) to the Navier-Stokes

equation.

Definition 5.1. A function f ∈ L3
loc(R3) belongs to the space L3

uloc(R3) consisting
of uniformly locally L3-integrable functions, if there exists 0 < R < +∞ such that

‖f‖L3
R(R3) := sup

x∈R3

(∫
BR(x)

|f |3
)1/3

< +∞. (5.2)

For an open set U ⊂ R3, f ∈ L3
uloc(U) if fχU ∈ L3

uloc(R3), here χU is the charac-
teristic function of U .

It is clear that

• L3(R3) ⊂ L3
uloc(R3).

• If f ∈ L3
uloc(R3), then ‖f‖L3

R(R3) is finite for any 0 < R < +∞. For any
two 0 < R1 ≤ R2 <∞, it holds

‖f‖L3
R1

(R3) ≤ ‖f‖L3
R2

(R3) .
(R2

R1

)
‖f‖L3

R1
(R3), ∀f ∈ L3

uloc(R3). (5.3)

• L3
uloc(R3) ⊂ ∩0<R<∞BMO−1

R (R3) (see [32] or [56]). Moreover, for
any 0 < R <∞, it holds

[f ]BMO−1
R (R3) . ‖f‖L3

R(R3), ∀ f ∈ L3
uloc(R3). (5.4)

Theorem 5.2. There exist ε0 > 0 and τ0 > 0 such that if u0 : R3 → R3, with
∇ · u0 = 0, and d0 : R3 → S2 satisfies, for some 0 < R < +∞ and e0 ∈ S2,

|||(u0,∇d0)|||L3
R(R3) := sup

x∈R3

(∫
BR(x)

|u0|3 + |∇d0|3
)1/3

≤ ε0,

lim
K↑∞

‖d0 − e0‖L3
R(R3\BK) ≤ ε0,

(5.5)

then there exist T0 ≥ τ0R2 and a unique solution (u,d) : R3× [0, T0)→ R3×R×S2

of (5.1) that enjoys the following properties:
(i) For t ↓ 0, (u(t),d(t))→ (u0,d0) and ∇d(t)→ ∇d0 in L3

loc(R3).
(ii)

(u,d) ∈ ∩0<δ<T0C
∞
b (R3 × [δ, T0 − δ],R3 × S2),

(u,∇d) ∈ ∩0<T ′<T0C
0
∗([0, T

′], L3
uloc(R3)).

(iii)
|||(u(t),∇d(t))|||L∞([0,τ0R2],L3

R(R3)) ≤ Cε0. (5.6)

(iv) If T0 < +∞ is the maximum time interval then it must hold

lim sup
t↑T0

|||(u(t),∇d(t))|||L3
r(R3) > ε0, ∀ 0 < r <∞. (5.7)

Remark 5.3. The ideas to prove Theorem 5.2 are motivated by those employed
by [43]. There are six main ingredients:
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(1) Approximate the initial data (u0,d0) strongly in Lploc ∩W
1,p
loc (R3) by a se-

quence of smooth initial data
{

(uk0 ,d
k
0)
}
⊂ C∞(R3,R3×S2)∩(Lp(R3,R3)×

Ẇ 1,p(R3,S2)) for p = 2, 3, with ∇·uk0 = 0 and ‖(uk0 ,∇dk0)‖L3
1(R3) uniformly

small for all k (see Lemma 5.7 below). We would like to point out that the
existence of such an sequence is highly nontrivial.

(2) Apply the fixed-point argument, similar to that by Lin-Lin-Wang [43], to
obtain a sequence of smooth solutions (uk, P k,dk) of (5.1) in R3 × [0, Tk]
for 0 < Tk < +∞, with the initial data (uk0 ,d

k
0), such that (uk,dk) ∈

C∞(R3 × [0, Tk],R3 × S2) ∩ C([0, Tk], L2(R3)× Ẇ 1,2(R3)).
(3) Utilize the local L3-energy inequality (5.14) for (uk, P k,dk) to show that

there is a uniform lower bound τ0 > 0 for Tk such that sup0≤t≤τ0 ‖(u
k(t),

∇dk(t))‖L3
1(R3) is uniformly small for all k. It turns out that (uk,∇dk) ∈

C([0, Tk], L2(R3) × L2(R3)) plays an important role in the estimate of P k

in L
3/2
loc (R3).

(4) Apply the ε0-regularity Theorem 5.14, which is analogous to that by Caffa-
relli-Kohn-Nirenberg [6] on the Navier-Stokes equation, to obtain a priori
derivative estimates of (uk,dk) in R3 × [0, τ0]. In order to handle the
nonlinearity ∇ · (∇dk �∇dk) in (5.1)1, we do assume an additional small-
ness condition of ‖∇dk‖L∞t L3

x(P1) in Theorem 5.14. Then take a limit of
(uk, P k,dk) to obtain the local existence of L3

uloc-solution (u, P,d) of (5.1)
in R3 × [0, τ0].

(5) Apply Theorem 5.14 again to characterize the finite maximal time interval
T0 of (u, P,d).

(6) Adapt the proof of [56] to show that the uniqueness holds for L3
uloc-solutions

that satisfy the same properties as the solution (u, P,d) constructed as
above.

Remark 5.4. Since the exact values of ν, λ, γ do not play a role in the proof of
Theorem 5.2, we may henceforth assume ν = λ = γ = 1.

For a solution (u, P,d) to (5.1), denote its L3-energy by

E3(u,∇d)(t) =
∫

R3
(|u(t)|3 + |∇d(t)|3), t ≥ 0.

Concerning the global well-posedness of (5.1), we have the following result.

Theorem 5.5. There exists an ε0 > 0 such that if

(u0,d0) ∈ L3(R3,R3)× Ẇ 1,3(R3,S2),

with ∇ · u0 = 0, satisfies
E3(u0,∇d0) ≤ ε30, (5.8)

then there exists a unique global solution (u,d) : R3× [0,∞)→ R3×R×S2 of (5.1)
such that (u,d) ∈ C∞(R3×(0,+∞))∩C([0,∞), L3(R3)×Ẇ 1,3(R3)), E3(u,∇d)(t)
is monotone decreasing for t ≥ 0, and

‖∇mu(t)‖L∞(R3) + ‖∇m+1d(t)‖L∞(R3) ≤
Cε0
t
m
2
, ∀ t > 0, m ≥ 0. (5.9)

Remark 5.6. The first conclusion of Theorem 5.5 has already been proven by Lin
[46], based on refinement of the argument by Wang in [56].
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In the remainder of this section we discuss some of the details of the proof of
Theorem 5.2 outlined in Remark 5.3. For complete details the reader is encouraged
to consult the work of Hineman and Wang [22].

Step 1: Approximation. The first two ingredients listed in the Remark 5.3
involve the approximation of rough initial data by smooth initial data. This is
precisely

Lemma 5.7. For a sufficiently small ε0 > 0, let (u0,d0) : R3 → R3 × S2, with
divergence free u0 ∈ L3

uloc(R3), satisfy, for some e0 ∈ S2,

|||(u0,∇d0)|||L3
1(R3) ≤ ε0 and lim

K→∞
‖d0 − e0‖L3

1(R3\BK) ≤ ε0, (5.10)

then there exist

{(uk0 ,dk0)} ⊂ C∞(R3,R3 × S2) ∩ ∩3
p=2(Lp(R3,R3)× Ẇ 1,p(R3,S2))

such that the following properties hold:
(i) ∇ · uk0 = 0 in R3 for all k ≥ 1.
(ii) As k →∞,

(uk0 ,d
k
0)→ (u0,d0) and ∇dk0 → ∇d0 in Lploc(R3) for p = 2, 3. (5.11)

(iii) There exist C0 > 0 and k0 > 1 such that for any k ≥ k0,

|||(uk0 ,∇dk0)|||L3
1(R3) ≤ C0ε0. (5.12)

Remark 5.8. The proof of Lemma 5.7 is non-trivial and technical. It naturally
requires separate approximations for velocity initial data u0 and the director initial
data d0. The approximation of u0 is similar to [4, Theorem 1.4]. Both approxima-
tions make critical use of L3

uloc.

The fixed point argument for local existence of strong solutions of Lin-Lin-Wang
[43] is not dimension dependent. Thus modifying the solution space X of Lin-Lin-
Wang in [43, Theorem 3.1] one can consider for K > 0, 0 < α < 1 the space

XT =
{

(u,d) : R3 × [0, T ]→ R3 × R3 : ∇ · u = 0,

∇2f, ∂tf ∈ Cb(R3 × [0, T ]) ∩ Cα(R3 × [0, T ]),

(u,d)|t=0 = (uk0 ,d
k
0), ‖(u− uk0 ,d− dk0)‖C2,1

α (R3×[0,1]) ≤ K
}
,

Such considerations allow us to find solutions (uk, P k,dk) of (5.1) in R3 × [0, Tk]
for 0 < Tk < +∞, and the initial data (uk0 ,d

k
0), such that (uk,dk) ∈ C∞(R3 ×

[0, Tk],R3 × S2) ∩ C([0, Tk], L2(R3)× Ẇ 1,2(R3)). These smooth solution will serve
as approximate solutions to (5.1) with (u0,∇d0) ∈ L3

uloc(R3).

Step 2: Uniform lower bounds. The next to step in the proof of Theorem 5.2
is to find uniform lower bounds on the intervals of existence for the approximating
smooth solutions. That is we need to verify the claim:

Claim 5.9. There exists τ0 > 0 such that if Tk is the maximal time interval for
the smooth solutions (uk,dk) obtained by approximation process described in Step
1 (that is, from fixed-point iteration), then Tk ≥ τ0, and one has that

sup
0≤t≤τ0

|||(uk(t),∇dk(t)|||3L1/2(R3) ≤ 2C3
0ε

3
0. (5.13)

To verify Claim 5.9, we employ a local L3 energy inequality, specifically:
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Lemma 5.10. There exists C > 0 such that for 0 < T ≤ ∞, if (u,d) ∈ C∞(R3 ×
[0, T ),R3 × S2) ∩ C([0, T ), L2(R3) × Ẇ 1,2(R3)) is a smooth solution of the system
(5.1), then

d

dt

∫
R3

(|u|3 + |∇d|3)φ2 +
∫

R3

(
|∇(|u|3/2φ)|2 + |∇(|∇d|3/2φ)|2

)
≤ C

∫
R3

(|u|3 + |∇d|3)|∇φ|2 + CR−2 sup
y∈R3

(∫
BR(y)

|u|3 + |∇d|3
)5/3

+ C
(∫

sptφ

|u|3 + |∇d|3
)2/3

∫
R3

(
|∇(|u|3/2φ)|2 + |∇(|∇d|3/2φ)|2

)
,

(5.14)

holds for any φ ∈ C∞0 (R3), with 0 ≤ φ ≤ 1, the support of φ is sptφ = BR(x0) for
some R > 0 and x0 ∈ R3, and |∇φ| ≤ 4R−1.

Outline of proof. Proof has three basic steps:
(1) To obtain the ∇d estimates, start by multiplying (5.1)3 by the test function

φ2|∇d|d and integrating by parts. Using standard techniques one may
estimate the local L3 energy of ∇d.

(2) Similarly, multiplying (5.1)1 by the test function φ2|u|u and integrating by
parts one may estimate the local L3 energy of u.

(3) Estimate the pressure P . This step requires significant work which is
recorded in Lemma 5.11.

�

Lemma 5.11. Under the same assumptions as in Lemma 5.10, assume that φ ∈
C∞0 (R3) satisfies 0 ≤ φ ≤ 1, spt φ = BR(x0) for some x0 ∈ R3, and |∇φ| ≤ 2R−1.
Then there exists C > 0 such that for any t ∈ (0, T ) there is c(t) ∈ R so that the
following estimate holds(∫

R3
|P (t)− c(t)|3φ3

)1/3

≤ C
(∫

sptφ

|u(t)|3 + |∇d(t)|3
)1/6

(∫
R3

(|∇(|u(t)|3/2φ)|2 + |∇(|∇d(t)|3/2φ)|2
)1/2

+ CR−1 sup
y∈R3

(∫
BR(y)

|u(t)|3 + |∇d(t)|3
)2/3

.

(5.15)

Outline of proof. The proof of the pressure estimate relies on writing P in terms of
Riesz transforms and making a commutator estimate. That is, one has

−∆P = ∇2
jk(gjk), gjk := ujuk +∇jd · ∇kd,

and so
P = −RjRk(gjk)

where Rj is the j-th Riesz transform on R3.
One proceeds by writing

(P − c)φ = −RjRk(gjk)φ− cφ

= −RjRk(gjkφ)− [φ,RjRk](gjk)− cφ
(5.16)

and estimating each part separately. �
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Step 3: Uniform estimation of (uk,dk). For the approximation sequence
(uk, P k,dk) one has the pressure Poisson equation

−∆P k = div2(u⊗ u +∇dk �∇dk) in R3.

Using the generalized energy inequality for suitable weak solutions (see below The-
orem 5.13), the uniform lower bound found in Claim 5.9 and the pressure estimate
used in the local L3 energy inequality (Lemma 5.11) one has

sup
0≤t≤τ0

sup
x∈R3

‖P k(t)− ckx(t)‖L3(B1(x)) ≤ Cε0, (5.17)

where ckx(t) ∈ R depends on both x ∈ R3 and t ∈ [0, τ0]. From Claim 5.9 and
(5.17), we see that for any x0 ∈ R3, (uk, P k − ckx0

,dk) satisfies the conditions of
Theorem 5.14 (below) in P√τ0(x0, τ0) := B√τ0(x0)× [0, τ0]. Hence by Theorem 5.14
we obtain that (uk,dk) ∈ C∞(R3 × (0, τ0),R3 × S2), and

sup
k
‖(uk,∇dk)‖Cm(R3×[δ,τ0]) ≤ C(m, δ, ε0) (5.18)

holds for any 0 < δ < τ0/2 and m ≥ 0.
Here Lemma 5.13 and Theorem 5.14 are concerned with the regularity of suitable

weak solutions. Specifically, Lemma 5.13 is generalized energy inequality in the
spirit of Caffarelli-Kohn-Nirenberg [6]. Here we adapt notion suitable weak solution
to (5.1), a similar definition is given by Lin [37] on the Navier-Stokes equation.

Let 0 < T ≤ ∞ and Ω ⊂ R3 be a bounded smooth domain.

Definition 5.12. A triplete of functions (u, P,d) : Ω × (0, T ) → R3 × R × S2 is
called a suitable weak solution to the system (5.1) in Ω × (0, T ) if the following
properties hold:

(1) u ∈ L∞t L2
x∩L2

tH
1
x(Ω×(0, T )), P ∈ L 3

2 (Ω×(0, T )) and d ∈ L2
tH

2
x(Ω×(0, T ));

(2) (u, P,d) satisfies the system (5.1) in the sense of distributions; and
(3) (u, P,d) satisfies the local energy inequality (5.19).

Lemma 5.13. Suppose that (u,d) ∈ C∞(Ω× (0, T ),R3 × R× S2) is a solution of
(5.1) in Ω× (0, T ). Then for any nonnegative φ ∈ C∞0 (Ω× (0, T )), it holds that

2
∫

Ω×(0,T )

(
|∇u|2 + |∆d + |∇d|2d|2

)
φ

≤
∫

Ω×(0,T )

(
|u|2 + |∇d|2

)
(φt + ∆φ) +

∫
Ω×(0,T )

(|u|2 + |∇d|2 + 2P )u · ∇φ

+ 2
∫

Ω×(0,T )

(
∇d�∇d− |∇d|2I3

)
: ∇2φ

+ 2
∫

Ω×(0,T )

∇d�∇d : u⊗∇φ.

(5.19)

With this framework in place it is verified by Hineman-Wang [22] suitable weak
solutions of (5.1) with small renormalized energy are smooth. That is:

Theorem 5.14. For any δ > 0, there exists ε0 > 0 such that (u, P,d) : Ω×(0, T )→
R3 × R × S2 is a suitable weak solution to (5.1), and satisfies, for z0 = (x0, t0) ∈



166 J. L. HINEMAN EJDE-2014/CONF/21

Ω× (0, T ) and Pr0(z0) ⊂ Ω× (0, T ),(
r−2
0

∫
Pr0 (z0)

|u|3
)1/3

+
(
r−2
0

∫
Pr0 (z0)

|P | 32
)2/3

+
(
r−2
0

∫
Pr0 (z0)

|∇d|3
)1/3

≤ ε0,

(5.20)
and

‖∇d‖L∞t L3
x(Pr0 (z0)) <

1− δ
C(3)1 , (5.21)

then (u,d) ∈ C∞(P r0
4

(z0),R3 × S2), and the following estimate holds:

‖(u,d)‖Cm(P r0
4

(z0)) ≤ C(m, r0, ε0), ∀ m ≥ 0. (5.22)

Remark 5.15. The proof of Theorem 5.14 employs a decay lemma, Lemma 5.16
and potential estimates between Morrey spaces similar to those developed for har-
monic maps by Huang and Wang [25]. For the complete details, please consult the
recent article [22].

Lemma 5.16. For any δ > 0, there exist ε0 > 0 and θ0 ∈ (0, 1
2 ) such that if

(u, P,d) : Ω × (0, T ) → R3 × R × S2 is a suitable weak solution of (5.1), and
satisfies, for z0 = (x0, t0) ∈ Ω × (0, T ) and Pr0(z0) ⊂ Ω × (0, T ), both (5.20) and
(5.21), then it holds that(

(θ0r0)−2

∫
Pθ0r0 (z0)

|u|3
)1/3

+
(

(θ0r0)−2

∫
Pθ0r0 (z0)

|P | 32
)2/3

+
(

(θ0r0)−2

∫
Pθ0r0 (z0)

|∇d|3
)1/3

≤ 1
2

[(
r−2
0

∫
Pr0 (z0)

|u|3
)1/3

+
(
r−2
0

∫
Pr0 (z0)

|P | 32
)2/3

+
(
r−2
0

∫
Pr0 (z0)

|∇d|3
)1/3]

.

(5.23)

Outline of Proof. Lemma 5.16 is proven by contradiction. Specifically, a sequence
of suitable weak solutions satisfying the decay inequality (5.23) is constructed and
it is shown that its L3

tL
3
x-strong limit does not satisfy the decay inequality (5.23).

To achieve this goal, one uses
(1) The generalized energy inequality described in Lemma 5.13 to select an L2-

weakly convergent subsequence of suitable weak solutions. The limit of such a
subsequence satisfies

∂tv −∆v +∇Q = 0,
∇ · v = 0,

∂te−∆e = 0.

1For the embedding W 1,2(Ω) ↪→ L6(Ω), where Ω ⊂ R3, define the optimal Sobolev embedding

constant C(3) by

C(3) = inf
˘‖∇f‖L2(Ω)

‖f‖L6(Ω)

: f 6= 0, f ∈ C∞0 (R3)
¯
.

It is noted that given Ω one may explicitly calculate C(3).
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and hence through the Sobolev inequality and standard estimates on the linear
Stokes and heat equations one finds the limit (v, Q, e) satisfies

θ−2

∫
Pθ

(|v|3 + |∇e|3) ≤ Cθ3

∫
P3/4

(|v|3 + |∇e|3) ≤ Cθ3, θ ∈ (0,
1
2

)

θ−2

∫
Pθ

|Q|3/2 ≤ Cθ
∫
P3/4

|Q|3/2 ≤ Cθ θ ∈ (0,
1
2

).
(5.24)

(2) Aubin-Lions Lemma [53]:

Lemma 5.17. Let X0 ⊂ X ⊂ X1 be Banach spaces such that X0 is compactly
embedded in X, X is continuously embedded in X1, and X0, X1 are reflexive.
Then for 1 < α0, α1 <∞,{
u ∈ Lα0(0, T ;X0) : ∂tu ∈ Lα1(0, T ;X1)

}
is compactly embedded in Lα0(0, T ;X).

allows the weak convergence of vi → v and ∇ei → ei to be upgraded to strong
convergence in L2

tL
2
x and after interpolation strong convergence in L3

tL
3
x. To ap-

ply the Aubin-Lions lemma one must employ the appropriate W k,p
α estimates for

auxiliary Stokes and Heat equations.
(3) Separate pressure estimate:

Lemma 5.18. Suppose that (u, P,d) is a suitable weak solution of (5.1) on P1.
Then for any 0 < r ≤ 1 and τ ∈ (0, r/2), it holds that

1
τ2

∫
Pτ

|P |3/2 ≤ C
[( r
τ

)2 1
r2

∫
Pr

(|u− ur(t)|3 + |∇d|3) +
(τ
r

) 1
r2

∫
Pr

|P |3/2
]
, (5.25)

where ur(t) = 1
|Br|

∫
Br

u(x, t) for −r2 ≤ t ≤ 0. In particular, it holds that

1
τ2

∫
Pτ

|P |3/2 ≤ C
( r
τ

)2( sup
−r2≤t≤0

1
r

∫
Br

|u|2
)3/4(1

r

∫
Pr

|∇u|2
)3/4

+ C
[( r
τ

)2 1
r2

∫
Pr

|∇d|3 +
(τ
r

) 1
r2

∫
Pr

|P |3/2
]
.

(5.26)

�

Step 4: Passage to the limit. Based on the estimates of (uk,dk), we may
assume, after taking subsequences, that (u,d) ∈ ∩0<δ<τ0C

∞
b (R3 × [δ, τ0],R3 × S2),

with (u,∇d) ∈ L∞([0, τ0], L3
uloc(R3), such that

(uk,∇dk)→ (u,∇d) weakly in L3(R3 × [0, τ0]),

(uk,dk)→ (u,d) in Cm(BR × [δ, τ0]), ∀m ≥ 0, R > 0, δ < τ0.

Sending k →∞ one may find that

sup
0≤t≤τ0

|||(u,∇d)|||L3
1(R3) ≤ Cε0.

We can check from (5.1) and that for any R > 0,

‖(∂tuk, ∂tdk)‖
L3/2([0,τ0],W−1, 32 (BR))

≤ C(R) < +∞.

This implies that

(u(t),∇d(t))→ (u0,∇d0) strongly in L3
loc(R3) as t ↓ 0. (5.27)

In particular, we have that (u0,∇d0) ∈ C0
∗([0, τ0], L3

uloc(R3)).
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Step 5: Characterization of the maximal time interval T0. Let T0 > τ0 be
the maximal time interval for the solution (u,d) constructed in step 4. Suppose
that T0 < +∞ and (5.7) were false. Then there exists r0 > 0 so that

lim sup
t↑T0

|||(u(t),∇d(t))|||L3
r0

(R3) ≤ ε0.

In particular, there exists r1 ∈ (0, r0] such that

sup
T0−r21≤t≤T0

|||(u(t),∇d(t))|||L3
r1

(R3) ≤ ε0.

Hence by Theorem 5.14, (u,d) ∈ C∞b (R3 × [0, T0]) ∩ L∞([0, T0], L3
uloc(R3)). This

contradicts the maximality of T0. Hence (5.7) holds.

Step 6: Uniqueness. Let (u1,d1), (u2,d2) : R3 × [0, T0]→ R3 × S2 be two solu-
tions of (5.1), under the same initial condition (u0,d0), that satisfy the properties
of Theorem 5.2. We first show (u1,d1) ≡ (u2,d2) in R3× [0, τ0]. This can be done
by the argument of [56] pages 15-16 and is recorded in [22]. We repeat it here for
completeness.

Set u = u1 − u2, d = d1 − d2. Then (u,d) satisfies

∂tu−∆u = −P∇ · [u1 ⊗ u1 − u2 ⊗ u2 +∇d1 �∇d1 −∇d2 �∇d2]

∂td−∆d = −(u1 · ∇d1 − u2 · ∇d2) + |∇d1|2d1 − |∇d2|2d2

(u,d)|t=0 = (0, 0).

By the Duhamel formula, we have

u(t) = −V[u1 ⊗ u1 − u2 ⊗ u2 +∇d1 �∇d1 −∇d2 �∇d2]

d(t) = −S[(u1 · ∇d1 − u2 · ∇d2)− (|∇d1|2d1 − |∇d2|2d2)],

where

Sf(t) =
∫ t

0

e−(t−s)∆f(s) ds,

Vf(t) =
∫ t

0

e−(t−s)∆P∇ · f(s) ds, ∀f : R3 × [0,+∞)→ R3.

Recall the three function spaces used in [55]. Let Xτ0 denote the space of functions
f on R3 × [0, τ0] such that

|||f |||Xτ0
:= sup

0<t≤τ0
‖f(t)‖L∞(R3) + ‖f‖Xτ0 < +∞,

where

‖f‖Xτ0
:= sup

0<t≤τ0

√
t‖∇f(t)‖L∞(R3) + sup

x∈R3,0<r≤√τ0
(r−3

∫
Pr(x,r2)

|∇f |2)1/2,

Yτ0 denote the space of functions g on R3 × [0, τ0] such that

||g||Yτ0
:= sup

0<t≤τ0
t‖g(t)‖L∞(R3) + sup

x∈R3,0<r≤√τ0
r−3

∫
Pr(x,r2)

|g| < +∞,

and Zτ0 the space of functions h on R3 × [0, τ0] such that

‖h‖Zτ0 := sup
0<t≤τ0

√
t‖h(t)‖L∞(R3) + sup

x∈R3,0<r≤√τ0
(r−3

∫
Pr(x,r2)

|h|2)1/2 < +∞.
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Since (ui,di) ∈ L∞([0, τ0], L2(R3)× Ẇ 1,2(R3)) satisfies (5.6) for i = 1, 2, Theorem
5.14 and the Hölder inequality imply that ui ∈ Zτ0 ,di ∈ Xτ0 for i = 1, 2, and

2∑
i=1

(‖ui‖Zτ0 + ‖di‖Xτ0
) ≤ Cε0.

It follows from Lemma 3.1 and Lemma 4.1 of [55] that

‖u‖Zτ0 + |||d|||Xτ0

.
∥∥∥(|u1|+ |u2|)|u|+ (|∇d1|+ |∇d2|)|∇d|

∥∥∥
Yτ0

+
∥∥∥|u||∇d2|+ |u1||∇d|+ (|∇d1|+ |∇d2|)|∇d|+ |∇d2|2|d|

∥∥∥
Yτ0

.
[ 2∑
i=1

(‖di‖Xτ0
+ ‖ui‖Zτ0 )

]
‖u‖Zτ0 +

[ 2∑
i=1

(‖ui‖Zτ0 + ‖di‖Xτ0
)
]
|||d|||Xτ0

. ε0[‖u‖Zτ0 + |||d|||Xτ0
].

This clearly implies that (u1,d1) ≡ (u2,d2) in R3 × [0, τ0]. Since (u1,d1) and
(u2,d2) are classical solutions of (5.1) in R3 × [τ0, T0), and (u1,d1) = (u2,d2) at
t = τ0, it is standard that (u1,d1) ≡ (u2,d2) in R3×[τ0, T0). The proof is complete.

5.1. Open problems. Again, as this analysis is preliminary, there are many open
problems surrounding the hydrodynamic flow of nematic liquid crystals in R3. It
seems that the ultimate goal of future investigations should be to re-introduce terms
removed from (2.14) to arrive at (5.1). There do remain a number of open problems
in the analysis of the system (5.1), we mention a particular one of interest:

(1) Partial regularity of suitable weak solutions in three dimensions.
In the proof of Theorem 5.14 it was required to prove a quantitative decay lemma,
Lemma 5.16. To control certain terms one assumed (5.21) (for further details,
please consult [22]). It is an obvious question to ask if the assumption (5.21) can be
eliminated. If one can overcome the difficulties associated with the elimination of
this condition and, following [6], proves a theorem concerning the rate at which sin-
gularities develop for |∇u| and |∇2d| one would have the following partial regularity
theorem.

Conjecture 5.19 (Partial Regularity). For any suitable weak solution of the system
(5.1) on an open set in space-time, the set

S = “the singular set” = {(x, t) : ‖(u,∇d)‖L∞loc(Pr(x,t)) = +∞}

has 1-dimensional parabolic Hausdorff measure 0; that is,

P1(S) = 0 where Pk(X) := lim
δ→0+

inf
{ ∞∑
i=1

rki : X ⊂
⋃
i

Pri , ri < δ
}
.

Such a result would be analogous to the celebrated work of Caffarelli, Kohn,
and Nirenberg in [6] and would extend the work of Lin-Lin-Wang [43] and Hardt-
Kinderleher-Lin [19].
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Conclusions. Liquid crystals, and in general materials with fine structure will
require new tools in mathematics, modeling, and computation. This survey has
primarily focused on the mathematical difficulties and open problems surrounding
the Ericksen-Leslie equations for the hydrodynamic flow of nematic liquid crystals.
We have made the case that there many open problems in the analysis and numerical
of these equations that require new mathematics.

It is worth mentioning in closing that there are alternative models of liquid
crystals and their flow. For example, the Q-tensor theory of De Gennes [17], [49]
and the micropolar theory of Eringen [14]. The analysis and numerical analysis of
these models in also preliminary and offers additional directions for research.
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