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Abstract

Let D denote a balanced bipartite digraph with 2n vertices and for
each vertex x, d+(x) ≥ k, d−(x) ≥ k, k ≥ 1, such that the maxi-
mum cardinality of a balanced independent set is 2β and n = 2β + k.
We give two functions F (n, β) and G(n, β) such that if D has at least
F (n, β) (resp. G(n, β)) arcs, then it is hamiltonian (resp. hamiltonian-
biconnected).
Key words and phrases: hamiltonian cycles, bipartite digraphs,
hamiltonian-biconnectedness.

Resumen

Sea D un digrafo bipartito balanceado de orden 2n. Supongamos
que para todo vértice x, d+(x) ≥ k, d−(x) ≥ k, k ≥ 1. Sea 2β la
máxima cardinalidad de los conjuntos independientes balanceados y sea
n = 2β +k. Damos dos funciones F (n, β) y G(n, β) tal que si D tiene al
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menos F (n, β) (resp. G(n, β)) arcos, entonces D es hamiltoniano (resp.
hamiltoniano biconectado).
Palabras y frases clave: ciclos hamiltonianos, digrafos bipartitos,
digrafos hamiltonianos biconectados.

1 Introduction

Many conditions involving the number of arcs, the minimum half-degree,
and the independence number for a digraph to be hamiltonian or hamiltonian-
connected are known (see [1], [3], [4], [6], [9], [10], [11] , [13], [15], [16], [17],
[18], [19].

The parameter 2β, defined as the maximum cardinality of a balanced
independent set, has been introduced by P. Ash [5] and B. Jackson and
O. Ordaz [14] where a balanced independent set in D is an independent
subset S such that |S ∩X| = |S ∩ Y |.

In this paper we give conditions involving the number of arcs, the
minimum half-degree, and the parameter 2β for a balanced bipartite digraph
to be hamiltonian or hamiltonian-biconnected, i.e. such that for any two
vertices x and y which are not in the same partite set, there is a hamiltonian
path in D from x to y.

Let D = (X, Y,E) denote a balanced bipartite digraph with vertex-set
X ∪ Y , X and Y being the two partite sets.

In a digraph D, for x ∈ V (D), let N+
D (x) (resp. N−

D (x) ) denote the
set of the vertices of D which are dominated by (resp. dominate) x; if no
confusion is possible we denote them by N+(x) (resp. N−(x)).

Let H be a subgraph of D, E(H) denotes the set of the arcs of H, and
|E(H)| the cardinality of this set; if x ∈ V (D), d+

H(x) (resp. d−H(x)) denotes
the cardinality of the set of the vertices of H which are dominated by (resp.
dominate) x; if x ∈ V (D), x 6∈ V (H), E(x,H) denotes the set of the arcs
between x and V (H).

If C is a cycle (resp. if P is a path) in D, and x ∈ V (C) (resp. x ∈ V (P )),
x+ denotes the successor of x on C (resp. on P ) according to the orientation
of the cycle (resp. of the path).

If x, y ∈ V (C) (resp. x, y ∈ V (P )), x,C, y (resp. x, P, y) denotes the
part of the cycle (resp. the path) starting at x and terminating at y.

The following results will be used :

Theorem 1.1. (N. Chakroun, M. Manoussakis, Y. Manoussakis [8])
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Let D = (X, Y,E) be a bipartite digraph with |X| = a, |Y | = b, a ≤ b. If
|E| ≥ 2ab− b + 1, then D has a cycle of length 2a.

Theorem 1.2. (N. Chakroun, M. Manoussakis, Y. Manoussakis [8])

Let D = (X, Y, E) be a balanced bipartite digraph with |X| = |Y | = n.
If |E| ≥ 2n2 − n + 1 then D is hamiltonian. If |E| ≥ 2n2 − n + 2, D is
hamiltonian-biconnected.

Theorem 1.3. (N. Chakroun, M. Manoussakis, Y. Manoussakis [8]
)

Let D = (X,Y, E) be a bipartite digraph with |X| = a, |Y | = b, a ≤ b,
such that for every vertex x, d+(x) ≥ k, d−(x) ≥ k. Then:

(i) If |E| ≥ 2ab− (k + 1)(a− k) + 1, D has a cycle of length 2a,
(ii) If |E| ≥ 2ab− k(a− k) + 1, for any two vertices x and y which are not

in the same partite set, there is a path from x to y of length 2a− 1.

If b ≥ 2k, for k ≤ p ≤ b− k, let K∗
k,p,, (resp. K∗

k−1,b−p ) be a complete
bipartite digraph with partite sets (X1, Y1) (resp. (X2, Y2) ); for a = 2k − 1
and b > a, Γ1(a, b) consists of the disjoint union of K∗

k,p and K∗
k−1,b−p by

adding all the arcs between exactly one vertex of X1 and all the vertices of
Y2.

Γ2(3, b) is a bipartite digraph with vertex-set X ∪ Y , where X =
{x1, x2, x3} and Y = {y1, y2, ..., yb}, and arc-set

E(D) = {(x1y1), (x2y2), (y1x2)(y2x1)} ∪ {(x3yi), (yix3), 1 ≤ i ≤ 2} ∪
{(xjyi), (xjyi), 3 ≤ i ≤ b, 1 ≤ j ≤ 2}.
Theorem 1.4. (D. Amar, Y. Manoussakis [2] )

Let D = (X,Y,E) be a bipartite digraph with |X| = a, |Y | = b, a ≤ b,
such that for every vertex x, d+(x) ≥ k, d−(x) ≥ k. Then if a ≤ 2k− 1 D has
a cycle of length 2a, unless

(i) b > a = 2k − 1 and D is isomorphic to Γ1(a, b) or
(ii) k = 2 and D is isomorphic to Γ2(3, b).

Theorem 1.5. (N.Chakroun, M. Manoussakis, Y. Manoussakis [8])
Let D = (X, Y, E) be a hamiltonian bipartite digraph of order 2n such

that |E| ≥ n2 + n− 2; then D is bipancyclic.

2 Main Results

Let f(n, β) = 2n2−2β2−(n−β)+1, F (n, β) = 2n2−2β2−β(n−2β+1)+1,
G(n, β) = F (n, β) + β.
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We prove the following Theorems and their immediate Corollaries:

Theorem 2.1.
Let D = (X, Y, E) be a balanced bipartite digraph with |X| = |Y | = n,

and let 2β be the maximum cardinality of a balanced independent set in D.
If n ≥ 2β + 1 and

(i) If |E| ≥ f(n, β), D is hamiltonian.
(ii) If |E| ≥ f(n, β) + 1, D is hamiltonian-biconnected.

Corollary 2.2. Let D = (X,Y, E) be a balanced bipartite digraph with |X| =
|Y | = n, and let 2β be the maximum cardinality of a balanced independent
set in D. If n ≥ 2β + 1 and |E| ≥ f(n, β) then D is bipancyclic

Theorem 2.3.
Let D = (X, Y, E) be a balanced bipartite digraph with |X| = |Y | = n,

such that for every vertex x, d+(x) ≥ k, d−(x) ≥ k, k ≥ 1. Let 2β be the
maximum cardinality of a balanced independent set in D. If n = 2β + k and

(i) If |E| ≥ F (n, β), D is hamiltonian.
(ii) If |E| ≥ G(n, β), D is hamiltonian-biconnected.

Using Theorems 1.5, 2.1 and 2.3 we obtain the following:

Corollary 2.4. Let D = (X, Y,E) be a balanced bipartite digraph with
|X| = |Y | = n, such that for every vertex x, d+(x) ≥ k, d−(x) ≥ k, k ≥ 1.
Let 2β be the maximum cardinality of a balanced independent set in D. If
n = 2β + k and |E| ≥ F (n, β) then D is bipancyclic.

Proof of the corollaries:
Since n ≥ 2β + 1, then f(n, β)− (n2 + n− 2) = n2 − 2β2 − 2n + β + 3

= (n− 1)2− 2β2 + β + 2 ≥ 4β2− 2β2 + β + 2 =
2β2 + β + β + 2 > 0.

resp. F (n, β)− (n2 +n−2) = 2n2−2β2−β(n−2β +1)+1− (n2 +n−2)
= n2 − n(β + 1)− β + 3

≥ n(2β + 1− β− 1)− β + 3 = β(n− 1) + 3 > 0.

3 Definitions and a basic lemma

Before proving Theorem 2.1 and Theorem 2.3, we give some definitions and
a basic lemma.
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Definition 3.1. D(n, β, k) denotes the set of balanced bipartite digraphs of
order 2n, with k ≥ 1, n = 2β+k, such that ∀x ∈ V (D), d+(x) ≥ k, d−(x) ≥ k,
and for which the maximum cardinality of a balanced independent set is 2β.

Definition 3.2. In the following, if D = (X, Y,E) ∈ D(n, β, k), denote by S
a balanced independent set of cardinality 2β.

D1 is the induced subgraph of D with partite sets (X1, Y1), X1 = X ∩S,
Y1 = Y \S,

D2 is the induced subgraph of D with partite sets (X2, Y2), X2 = X\S,
Y2 = Y ∩ S.

Lemma 3.3. Let D = (X,Y,E) be a balanced bipartite digraph with |X| =
|Y | = n. Suppose that D contains a cycle C and a path P such that C and
P are disjoint and |V (C)| = 2p,

|V (P )| = 2(n − p). If the beginning-vertex a and the end-vertex b of P
satisfy the condition d−C(a) + d+

C(b) ≥ p + 1, then D has a hamiltonian cycle
containing P .

Proof:
W.l.o.g. we may assume that a ∈ X and b ∈ Y . Set C = (y1, x1...yp, xp, y1)

with xi ∈ X, yi ∈ Y . The condition d−C(a) + d+
C(b) ≥ p + 1 implies that there

exists i, 1 ≤ i ≤ p, such that yi ∈ N−(a), xi ∈ N+(b); then the cycle
(a, P, b, xi, C, yi,a) is a hamiltonian cycle of D containing P .

4 Proof of Theorem 2.1

Let D = (X,Y,E) be a bipartite digraph such that the maximum cardinality
of a balanced independent set is 2β.

For β = 0, if |E| ≥ f(n, 0) = 2n2−n+1, (resp. |E| ≥ g(n, 0) = 2n2−n+2
),

by Theorem 1.2, D is hamiltonian (resp. hamiltonian-biconnected).
Thus we assume β ≥ 1.

4.1 Proof of (i)

As |E| ≥ f(n, β),
|E(D1)|+ |E(D2)| ≥ f(n, β)− 2(n− β)2 = −4β2 + 4nβ − (n− β) + 1.
Therefore w.l.o.g.,
|E(D1)| ≥ 1

2

(
|E(D1)| + |E(D2)|

)
≥ 2β(n − β) − (n − β)/2 + 1/2 ≥

(2β − 1)(n− β) + 1.
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Thus by Theorem 1.1, D1 contains a cycle C of length 2β. Clearly C
saturates X ∩ S.

Let Γ be the subgraph induced by the vertex-set V (D)\V (C).
If |E(Γ)| ≥ 2(n− β)2 − (n− β) + 2, by Theorem 1.2, Γ is hamiltonian-

biconnected. As D has at most 2β2 + (n − β) − 1 less arcs than the corre-
sponding complete digraph, the number of arcs between C and Γ is

(1)
∑

x∈V (C)

d+
Γ (x) + d−Γ (x+) ≥ 4β(n− β)− 2β2 − (n− β) + 1.

If for every x ∈ C either N+
Γ (x) = ∅ or N−

Γ (x+) = ∅ then
(2)

∑

x∈V (C)

d+
Γ (x) + d−Γ (x+) ≤ 2β(n− β).

As 4β(n−β)− 2β2− (n−β)+1 > 2β(n−β) by (1) and (2), there exist
x ∈ V (C), a ∈ V (Γ), b ∈ V (Γ) such that x dominates a and x+ is dominated
by b.

Let P be a hamiltonian path in Γ from a to b. Then (x, a, P, b, x+, C, x)
is a hamiltonian cycle in D.

If E(Γ) = 2(n−β)2−(n−β)+1, Γ is hamiltonian. Moreover, if x ∈ V (C),
z ∈ V (Γ), then both (x, z) and (z, x) are in E(D) unless x ∈ X ∩ S, then
d+
Γ (x) = n−2β, d−Γ (x+) = n−β. Thus d+

Γ (x)+d−Γ (x+ = n−3β ≥ (n−β)+1.
Hence, by Lemma 3.3, D is hamiltonian. ¤

4.2 Proof of (ii)

We assume n ≥ 2β + 1 and |E| ≥ f(n, β) + 1.

Let x ∈ V (D), y ∈ V (D), x and y not in the same partite set. We want
to prove that there exists a hamiltonian path from x to y. W.l.o.g. we can
suppose x ∈ X and y ∈ Y .

Case 1: x ∈ X ∩ S, y ∈ Y ∩ S.
By similar arguments as in part (i), we may assume that D1 contains a

cycle C of length 2β. As C saturates X ∩ S, x ∈ V (C).
If Γ denotes the subgraph of D induced by the vertex-set V (D)\V (C),
|E(Γ)| ≥ 2(n−β)2− (n−β)+2, then by Theorem 5.4 it is hamiltonian-

biconnected.
Let x− be the predecessor of x on C; as in part (i) we can prove that

x− has at least one neighbor a ∈ V (Γ).
Let P be a hamiltonian path of Γ from a to y. Then (x,C, x−, a, P, y)

is a hamiltonian path in D from x to y.
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Thus there exists in D a hamiltonian path from x to y.

Case 2: x ∈ X ∩ S, y ∈ Y ∩ (D\S).
Let D3 be the subgraph induced by the set of vertices (X ∩ S) ∪ (Y ∩

(D\S) − {y}). As E(D) ≥ f(n, β) + 1, D3 has at most (n − β + 2) arcs less
than the corresponding complete digraph, then |E(D3)| ≥ 2β(n − β − 1) −
(n − β − 1) + 1; by Theorem 1.1, D3 contains a cycle C of length 2β, with
x ∈ V (C), y 6∈ V (C).

If, as in case 1, Γ denotes the subgraph of D induced by the vertex-set
V (D)\V (C), Γ is hamiltonian-biconnected; similar arguments as in case 1
prove that there exists a hamiltonian path from x to y.

Case 3: x 6∈ X ∩ S, y 6∈ Y ∩ S.
As in case 2, the subdigraph D3 induced by the set of vertices (X ∩S)∪

(Y ∩ (D\S)− {y}) contains a cycle C of length 2β.
The subgraph Γ of D induced by the vertex-set V (D)\V (C) is, as in

case 1, hamiltonian-biconnected. The vertices x and y are in V (Γ); let P be
a hamiltonian path in Γ from x to y.

If we assume that for any a ∈ V (P )\{y}, d+
C(a) + d−C(a+) ≤ β, D has

at least β(n − β) + β(n − β − 1) arcs less than the corresponding complete
digraph; the condition |E| ≥ f(n, β) implies :

2β(n−β)−β ≤ n−β−2+2β2 ⇔ 2βn ≤ 4β2+n−2 ⇔ (2β−1)(n−2β) ≤
2β − 2, a contradiction.

Hence there exists a ∈ V (P ), a 6= y, such that d+
C(a) + d−C(a+) ≥ β + 1.

By Lemma 3.3, there exists in D a hamiltonian path from x to y.
Theorem 2.1 is proved. ¤

5 Proof of Theorem 2.3

5.1 Strategy of the proof

The proof of Theorem 2.3 is by induction on k.
In sub-section 5.2, we shall prove the Theorem for k = 1.
Then we shall do the following induction hypothesis:

Induction Hypothesis 5.1.
For 1 ≤ p ≤ k − 1, let D = (X,Y, E) ∈ D(n, β, p).
(i) The condition |E| ≥ F (n, β), implies that D is hamiltonian.

(ii) The condition |E| ≥ G(n, β), implies that D is hamiltonian-biconnected.
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In sub-section 5.3, we shall prove Proposition 5.2:

Proposition 5.2. Under the induction hypothesis 5.1, if D ∈ D(n, β, k)
satisfies |E| ≥ G(n, β), then D is hamiltonian-biconnected.

In sub-section 5.4, we shall prove Proposition 5.3:

Proposition 5.3. Under the induction hypothesis 5.1, if D ∈ D(n, β, k)
satisfies |E| ≥ F (n, β), then D is hamiltonian.

Proposition 5.2 and Proposition 5.3 will imply Theorem 2.3.

5.2 Proof of Theorem 2.3 when k = 1.

We need two general lemmas:

Lemma 5.4. We suppose that for any digraph D′ = (X ′, Y ′, E′) ∈ D(n, β, k),
the condition |E′| ≥ G(n, β) implies that D′ is hamiltonian-biconnected, then

If D = (X,Y,E) ∈ D(n, β, k) satisfies the condition |E| ≥ G(n, β) − p,
and if there is no hamiltonian path from a vertex y to a vertex x not in the
same partite set then:

(i) If x ∈ S, y 6∈ S, then d+(x) + d−(y) ≥ 2n − β − p + 1, d+(x) ≥
n− β − p + 1, d−(y) ≥ n− p + 1.

(ii) If x 6∈ S, y ∈ S, then d+(x)+d−(y) ≥ 2n−β−p+1, d+(x) ≥ n−p+1,
d−(y) ≥ n− β − p + 1.

(iii) If x 6∈ S, y 6∈ S, then d+(x)+d−(y) ≥ 2n−p+1, d+(x) ≥ n−p+1,
d−(y) ≥ n− p + 1.

(iv) If x ∈ S, y ∈ S, then d+(x) + d−(y) ≥ 2n − 2β − p + 1, d+(x) ≥
n− β − p + 1, d−(y) ≥ n− β − p + 1.

Lemma 5.5. Under the same hypothesis as in Lemma 5.4, if D is not hamil-
tonian then:

(i) ∀x ∈ S, d+(x) ≥ n− β − p + 1, d−(x) ≥ n− β − p + 1,
(ii) ∀x 6∈ S, d+(x) ≥ n− p + 1, d−(x) ≥ n− p + 1

Proof of Lemma 5.4:
Let D = (X,Y,E) ∈ D(n, β, k). We assume |E| ≥ G(n, β)− p.
If one of the following cases happen:
1) x ∈ S, y 6∈ S, d+(x) + d−(y) ≤ 2n− β − p,
2) x 6∈ S, y ∈ S, d+(x) + d−(y) ≤ 2n− β − p,
3) x 6∈ S, y 6∈ S, d+(x) + d−(y) ≤ 2n− p,
4) x ∈ S, y ∈ S, d+(x) + d−(y) ≤ 2n− 2β − p,
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we can add p arcs to N+(x) ∪ N−(y) to obtain a digraph D′ =
(X ′, Y ′, E′) ∈ D(n, β, k) such that |E(D′)| ≥ G(n, β); then D′ ∈ D(n, β, k)
and satifies: |E′| ≥ G(n, β); then under the assumption of Lemma 5.4 D′

is hamiltonian-biconnected, and a hamiltonian path from y to x in D′ is a
hamiltonian path from y to x in D. ¤

To prove Lemma 5.5, we apply Lemma 5.4 to any vertices x and y such
that the arc (xy) ∈ E(D). ¤

Lemma 5.6. For D ∈ D(n, β, 1), (i) If |E| ≥ F (n, β), D is hamiltonian,
(ii) If |E| ≥ G(n, β), D is hamiltonian-biconnected.

Proof:
(ii) For k = 1, f(n, β) + 1 = G(n, β), then if |E| ≥ G(n, β), by Theo-

rem 2.1, D is hamiltonian-biconnected. ¤

(i) If |E| ≥ F (n, β), as F (n, β) = G(n, β)−β, if we assume that D is not
hamiltonian we can apply Lemma 5.5 with p = β and, as n = 2β + 1, obtain:

(*) ∀x ∈ S, d+(x) ≥ 2, d−(x) ≥ 2, ∀x 6∈ S, d+(x) ≥ β+2, d−(x) ≥ β+2.
D has at most 2β2 +2β−1 arcs less than the corresponding complete di-

graph, then D1∪D2 have at most 2β−1 arcs less than the union of correspond-
ing complete digraphs; w.l.o.g. we may assume |E(D1)| ≥ 2β(β + 1)− β + 1;
then, by Theorem 1.1, D1 contains a cycle C of length 2β; C saturates
X∩S. If Γ denotes the subgraph of D induced by the vertex-set V (D)\V (C),
|E(Γ)| ≥ 2(β + 1)2 − 2β + 1.

If x ∈ V (Γ) ∩ S all the neighbors of x are in Γ; if y ∈ V (Γ) ∩ (D\S),
d+
Γ (y) ≥ d+(y)− β, d−Γ (y) ≥ d−(y)− β; in every case:

The conditions (*) imply: ∀x ∈ V (Γ), d+
Γ (x) ≥ 2, d−Γ (x) ≥ 2.

Hence, by Theorem 1.3, Γ is hamiltonian. Moreover
|E(H, Γ)| ≥ F (n, β) − |E(H)| − |E(Γ)| ≥ F (n, β) − 2β2 − 2(β + 1)2 ≥

2β(β + 1) + 1.
The subdigraph Γ is hamiltonian-biconnected unless

|E(Γ)| ≤ 2(β + 1)2 − 2β + 2.
If Γ is hamiltonian-biconnected, as |E(H, Γ)| ≥ 2β(β+1)+1, there exist

x ∈ V (C), a ∈ V (Γ), b ∈ V (Γ) such that x dominates a and x+ is dominated
by b; let P be a hamiltonian path in Γ from a to b. Then (x, a, P, b, x+, C, x)
is a hamiltonian cycle in D.

If Γ is not hamiltonian-biconnected, as |E(Γ)| ≤ 2(β + 1)2 − 2β + 2,
the subgraph H induced by V (C) satisfies |E(H)| ≥ 2β2 − 1; then H is
hamiltonian-biconnected. Let CΓ be a hamiltonian cycle of Γ; as |E(H,Γ)| ≥
2β(β+1)+1, there exist a ∈ CΓ and a+ ∈ CΓ, such that a dominates a vertex
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c ∈ V (H) and a+ is dominated by a vertex d ∈ V (H); let P be a hamiltonian
path in H from c to d, then (c, P, d, a+, CΓ, a, c) is a hamiltonian cycle of D.

In both cases, D is hamiltonian. ¤

5.3 Proof of Proposition 5.2

The induction hypothesis 5.1 is satisfied for k = 2.

Proposition 5.2 Under the induction hypothesis 5.1, if D ∈ D(n, β, k)
satisfies |E| ≥ G(n, β), D is hamiltonian-biconnected.

Proof:
We assume k ≥ 2.
Let D = (X,Y,E) ∈ D(n, β, k) and suppose |E| ≥ G(n, β).
For any x ∈ V (D), y ∈ V (D) not in the same partite set, we prove that

there exists a hamiltonian path from x to y. W.l.o.g. we can suppose x ∈ X,
y ∈ Y .

Claim 5.7. There exist at least β + 1 vertices u ∈ X ∩ (D\S), and β + 1
vertices v ∈ Y ∩(D\S), such that d+(u) ≥ β+k, d−(u) ≥ β+k, d+(v) ≥ β+k,
d−(v) ≥ β + k.

Proof:
If Claim 5.7 is not true, w.l.o.g. we may assume d+(u) ≤ β + k − 1 for

k vertices u ∈ X ∩ (D\S). As n = 2β + k, the subgraph of D induced by the
vertex-set X ∩ (D\S)∪Y has at leat (β +1)k arcs less than the corresponding
complete graph. Hence, S being an independent set, the inequality |E(D)| ≤
2n2 − 2β2 − (β + 1)k would be satisfied.

As (β + 1)k<βk, 2n2 − 2β2 − (β + 1)k < G(n, β), a contradiction with
the hypothesis

|E(D)| ≥ G(n, β). ¤

Then let u0 ∈ X∩(D\S), u0 6= x, and v0 ∈ Y ∩(D\S), v0 6= y, be vertices
satisfying d+(u0) ≥ β + k, d−(u0) ≥ β + k, d+(v0) ≥ β + k, d−(v0) ≥ β + k.

Let ε = 1 if (xy) ∈ E, ε = 0 if (xy) 6∈ E, and ε′ = 1 if (yx) ∈ E, ε′ = 0
if (yx) 6∈ E.

Let D′
i be a bipartite digraph of order 2(n− 1) with vertex-set V (D′

i) =
V (D)\{x, y} and edge-set E(D′

i) defined as follows:
Case 1 If x 6∈ S, y 6∈ S, D′

1 is the subgraph of D induced by V (D)\{x, y};
then
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|E(D′
1)| = |E(D)| − d(x)− d(y) + ε + ε′ ≥ G(n, β)− d(x)− d(y) + ε + ε′,

hence |E(D′
1)| ≥ G(n, β)− (4n− 2) = F (n− 1, β).

Case 2 If x ∈ S, y 6∈ S, E(D′
2) = E(D′

1)\
(
E(u0, Y ∩ S)

)
; then

|E(D′
2)| = |E(D)| − d(x)− d(y) + ε + ε′ − |E(u0, Y ∩ S)| ≥

G(n, β)− d(x)− d(y) + ε + ε′ − |E(u0, Y ∩ S)|,
hence |E(D′

2)| ≥ G(n, β)− (4n− 2) = F (n− 1, β).

Case 3 If x ∈ S, y ∈ S, E(D′
3) = E(D′

1)\
(
E(u0, Y ∩ S) ∪ E(v0, X ∩

S) ∪ E(u0, v0)
)
; then

|E(D′
3)| = |E(D)| − d(x)− d(y)− |E(u0, (Y ∩ S\{y}))| − |E(v0, (X ∩

S\{x}))| − |E(u0, v0)| ≥
G(n, β)− 4(n− β)− 4(β − 1)− 2,
hence |E(D′

3)| ≥ G(n, β)− (4n− 2) = F (n− 1, β).
Moreover S (resp. S\{x}∪{u0}, resp. S\{x, y}∪{u0, v0}) is a balanced

independent set of D′
1 (resp. of D′

2, resp. of D′
3) of order 2β.

For every z ∈ V (D′
1), for z 6= u0 in D′

2 and for z 6= u0 and z 6= v0 in D′
3,

the conditions d+(z) ≥ k, d−(z) ≥ k imply d+
D′

i
(z) ≥ k − 1, d−D′i(z) ≥ k − 1,

In Case 2 the conditions d+(u0) ≥ β + k, d−(u0) ≥ β + k, imply
d+

D′
2
(u0) ≥ k − 1, d−D′

2
(u0) ≥ k − 1.

In Case 3 the conditions d+(u0) ≥ β+k, d−(u0) ≥ β+k, d+(v0) ≥ β+k,
d−(v0) ≥ β + k imply d+

D′3
(u0) ≥ k − 1, d−D′

3
(u0) ≥ k − 1, d+

D′
3
(v0) ≥ k − 1,

d−D′
3
(v0) ≥ k − 1.

At least the equality n− 1 = 2β + k − 1 is satisfied.
We can conclude that in every case D′

i ∈ D(n− 1, β, k− 1), and satisfies
|E(D′

i)| ≥ F (n− 1, β).
By the induction hypothesis 5.1, D′

i is hamiltonian.
Let C be a hamiltonian cycle in D′

i.
If d+(x) + d−(y) ≥ n + 2ε, let a ∈ V (C) such that a ∈ N−(y), a+ ∈

N+(x), then the path (x, a+, C, a, y) is a hamiltonian path in D from x to y.

If D′
i is hamiltonian-biconnected, let c and d be vertices in V (D′

i) such
that d ∈ N+(x), c ∈ N−(y), and let P be a hamiltonian path in D′

i from d to
c; then (x, d, P, c, y) is a hamiltonian path in D from x to y.

Then we may assume that d+(x) + d−(y) ≤ n − 1 + 2ε and that D′
i is

hamiltonian but not hamiltonian-biconnected, and by the induction hypoth-
esis 5.1 that |E(D′

i)| < G(n− 1, β).
Then |E(D)| − |E(D′

i)| ≥ G(n, β)−G(n− 1, β) + 1 = 4n− 1− β.
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This inequality implies:
Case 1: |E(D)| − |E(D′

1)| = d(x) + d(y)− ε− ε′ ≥ 4n− 1− β.
As d−(x) + d+(y) ≤ 2(n − 1) + 2ε′, d+(x) + d−(y) ≥ 2n + 1 − 2β +

ε − ε′ = n + k + 1 + ε − ε′ ≥ n + 2ε, a contradiction with the assumption
d+(x) + d−(y) ≤ n− 1 + 2ε.

Case 2: |E(D)|−|E(D′
2)| = d(x)+d(y)−ε−ε′+|E(u0, Y ∩S)| ≥ 4n−1−β,

then
d(x) + d(y) ≥ 4n− 1− 3β + ε + ε′.
As d−(x) + d+(y) ≤ 2(n− 1)− β + 2ε′, d+(x) + d−(y) ≥ 2n + 1− 2β +

ε − ε′ = n + k + 1 + ε − ε′ ≥ n + 2ε, a contradiction with the assumption
d+(x) + d−(y) ≤ n− 1 + 2ε.

Case 3: |E(D)| − |E(D′
3)| =

d(x)+d(y)+ |E(u0, (Y ∩S\{y}))|+ |E(v0, (X ∩S\{x}))|+ |E(u0, v0)| ≥
4n− 1− β.

As d−(x) + d+(y) ≤ 2(n− β), d+(x) + d−(y) ≥ 2n + 1− 3β.
If x ∈ V (S), and y ∈ V (S), ε = ε′ = 0.

d(x) + d(y) ≥ 4n− 1− β − 4(β − 1)− 2 = 4n− 5β + 1.
The only remaining problem is Case 3, when 2n + 5 − 3β ≤ d+(x) +

d−(y) ≤ n− 1.
As d+(x) + d−(y) ≥ 2n + 1 − 3β = β + 2k + 1, d+(x) ≤ β + k ⇒

d−(y) ≥ k + 1, and d−(y) ≤ β + k ⇒ d+(x) ≥ k + 1. Moreover the condition
d+(x) + d−(y) ≤ n− 1 implies

d(x) + d(y) ≤ 2(n− β) + n− 1 = 3n− 2β − 1; then:
|E(D′

3)| ≥ G(n, β)− (3n− 2β− 1)− 4β +2 = G(n, β)− 4n+2+ k +1 =
G(n− 1, β)− (β − k − 1).

We obtain the following

Claim 5.8. If there is no hamiltonian path in D from x to y, then ∀a ∈ N−(y),
and ∀b ∈ N+(x), d+(a) + d−(b) ≥ 2n− β + k + 2.

Proof:
If a 6= u0 and b 6= v0, Claim 5.8 follows from Lemma 5.4 applied to D′

3,
the vertices b ∈ N+(x) and a ∈ N−(y) and p = β − k − 1.

If u0 ∈ N−(y) or v0 ∈ N+(x), the condition β ≥ k+2 implies that there
exist u and v, u 6= u0, or v 6= v0, satisfying d+(u) ≥ β + k, d+−(u) ≥ β + k or
d+(v) ≥ β + k, d−(v) ≥ β + k.

We can consider for D′
3 : D′

3 = D\({x, y}∪E(u, Y ∩S)∪E(v, X ∩S)∪
E(u, v)) and Claim 5.8 follows in all cases. ¤
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Conditions d+(x) ≥ k +1, d−(y) ≥ k +1 imply, by a counting argument
and Claim 5.7, that there exists a vertex a1 ∈ N−(y), a1 6= u0 and a vertex
b1 ∈ N+(x), b1 6= v0 which satisfy the conditions d+(b1) ≥ β + k, d−(a1) ≥
β + k and by Claim 5.8, d+(a1) + d−(b1) ≥ 2n− β + k + 2.

Let us consider the digraph ∆ obtained from D by contracting the
vertices x and a1, and the vertices y and b1, i.e.:

V (∆) = V (D)\{x, y, a1, b1} ∪ {A,B} with :
N+

∆(A) = N+(x)\{b1}; N−
∆ (A) = N−(a1)\((Y ∩ S) ∪ {b1});

N+
∆(B) = N+(b1)\((X ∩ S) ∪ {a1}); N−

∆ (B) = N−(y)\{a1};
for z 6∈ {A,B}, N+

∆(z) = N+(z)\{x, y, a1, b1} ∪ {B} if (zy) ∈ E(D),
N+

∆(z) = N+(z)\{x, y, a1, b1} ∪ {A} if (za1) ∈ E(D),
N−

∆ (z) = N−(z)\{x, y, a1, b1} ∪ {A} if (xz) ∈ E(D),
N−

∆ (z) = N−(z)\{x, y, a1, b1} ∪ {B} if (b1y) ∈ E(D).

Then d+
∆(A) = d+(x) − 1, d−∆(A) ≥ d−(a1) − (β + 1), that implies

d+
∆(A) ≥ k − 1, d−∆(A) ≥ k − 1,

d+
∆(B) ≥ d+(b1)−(β+1), d−∆(B) = d−(y)−1, that implies d+

∆(B) ≥ k−1,
d−∆(B) ≥ k − 1,

∀z ∈ V (∆)\{A,B}, d+
∆(z) ≥ d+(z)− 1, d−∆(z) ≥ d−(z)− 1, then

∀x ∈ V (∆), d+
∆(x) ≥ k − 1, d−∆(x) ≥ k − 1.

The digraph ∆ is a balanced bipartite digraph of order 2(n− 1).
The set S\{x, y} ∪ {A,B} is a balanced independent set of cardinality

2β in ∆.
Hence ∆ ∈ D(n− 1, β, k − 1) and |E(∆)| ≥ G(n, β)− d−(x)− d+(y)−

d+(a1)−d−(b1)+η−η′−2β+2, with η = 1 if (a1b1) ∈ E, η = 0 if (a1b1) 6∈ E,
and η′ = 1 if (b1a1) ∈ E, η′ = 0 if (b1a1) 6∈ E.

Then |E(∆)| ≥ G(n, β)− 4n + 2 = F (n− 1, β).
By the induction hypothesis 5.1, ∆ is hamiltonian, and from a hamil-

tonian cycle in ∆, we can deduce two disjoint paths P1 from x to y, and P2

from b1 to a1 with V (P1) ∪ V (P2) = V (D).
Let |V (P1)| = 2n1 and |V (P2)| = 2n2.
As d+(a1)+d−(b1) ≥ 2n−β +k +2 the following inequality is satisfied:

d+
P1

(a1) + d−P1
(b1) ≥ 2n− β + k + 2− 2n2 = 2n1 − β + k + 2.

If d+
P1

(a1) + d−P1
(b1) ≥ n1 + 1, let v ∈ V (P1) ∩ N−(b1) such that v+ ∈

N+(a1);
(x, P1, v, b1, P2, a1, v

+, P1, y) is a hamiltonian path from x to y.
If d+

P1
(a1) + d−P1

(b1) ≤ n1, then n1 ≤ β − k − 2, and n2 ≥ β + 2k + 2;
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If y− is the predecessor of y on P1 and x+ is the successor of x on P1,
by Claim 5.8:

d+(y−) + d−(x+) ≥ 2n− β + k + 2 ;
d+

P1
(y−) + d−P1

(x+) ≤ 2n1 ⇒ d+
P2

(y−) + d−P2
(x+) ≥ 2n2 − β + k + 2 ≥ n2 + 1.

Let α ∈ N−
P2

(x+) such that α+ ∈ N+
P2

(y−);
(x, b1, P2, α, x+, P1, y

−, α+, P2, a1, y) is a hamiltonian path from x to y.
Proposition 5.2 is proved. ¤

5.4 Proof of Proposition 5.3

Proposition 5.3 Under the induction hypothesis 5.1, if D ∈ D(n, β, k)
satisfies |E| ≥ F (n, β), D is hamiltonian.

Let D ∈ D(n, β, k) satisfy |E| ≥ F (n, β). If we assume that D is not
hamiltonian, for any arc (x, y) ∈ E(D) there is no hamiltonian path in D
from y to x; as |E| ≥ F (n, β) = G(n, β) − β, we can apply Lemma 5.5 with
p = β and obtain the following Claim:

Claim 5.9. If D ∈ D(n, β, k) satisfying |E| ≥ F (n, β) is not hamiltonian,
then for any arc (xy) ∈ E:

(i) If x ∈ S, y 6∈ S, or x 6∈ S, y ∈ S, d+(x) + d−(y) ≥ 2n− 2β + 1,

(ii) If x 6∈ S, y 6∈ S, d+(x) + d−(y) ≥ 2n− β + 1,

(iii) ∀x ∈ S, d+(x) ≥ k + 1, d−(x) ≥ k + 1,

(iv) ∀x 6∈ S, d+(x) ≥ β + k + 1, d−(x) ≥ β + k + 1.

5.4.1 Preliminary Lemma

Lemma 5.10. If D ∈ D(n, β, k) satisfying |E| ≥ F (n, β) is not hamiltonian,
there exists in D a cycle C of length 2β which saturates X ∩ S or Y ∩ S.

The proof is based on the following Claim:

Claim 5.11. If D ∈ D(n, β, k), and if |E| ≥ F (n, β), there exists a perfect
matching of X ∩ S into Y ∩ (D\S), and a perfect matching of Y ∩ S into
X ∩ (D\S)

Proof:
We use the Hall-Konig Theorem (see [7] p 128) to prove Claim 5.11:
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Theorem 5.12. (Hall-Konig) Let G = (U, V, E) be a bipartite digraph
with partite sets U and V ; if for any subset A ⊂ U , |N+(A)| ≥ |A|, then
there exists a perfect matching of U into V .

We assume there exists A ⊂ X ∩S, such that if B = N+(A), |B| < |A|;
the condition d+(x) ≥ k for any x ∈ A implies the inequality:

k ≤ |B| ≤ |A| − 1 ≤ β − 1
and at least |A|(β+k−|B|) arcs are missing between X∩S and Y ∩(D\S);

let t = |B|.
|A|(β + k − |B|) ≥ (t + 1)(β + k − t), with k ≤ t ≤ β − 1.
|A|(β + k − |B|) ≥ min

k≤t≤β−1
((t + 1)(β + k − t)) = β(k + 1).

Then at least β(k + 1) arcs are missing between X ∩ S and Y ∩ (D\S),
then

|E(D)| ≤ 2n2 − 2β2 − β(k + 1) < F (n, β), a contradiction with the
condition |E(D)| ≥ F (n, β).

Claim 5.11 is proved. ¤

Proof of Lemma 5.10:
Set l = min(k, b β

2 c); we consider the two following cases:
Case 1. There exists a vertex x0 6∈ S with |E(x0, S)| ≤ β + l,
Case 2. For any vertex x 6∈ S, |E(x, S)| > β + l.

Case 1: W.l.o.g. we can assume |E(x0, S)| ≤ β+l for a vertex x0 ∈ X\S.
Let (xiyi), 1 ≤ i ≤ β, be a matching from X ∩ S into Y ∩ (D\S).
For 1 ≤ i ≤ β let D′

i = D\({xi, yi} ∪ E(x0, S)); D′
i ∈ D(n− 1, β, k − 1)

and :
|E(D′

i)| ≥ F (n, β) − d(xi) − d(yi) + 1 + εi − |E(x0, S)|, with εi = 1 if
(yixi) ∈ E, εi = 0 if (yixi) 6∈ E.

Case 1-1: ∃i, 1 ≤ i ≤ β such that:
d(xi) + d(yi)− 1− εi + |E(x0, S)| ≤ F (n, β)− F (n− 1, β) = 4n− 2− β.

Then |E(D′
i)| ≥ F (n − 1, β) and by the induction hypothesis 5.1 D′

i is
hamiltonian.

If d−(xi) + d+(yi) ≥ n + 2εi, by Lemma 3.3, D is hamiltonian.
If d−(xi) + d+(yi) ≤ n − 1 + 2εi, by Claim 5.9, the arc (yixi) 6∈ E(D),

then εi = 0.
As d+(xi) + d−(yi) ≤ 2n− β, then d(xi) + dyi) ≤ 3n− 1− β.

|E(D′
i)| ≥ F (n, β)−(3n−1−β)−β−l ≥ F (n, β)−(3n+k−2) = G(n−1, β);

then D′
i is hamiltonian-biconnected.
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Let b ∈ N−(xi), a ∈ N+(yi) and let P be a hamiltonian path in Di from
a to b; the cycle (a, P, b, xi, yi, a) is a hamiltonian cycle in D.

Case 1-2: ∀i, 1 ≤ i ≤ β:
d(xi) + d(yi)− 1− εi + |E(x0, S)| > F (n, β)−F (n− 1, β) = 4n− 2− β.
Then d(xi)+d(yi) > 4n−2β−l−1+εi; the conditions d(yi) ≤ 2n−1+εi

and d(xi) ≤ 2n− 2β − 1 + εi imply d(xi) > 2n− 2β − l and d(yi) > 2n− l.
As d+(xi) ≤ n − β, d−(xi) ≤ n − β, d+(yi) ≤ n, d−(yi) ≤ n, then we

have :
d+(xi) > n− β− l ≥ β + k−b β

2 c; d−(xi) > n− β− l ≥ β + k−b β
2 c;

d+(yi) > n− l ≥ n− b β
2 c; d−(yi) > n− l ≥ n− b β

2 c.
Let H be the subgraph induced by {xi, yi, 1 ≤ i ≤ β};
∀i, 1 ≤ i ≤ β, the following inequalities are satisfied:

d+
H(xi) > β + k − b β

2 c − k = b β + 1
2 c; d−H(xi) > b β + 1

2 c;
d+

H(yi) > n− b β
2 c − β − k = b β + 1

2 c; d−H(yi) > b β + 1
2 c.

By Theorem 1.4, H is hamiltonian, and a hamiltonian cycle of H is a
cycle of length 2β that saturates X ∩ S.

Case 2 : ∀x ∈ S, |E(x, S)| > β + l with l = min(k, bβ
2
c).

As in Definition 3.2, let D1 (resp. D2) denote the subgraph induced by
the set of vertices (X ∩ S) ∪ (Y ∩ (D\S)), (resp. (X ∩ (D\S) ∪ (Y ∩ S)).

As |E(D1)|+|E(D2)| ≥ F (n, β)−2(n−β)2 = 2β(n−β)+β(n−2β+1)+1,
w.o.l.g. we may assume |E(D1)| ≥ 2β(n− β)− 1

2 β(n− 2β + 1)+ 1
2.

Case 2-1 : β ≥ 2k + 1, then l = k, and ∀y ∈ V (D1) ∩ Y , d+
D1

(y) ≥
l + 1 = k + 1, d−D1

(y) ≥ k + 1; by Claim 5.9, ∀x ∈ V (D1)∩ S, d+
D1

(x) ≥ k + 1,
d−D1

(x) ≥ k + 1 and

|E(D1)| ≥ 2β(n−β)− 1
2 β(n−2β+1)+ 1

2 ≥ 2β(n−β)−(k+1)(β−k)+1; by
Theorem 1.3, D1 has a cycle of length 2β, hence a cycle that saturates X ∩S.

Case 2-2 : β ≤ 2k, then l = b β
2 c, and ∀y ∈ V (D1) ∩ Y , by the

assumption of case 2,

d+
D1

(y) > β + l − β ≥ b β
2 c, d−D1

(y) > b β
2 c, and by Claim 5.9,

∀x ∈ V (D1) ∩ S, d+
D1

(x) ≥ k + 1 ≥ b β
2 c+ 1, d−D1

(x) ≥ b β
2 c+ 1.

By Theorem 1.4, D1 has a cycle of length 2β that saturates X ∩ S.
Lemma 5.10 is proved.¤
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5.4.2 Proof of Proposition 5.3

Claim 5.13. Under the assumption of Lemma 5.10, let C be a cycle of length
2β in D that saturates X∩S or Y ∩S and let Γ be the subgraph of D induced
by V (D)\V (C), then Γ is hamiltonian.

Proof:
The subgraph Γ satisfies: |V (Γ)| = 2(n− β), |E(Γ)| ≥ |E(D)| − 2βn.
By Claim 5.9, ∀x ∈ S, d+(x) ≥ k + 1, d−(x) ≥ k + 1 then
∀x ∈ V (Γ) ∩ S, d+

Γ (x) ≥ k + 1, d−Γ (x) ≥ k + 1,
and ∀x 6∈ S, d+(x) ≥ β + k + 1, d−(x) ≥ β + k + 1 ⇒
∀x ∈ V (Γ) ∩ (D\S), d+

Γ (x) ≥ k + 1, d−Γ (x) ≥ k + 1.
Moreover |E(Γ)| ≥ 2(n − β)2 − β(n − 2β + 1) + 1 = 2(n − β)2 − (k +

1)(n− β − k) + 1.
By Theorem 1.3 Γ is hamiltonian.¤

Proof of Proposition 5.3 :
If D ∈ D(n, β, k) satisfying |E| ≥ F (n, β) is not hamiltonian, by

Lemma 5.10 there exists in D a cycle C of length 2β which saturates X ∩S or
Y ∩ S; by Claim 5.13 the subgraph Γ of D induced by V (D)\V (C) is hamil-
tonian. As |V (Γ)| = 2(n − β) > 2β = |S|, then on a hamiltonian cycle of Γ,
there exist arcs with both ends in D\S; by Claim 5.9, if (xy) is such an arc,
d+(x) + d−(y) ≥ 2n− β + 1, then d+

Γ (x) + d−Γ (y) ≥ β + 1; by Lemma 3.3, D
is hamiltonian.

Proposition 5.3 is proved.¤
Remark 5.14. For β ≥ k + 1, Theorem 2.3 is best possible in some sense
because of the following examples :

Example 1 :
Let D = (X,Y, E) where X = X1 ∪ X2, Y = Y1 ∪ Y2 ∪ Y3 with

|X1| = |Y1| = β, |X2| = β + k, |Y2| = k + 1, |Y3| = β − 1.
In D, there exist all the arcs between X2 and Y , between X1 and Y3

and all the arcs from Y2 to X1 (no arc from X1 to Y2 ); D ∈ D(n, β, k),
|E| = F (n, β) − 1 and D is not hamiltonian (there is no perfect matching
from X1 into Y ).

Example 2 :
Same definition than example 1, with |Y2| = k, |Y3| = β; then |E| =

G(n, β)− 1 and if x ∈ X1, y ∈ Y3, there is no hamiltonian path from x to y.
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