DOCUMENTA MATHEMATICA, Vol. 7 (2002), 203-217

Paul Balmer, Stefan Gille, Ivan Panin and Charles Walter

The Gersten Conjecture for Witt Groups in the Equicharacteristic Case

We prove the Gersten conjecture for Witt groups in the equicharacteristic case, that is for regular local rings containing a field of characteristic not $2$.

2000 Mathematics Subject Classification: 11E81, 18E30, 19G12

Keywords and Phrases: Witt group, Gersten conjecture, equicharacteristic, triangulated categories

Full text: dvi.gz 30 k, dvi 73 k, ps.gz 678 k, pdf 205 k.


Home Page of DOCUMENTA MATHEMATICA