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A b s t r a c t. We give a procedure to find a solution to the equation
Dα

b−Dα
0+y(x) + mDα

0+Dα
b−y = C0(x), 0 < x < b, 0 < α < 1, solving the

corresponding Fredholm integral equation of the second kind.
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1. Introduction

Differential equations with the left and right fractional derivatives (de-
noted by Dα

0+ and Dα
b− , respectively) arise in mathematical models in many

branches of sciences as: mechanics, rheology, fluid flows, electrical networks,
viscoelasticity, chemical physics, polymer science, biophyscis,.. See for ex-
ample the books [4] and [5]. The theory of such equations with the left
fractional derivatives has been elaborated in many papers and books (see
for example [5]). But equations in which arises the left fractional derivative
combined with the right fractional derivative have been left unexamined.
One of the reason lies in the fact that the connection between these two
aspects of fractional derivatives is very complex.
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We treat of the equation

Dα
b−Dα

0+y(x) + mDα
0+Dα

b−y(x) = C0(x), 0 < x < b, 0 < α < 1, (1)

where m is a constant, bringing down to a Fredholm integral equation of
the second kind. This equation is interesting not only as a mathematical
model in mechanics, but also it gives the connection between two operators
Dα

b−Dα
0+ and Dα

0+Dα
b− .

To find a solution to (1) we first construct a singular integral equation,
then a quasi-Fredholm integral equation which can be brought by integration
to a Fredholm integral equation with the continuous kernel.

In this paper we use the notation and defnitions as they are given in [9].
Let us repeat definitions of three classes of functions we use (see [9]):

The function f defined on the interval [a, b] belongs to the class H(λ) if
and only if |f(t2)− f(t1)| ≤ A|t2 − t1|λ, 0 < λ ≤ 1, for every t1, t2 ∈ [a, b].

The function f ∈ H if f ∈ H(λ), for a fixed λ ∈ (0, 1].
The function f defined on [0, b] belongs to hλ[0, b], 0 < λ ≤ 1, if

f(x2)− f(x1)
|x2 − x1|λ → 0, x2 → x1 .

Let ρ(x) = xα. We denote by Lp(ρ, (0, 1)) the space of functions f, such
that ρ(x)f(x) ∈ Lp(0, 1).

2. A method to solve equation (1)

2.1. Construction of a singular integral equation related to (1)

Let C0(x) = C(1)(x). It is well-known that Dα
0+ =

d

dx
I1−α
0+ and Dα

b− =

− d

dx
I1−α
b− , where I1−α

0+ an I1−α
b− are the left and right fractional integral

operators, respectively. Then (1) is equivalent to

−I1−α
b− Dα

0+y(x) + mI1−α
0+ Dα

b−y(x) = C(x) + k, 0 < x < b . (2)

We use the connection between Iα
0+ and Iα

b− (see [9], p. 206):

I1−α
0+ ϕ(x) = cos(1−α)πI1−α

b− ϕ(x)−sin(1−α)π
(
I1−α
b− (b−t)α−1S(b−τ)1−αϕ

)
(x),
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which holds for ϕ ∈ Lq(0, b), q(1− α) > 1 and x ∈ (0, b), where

S(ϕ) =
1
π

V P

b∫

0

(t− x)−1ϕ(t)dt .

Then (2) is:

−I1−α
b− Dα

0+y(x) + mI1−α
b−

[
cos(1− α)πDα

b−y(t)

− sin(1− α)π(b− t)α−1
(
S(b− τ)1−αDα

b−y(τ)
)
(t)

]
(x) = C(x) + k ,

(3)

where Dα
b−y ∈ Lq(0, b), q(1− α) > 1.

Appliyng the operator D1−α
b− to (3), we have:

−Dα
0+y(x) + m

[
cos(1− α)πDα

b−y(x)− sin(1− α)π(b− x)α−1

·
(
S(b− τ)1−αDα

b−y(τ)
)
(x)

]
= D1−α

b− (C(x) + k) .
(4)

We introduce a new function g by the connection with y as

y(x) = Iα
b−g(x), 0 < x < b , (5)

supposing that g ∈ Lp(0, b), αp > 1. Then y = Iα
b−g ∈ hα−1/p[0, b] (see [9],

p. 69). With the new form of y, given by (5), equation (4) can be written
as

−Dα
0+Iα

b−g(x) + m
[
cos(1− α)πg(x)− sin(1− α)π(b− x)α−1 x(

S(b− τ)1−αg(τ)
)
(x)

]
= D1−α

b− (C(x) + k) .
(6)

Now we again use the connection of Iα
b− and Iα

0+ given by (see [9], p.
206)

Iα
b−ϕ(x) = cosαπIα

0+ϕ(x) + sinαπ(Iα
0+t−αSταϕ)(x),

which holds for ϕ ∈ Lp(0, b), pα > 1, x ∈ (0, b). With such expression of Iα
b−

(6) is as

−Dα
0+

(
cosαπIα

0+g(x) + sinαπ(Iα
0+t−αSταg)(x)

)

+m
[
cos(1− α)πg(x)− sin(1− α)π(b− x)α−1

(
S(b− τ)1−αg

)
(x)

]

= D1−α
b− (C(x) + k) .

(7)
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Since Dα
0+Iα

0+ϕ = ϕ for any sommable function ϕ on (0, b), and the operator
S is bounded on Lq(τα, (0, 1)), α < q − 1 (see [9], p. 200), we can write (7)
as

−[cosαπg(x) + sinαπx−α(Sταg)(x)] + m[cos(1− α)πg(x)
− sin(1− α)π(b− x)α−1

(
S(b− τ)1−αg(τ

)
(x)

= Dα
b−(C(x) + k) .

(8)

Since 0 < α < 1, cos(1 − α)π = − cosαπ and sin(1− α)π = sinαπ, finally,
we obtain the singular integral equation

A(x)g(x) +
1
πi

b∫

0

K(x, t)
t− x

g(t) = F (x), 0 < x < b , (9)

where

A(x) = (m + 1) cosαπxα(b− x)1−α,
F (x) = −(Dα

b−C(t) + k)x)xα(b− x)1−α,

K(x, t) = i sinαπ
(
tα(b− x)1−α + m(b− t)1−αxα

)
.

(10)

The function g(τ) ∈ Lp(0, b) and ταg(τ) ∈ Lq(0, b),
1
p

< α < q − 1.

We show that A and K belong to H. It is well-known that xα and
(b−x)1−α belong to H and are bounded on [0, b]. The product and the sum
of two functions which belong to H, belong to H, as well (see [6], p. 24).
Consequently A and K belong to H (K in two variables). We can now prove
the following

Proposition. If g is a solution to (9) such that g ∈ Lp(0, 1), p =

max(
1
α

,
1

1− α
, α + 1), then y = Iα

b−g is a solution to (1) and belongs to

hα−1/p[0, b], α− 1/p > 0.

P r o o f. The function g can be given in the form

g = Dα
0+Iα

0 g .

To prove this we introduce the function

F (x) = (Dα
0+Iα

0 g)(x), 0 < x < 1 .

Then (see [9], p. 45)

Iα
0+F = Iα

0+g − (I1−α
0+ Iα

0+g)(0)
= Iα

0+g − (I1
0+g)(0) = Iα

0+h .
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Consequently,

Iα
0+(F − g) = 0, or (F − g)(x) ∗ x−α = 0 .

By the Tichmarsh theorem F = ϕ.
We know (see [9], p. 69) that the operator Iα

0+ has the property

Iα
0+ : Lp(a, b) → hα−1/p[0, b].

Since Iα
b− = QIα

0+Q, where the operator Q maps a function f defined on
(0, b) as Q : f → f(b − x), the operator Iα

b− has the same cited property of
Iα
0+ . This gives that y ∈ hα−1/p[0, b].

Suppose that we find a solution g ∈ Lp(0, 1) to (9), p = max
( 1
α

,
1

1− α
, 1+

α
)
. Now we can return from (9) to (1) taking in consideration that Lp(0, b) ⊂

Lq(0, b), for q = 1, q =
1
α

, q =
1

1− α
and q = α + 1.

2.2. The characteristic equation of (9)

Our aim is to construct a Fredholm integral equation instead of singular
integral equation (9). There exist different methods to do it (see for example
[M ] and [G]). We propose the method which uses the characteristic equation.
Then the first step is to solve the characteristic equation.

Equation (9) can be written as

A(x)g(x) +
B(x)
πi

∫ b

0

g(t)
t− x

dt +
1
πi

∫ b

0
k(x, t)g(t)dt = F (x) , (11)

where

B(x) = K(x, x) = i(1 + m) sin απxα(b− x)1−α and

k(x, t) =
K(x, t)−B(x)

t− x
.

(12)

For the function k(x, t) we know (see [6], p. 90) that

k(x, t) =
k∗(x, t)
|t− x|λ , 0 ≤ λ < 1, k∗ ∈ H . (13)

The equation

A(x)g0(x) =
B(x)
πi

b∫

0

g0(t)
t− x

dt = F (x), 0 < x < b, (14)
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is called the characteristic equation to (9). Because of (10) and (12) is can
be given as

ag0(x) +
b

πi

b∫

0

g0(t)
t− x

dt = d(x), 0 < x < b, (15)

where

a = (m + 1) cosαπ, b = i(m + 1) sinαπ, d(x) =
(
−Dα

b−(C(t) + k)
)
(x),

To solve equation (15) we follow the procedure given in [6], §97.
Let G(t) be the function

G(t) =
a− b

a + b
=

(m + 1) cos απ − i sinαπ

(m + 1) cos απ + i sinαπ
= (cosαπ − i sinαπ)2 = e−2απi.

Then `nG(t) = (k − α)2πi, k = 0,±1,±2, ... We fix

`nG(t) = (−α)2πi . (16)

Let us analyze the function

γ(x) =
1

2πi

b∫

0

`nG(t)
t− z

dt .

With G given by (16) we have

γ(z) =
1

2πi
`nG(t)`n

(b− z

−z

)
= (−α)`n

(b− z

−z

)
(17)

(see [6], p. 47). Then the function

eγ(z) =
(b− z

−z

)(−α)

satisfies the equation

φ+(t) = G(t)φ−(t), 0 < t < b . (18)

In the neighborhood of c = 0 and c = b we have

γ(z) = Am(z − c), A = ∓(−α) , (19)
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where we take the sign ”-” if c = 0, and the sigh ”+” if c = b. We determine
integers λ0 and λb such that −1 < α + λ0 < 0 and −1 < −α + λb < 0. This
gives λ0 = −1 and λb = 0. Then the canonical solution X(z) to (18) is

X(z) = eγ(z)z−1 =
(b− z

−z

)−α
z−1 = (b− z)−αz−(1−α) . (20)

This solution is of the class h(0, b) and the index of the class h(0, b) is
κ = 1 (for the definition of the class h(0, b) and the index κ see [6], p. 315).
The function X+(x) and X−(x) are

X+(x) = e−iαπ(b− x)−αx−(1−α), X−(x) = eiαπ(b− x)−αx−(1−α) .

With the canonical solution X(z) to (18) we construct the general solution
φ0(z) = X(z)P (z) to (18) of the given class h(0, b); P (z) is any polynomial.

The function

φ(z) =
X(z)
2πi

b∫

0

d(t) dt

(a + b)X+(t)(t− z)
+ φ0(z) (21)

is the general solution of the class h(0, b) to equation

φ+(x) = G(x)φ−(x) +
d(x)
a + b

. (22)

Since we need that φ(∞) = 0, P (z) has to be only a constant, denoted by
P.

Finally, the solution to (16) is

g0(x) = φ+(t0)− φ−(t0) . (23)

If d(x) belong to the class H, then g0(x) ∈ H and is the general solution in
the class H to (15).

To give the explicit form of g0(x) we introduce the function Z(x) =
(a + b)X+(x) and the constants

a∗ =
a

a2 − b2
=

(m + 1) cosαπ

(m + 1)2 cos2 απ + (m + 1)2 sin2 απ
=

a

(m + 1)2

b∗ =
b

a2 − b2
=

b

(m + 1)2
.
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By the formula of Sohocki-Plemelj (see [6], p. 66) we have

g0(x) = a∗d(x)− b∗Z(x)
πi

b∫

0

d(t)dt

Z(t)(t− x)
+ b∗Z(x)P ∗, 0 < x < b. (24)

2.3. The quasi Fredholm integral equation

We use the solution to the characteristic equation of (9) to construct
a quasi Fredholm integral equation (cf. [3], §49.1). Equation (11) can be
written as

ag(x) +
b

πi

b∫

0

g(t)
t− x

dy = d(x)

−x−α(b− x)α−1 1
πi

b∫

0

k(x, t)g(t)dt, 0 < x < b .

(25)

By the result of 2.2 the formal solution to (25) is

g(x) = a∗
(
d(x)− x−α(b− x)α−1 1

πi

b∫

0

k(x, t)g(t)dt
)

−b∗Z(x)
πi

b∫

0

1
Z(t)(t− x)

[
d(t)

−t−α(b− t)α−1 1
πi

b∫

0

k(t, τ)g(τ)dτ
]
dt

+b∗Z(x)P ∗, 0 < x < b ,

or

g(x) +
b∫

0

M(x, t)g(t)dt = E(x), 0 < x < b , (26)
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where

M(x, t) = a∗x−α(b− x)α−1 1
πi

k(x, t)

−b∗Z(x)
πi

b∫

0

eαπi

(a + b)t−1+2α(b− t)1−2α

1
π

k(t, τ)dt,

(27)

E(x) = a∗d(x)− b∗Z(x)
πi

b∫

0

d(t)
Z(t)(t− x)

dt + b∗Z(x)P ∗ . (28)

Equation (26) is a quasi Fredholm integral equation. It can be transformed
to a Fredholm integral equation (see for example [7]) by using the process
of iteration. The quasi Fredholm equations have the same properties as
Fredholm’s integral equations (see [G], p. 152).
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