On the Equivariant Tamagawa Number Conjecture for Abelian Extensions of a Quadratic Imaginary Field
Let $k$ be a quadratic imaginary field, $p$ a prime which splits in $k/\Qu$ and does not divide the class number $h_k$ of $k$. Let $L$ denote a finite abelian extension of $k$ and let $K$ be a subextension of $L/k$. In this article we prove the $p$-part of the Equivariant Tamagawa Number Conjecture for the pair $(h^0(\Spec(L)), \Ze[\Gal(L/K)])$.
2000 Mathematics Subject Classification: 11G40, 11R23, 11R33, 11R65
Keywords and Phrases: L-functions, Iwasawa theory, Euler systems
Full text: dvi.gz 80 k, dvi 207 k, ps.gz 1075 k, pdf 375 k.
Home Page of DOCUMENTA MATHEMATICA