# NORDHAUS-GADDUM-TYPE RELATIONS FOR THE ENERGY AND LAPLACIAN ENERGY OF GRAPHS 

## B. ZHOU, I. GUTMAN

(Presented at the 8th Meeting, held on November 24, 2006)
Abstract. Let $\bar{G}$ denote the complement of the graph $G$. If $I(G)$ is some invariant of $G$, then relations (identities, bounds, and similar) pertaining to $I(G)+I(\bar{G})$ are said to be of Nordhaus-Gaddum type. A number of lower and upper bounds of Nordhaus-Gaddum type are obtained for the energy and Laplacian energy of graphs. Also some new relations for the Laplacian graph energy are established.

AMS Mathematics Subject Classification (2000): 05C50
Key Words: spectrum (of graph), Laplacian spectrum (of graph), energy (of graph), Laplacian energy (of graph), Nordhaus-Gaddum-type relation

## 1. Introduction

In this paper we are concerned with simple graphs. Let $G$ be such a graph, and let $n$ and $m$ denote, respectively, the number of its vertices and edges. Then $G$ is said to be an $(n, m)$-graph.

The (ordinary) spectrum of $G$ is the spectrum of its adjacency matrix [6], and consists of the numbers $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. The Laplacian spectrum of $G$ is the spectrum of its Laplacian matrix [10, 11, 21, 22], and consists of the numbers $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n}=0$.

The energy of a graph $G$, denoted by $E(G)$, is defined as

$$
E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

This graph-spectrum-based invariant has its origin in theoretical chemistry (for details see $[13,14]$ ), but has recently attracted the interest of mathematicians. The basic mathematical properties of graph energy can be found in the review [12], whereas some most recent mathematical studies in the papers $[3,4,25-30,32,33,35]$.

The Laplacian energy of a graph $G$, denoted by $L E(G)$, has been recently defined as [15]

$$
L E(G)=\sum_{i=1}^{n}\left|\mu_{i}-\frac{2 m}{n}\right|
$$

and was aimed at being the Laplacian-spectral analog of graph energy. Until now, only two papers $[15,37]$ are devoted to the study of Laplacian graph energy.

As usual, $\bar{G}$ will symbolize the complement of the graph $G$. The number of vertices and edges of the complement of an $(n, m)$-graph will be denoted by $\bar{n}$ and $\bar{m}$, respectively.

Nordhaus and Gaddum [23] reported bounds for the sum of the chromatic numbers of a graph and its complement. Eventually, Norhhaus-Gaddumtype relations were established for many other graph invariants $[1,2,5,8$, $9,16,17,20,31,34,36]$. In this paper we obtain bounds of this kind for the graph energy and Laplacian graph energy.

## 2. Nordhaus-Gaddum-Type Bounds for Graph Energy

Let $\overline{\lambda_{1}}$ be the largest eigenvalue of $\bar{G}$. Nosal [24] demonstrated that for a graph $G$ with $n$ vertices,

$$
\begin{equation*}
n-1 \leq \lambda_{1}+\overline{\lambda_{1}}<\sqrt{2} n \tag{1}
\end{equation*}
$$

which itself is a Nordhaus-Gaddum-type relation. In connection with the right-hand side inequality in (1), it was shown in [17] that

$$
\begin{equation*}
\lambda_{1}+\overline{\lambda_{1}} \leq \sqrt{\left(2-\frac{1}{\omega}-\frac{1}{\bar{\omega}}\right) n(n-1)} \tag{2}
\end{equation*}
$$

where $\omega$ and $\bar{\omega}$ denote the clique numbers of $G$ and $\bar{G}$, respectively.

Theorem 2.1. Let $G$ be a graph with $n$ vertices. Then

$$
\begin{equation*}
E(G)+E(\bar{G}) \geq 2(n-1) \tag{3}
\end{equation*}
$$

with equality if and only if $G$ is the complete graph $K_{n}$ or its complement, the empty graph (the n-vertex graph without edges).

Proof. We first observe that $E(G) \geq 2 \lambda_{1}$ with equality if and only if $G$ has at most one positive eigenvalue, i.e., if $G$ is the empty graph or a complete multipartite graph [6]. Therefore,

$$
E(G)+E(\bar{G}) \geq 2\left(\lambda_{1}+\overline{\lambda_{1}}\right) \geq 2(n-1) .
$$

If equality holds in (3), then both $G$ and $\bar{G}$ are empty or complete multipartite graphs, and so $G$ must be the complete graph or the empty graph. Conversely, knowing the spectrum of $K_{n}$ and $\overline{K_{n}}$, see [6], it is easily shown that (3) is an equality if $G \cong K_{n}$ or $G \cong \overline{K_{n}}$.

In [19] it was shown that for an $(n, m)$-graph $G$,

$$
\begin{equation*}
E(G) \leq \lambda_{1}+\sqrt{(n-1)\left(2 m-\lambda_{1}^{2}\right)} . \tag{4}
\end{equation*}
$$

From this upper bound it could be deduced that [18]

$$
E(G) \leq \frac{n}{2}(\sqrt{n}+1)
$$

which immediately implies

$$
E(G)+E(\bar{G}) \leq n(\sqrt{n}+1) .
$$

In what follows we improve the latter upper bound.
Theorem 2.2. Let $G$ be a graph with $n$ vertices. Then

$$
\begin{equation*}
E(G)+E(\bar{G})<\sqrt{2} n+(n-1) \sqrt{n-1} . \tag{5}
\end{equation*}
$$

Proof. Let $m$ and $\bar{m}$ denote, respectively, the number of edges of $G$ and $\bar{G}$. By (4) and (1), we have

$$
E(G)+E(\bar{G}) \leq \lambda_{1}+\overline{\lambda_{1}}+\sqrt{(n-1)\left(2 m-\lambda_{1}^{2}\right)}+\sqrt{(n-1)\left(2 \bar{m}-{\overline{\lambda_{1}}}^{2}\right)}
$$

$$
\begin{aligned}
& \leq \lambda_{1}+\overline{\lambda_{1}}+\sqrt{2(n-1)\left[2 m+2 \bar{m}-\left(\lambda_{1}^{2}+{\overline{\lambda_{1}}}^{2}\right)\right]} \\
& \leq \lambda_{1}+\overline{\lambda_{1}}+\sqrt{2(n-1)\left[n(n-1)-\frac{1}{2}\left(\lambda_{1}+\overline{\lambda_{1}}\right)^{2}\right]} \\
& <\sqrt{2} n+\sqrt{2(n-1)\left[n(n-1)-\frac{1}{2}(n-1)^{2}\right]} \\
& =\sqrt{2} n+(n-1) \sqrt{n-1} .
\end{aligned}
$$

This completes the proof.
Remark 2.3. Let $G$ be an $n$-vertex regular graph of degree $r$. Then (4) becomes $E(G) \leq r+\sqrt{(n-1) r(n-r)}$ and we have

$$
\begin{aligned}
E(G)+E(\bar{G}) & \leq n-1+\sqrt{(n-1)}[\sqrt{r(n-r)}+\sqrt{(r+1)(n-r-1)}] \\
& \leq(n-1)(\sqrt{n+1}+1)
\end{aligned}
$$

which for $n \geq 6$ is better than (5).
Remark 2.4. A strongly regular graph $G$ with parameters $(n, r, \rho, \sigma)$ is an $r$-regular graph on $n$ vertices, in which each pair of adjacent vertices has $\rho$ common neighbors and each pair of non-adjacent vertices has $\sigma$ common neighbors. If $\sigma \geq 1$ and $G$ is non-complete, then the eigenvalues of $G$ are [6] $r, s$, and $t$, with multiplicities $1, m_{s}$, and $m_{t}$, where $s$ and $t$ are the solutions of the equation $x^{2}+(\sigma-\rho) x+(\sigma-r)=0$, and $m_{s}$ and $m_{t}$ are determined by $m_{s}+m_{t}=n-1$ and $r+m_{s} s+m_{t} t=0$. If $G$ is a strongly regular graph with parameters $(n,(n+\sqrt{n}) / 2,(n+2 \sqrt{n}) / 4,(n+2 \sqrt{n}) / 4)$ (for some conveniently chosen value of $n$ ), then
$E(G)+E(\bar{G})=\frac{n}{2}(\sqrt{n}+1)+\frac{n}{2}(\sqrt{n}+1)-\sqrt{n}-2=(n-1)(\sqrt{n}+1)-1$.
If we consider a Paley graph $H$, which is a strongly regular graph with parameters $(n,(n-1) / 2,(n-5) / 4,(n-1) / 4)$, then

$$
E(H)+E(\bar{H})=(n-1)(\sqrt{n}+1)
$$

The results stated in Remark 2.4 show that the bound (5) is asymptotically tight.

Remark 2.5. Using (2), from the proof of Theorem 2.2, we have

$$
E(G)+E(\bar{G}) \leq \sqrt{\left(2-\frac{1}{\omega}-\frac{1}{\bar{\omega}}\right) n(n-1)}+(n-1) \sqrt{n-1} .
$$

## 3. Some Properties of the Laplacian Graph Energy

Details of the theory of Laplacian graph spectra are found in the reviews [10, 11, 21, 22]. For the following consideration we need the properties: $\mu_{n}=0$ for all graphs, and $\mu_{n-1}>0$ if and only if $G$ is connected.

Let $G_{1} * G_{2}$ denote the join of the graphs $G_{1}$ and $G_{2}$, i.e., the graph obtained from the disjoint union of $G_{1}$ and $G_{2}$ by adding all possible edges between vertices of $G_{1}$ and vertices of $G_{2}$.

Theorem 3.1. Let $G_{1}$ and $G_{2}$ be ( $n, m$ )-graphs. Then

$$
L E\left(G_{1} * G_{2}\right)=L E\left(G_{1}\right)+L E\left(G_{2}\right)+2 n-\frac{4 m}{n}
$$

Proof. Let $\mu_{1}^{\prime}, \mu_{2}^{\prime}, \ldots, \mu_{n}^{\prime}$ be the Laplacian eigenvalues of $G_{1}$ and $\mu_{1}^{\prime \prime}, \mu_{2}^{\prime \prime}, \ldots, \mu_{n}^{\prime \prime}$ the Laplacian eigenvalues of $G_{2}$. Then the Laplacian eigenvalues of $G_{1} * G_{2}$ are [22]

$$
2 n, n+\mu_{1}^{\prime}, n+\mu_{1}^{\prime \prime}, n+\mu_{2}^{\prime}, n+\mu_{2}^{\prime \prime}, \ldots, n+\mu_{n-1}^{\prime}, n+\mu_{n-1}^{\prime \prime}, 0
$$

Note that $G_{1} * G_{2}$ is a $\left(2 n, 2 m+n^{2}\right)$-graph with average vertex degree $\left(2 m+n^{2}\right) / n$. Therefore,

$$
\begin{aligned}
\operatorname{LE}\left(G_{1} * G_{2}\right) & =2 n+\sum_{i=1}^{n-1}\left|n+\mu_{i}^{\prime}-\frac{2 m+n^{2}}{n}\right|+\sum_{i=1}^{n-1}\left|n+\mu_{i}^{\prime \prime}-\frac{2 m+n^{2}}{n}\right| \\
& =2 n+\sum_{i=1}^{n-1}\left|\mu_{i}^{\prime}-\frac{2 m}{n}\right|+\sum_{i=1}^{n-1}\left|\mu_{i}^{\prime \prime}-\frac{2 m}{n}\right| \\
& =2 n+L E\left(G_{1}\right)-\frac{2 m}{n}+L E\left(G_{2}\right)-\frac{2 m}{n} .
\end{aligned}
$$

The result follows.

Remark 3.2. Let $G_{1}$ and $G_{2}$ be regular graphs of degrees $r^{\prime}$ and $r^{\prime \prime}$, respectively, with $n^{\prime}$ and $n^{\prime \prime}$ vertices, respectively. Then

$$
E\left(G_{1} * G_{2}\right)=E\left(G_{1}\right)+E\left(G_{2}\right)+\sqrt{\left(r^{\prime}-r^{\prime \prime}\right)^{2}+4 n^{\prime} n^{\prime \prime}}-r^{\prime}-r^{\prime \prime} .
$$

Let $G_{1} \times G_{2}$ denote the Cartesian product of graphs $G_{1}$ and $G_{2}$. Then $V\left(G_{1} \times G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and $\left(u_{1}, u_{2}\right)$ is adjacent to $\left(v_{1}, v_{2}\right)$ if and only if $u_{1}=v_{1}$ and $\left(u_{2}, v_{2}\right) \in E\left(G_{2}\right)$, or $u_{2}=v_{2}$ and $\left(u_{1}, v_{1}\right) \in E\left(G_{1}\right)$.

Theorem 3.3. Let $G_{1}$ and $G_{2}$ be, respectively, $\left(n, m_{1}\right)$ - and $\left(n, m_{2}\right)$ graphs. Then

$$
L E\left(G_{1} \times G_{2}\right) \leq n L E\left(G_{1}\right)+n L E\left(G_{2}\right) .
$$

Proof. Let the notation be the same as in the proof of Theorem 3.1. Then the Laplacian eigenvalues of $G_{1} \times G_{2}$ are [22]

$$
\mu_{i}^{\prime}+\mu_{j}^{\prime \prime}, i, j=1,2, \ldots, n
$$

Note that $G_{1} \times G_{2}$ is an $\left(n^{2}, n\left(m_{1}+m_{2}\right)\right)$-graph with average vertex degree $\left(2 m_{1}+2 m_{2}\right) / n$. Therefore,

$$
\begin{aligned}
\operatorname{LE}\left(G_{1} \times G_{2}\right) & =\sum_{i=1}^{n} \sum_{j=1}^{n}\left|\mu_{i}^{\prime}+\mu_{j}^{\prime \prime}-\frac{2 m_{1}+2 m_{2}}{n}\right| \\
& \leq \sum_{i=1}^{n} \sum_{j=1}^{n}\left(\left|\mu_{i}^{\prime}-\frac{2 m_{1}}{n}\right|+\left|\mu_{j}^{\prime \prime}-\frac{2 m_{2}}{n}\right|\right) \\
& =n \operatorname{LE}\left(G_{1}\right)+n \operatorname{LE}\left(G_{2}\right)
\end{aligned}
$$

The result follows.
Let $G$ be an $(n, m)$-graph. Note that $\mu_{1} \geq 2 m / n$. Then

$$
L E(G)=\mu_{1}+\sum_{i=2}^{n-1}\left|\mu_{i}-\frac{2 m}{n}\right|
$$

If $G$ is not a complete graph, then $\mu_{n-1} \leq 2 m / n \quad$ [7], and therefore

$$
L E(G)=\mu_{1}-\mu_{n-1}+\frac{2 m}{n}+\sum_{i=2}^{n-2}\left|\mu_{i}-\frac{2 m}{n}\right| .
$$

Theorem 3.4. Let $G$ be an $(n, m)$-graph with $n \geq 2$ and $m \geq 1$. Then $L E(G) \geq \mu_{1}$, with equality if and only if $G \cong K_{n / 2, n / 2}$, in which case, of course, $n$ must be even.

Pr o o f . It is easy to see that $L E(G) \geq \mu_{1}$, with equality if and only if $n=2$ or for $n \geq 3$, if $\mu_{2}=\cdots=\mu_{n-1}=\frac{2 m}{n}$. Suppose that $n \geq 3$ and $L E(G)=\mu_{1}$. Then by a result from [37], $G$ is a regular complete $k$-partite graph with $1<k \leq n$. Then

$$
n-\frac{n}{k}+(k-1) \frac{n}{k}=n,
$$

implying $k=2$. Thus, $G \cong K_{n / 2, n / 2}$. Conversely, if $G \cong K_{n / 2, n / 2}$, then it is easy to verify that $L E(G)=\mu_{1}$.

In a similar manner we arrive at
Theorem 3.5. Let $G$ be an ( $n, m$ )-graph, such that $n \geq 3$ and $m \geq 1$. Then

$$
L E(G) \geq \mu_{1}-\mu_{n-1}+\frac{2 m}{n}
$$

with equality if and only if $n=3$ or for $n \geq 4$, if $\mu_{2}=\cdots=\mu_{n-2}=2 m / n$.

## 4. Nordhaus-Gaddum-Type Bounds for Laplacian Graph Energy

Lemma 4.1. If $G$ is not the complete graph, and has at least one edge, then $\mu_{1}-\mu_{n-1}>1$.

Proof. Since $G$ has at least one edge, $\mu_{1} \geq \Delta+1$, where $\Delta$ is the maximum vertex degree of $G[10,21]$. If $G$ is connected, then equality holds if and only if $\Delta=n-1$.

Suppose that $G$ is connected. Then $\mu_{1}-\mu_{n-1} \geq \Delta-2 m / n+1 \geq 1$. If $\mu_{1}-\mu_{n-1}=1$, then $2 m / n=\Delta=n-1$ and then it would be $G \cong K_{n}$, a contradiction.

If $G$ is not connected, then $\mu_{1}-\mu_{n-1}=\mu_{1} \geq \Delta+1>1$.
Theorem 4.2. Let $G$ be a graph with $n$ vertices. Then

$$
L E(G)+L E(\bar{G}) \geq 2 n-2
$$

with equality if and only if $G$ is isomorphic to $K_{n}$ or $\overline{K_{n}}$.
Proof. If $G$ is isomorphic to $K_{n}$ or $\overline{K_{n}}$, then it is easy to show that $L E(G)+L E(\bar{G})=2 n-2$. Suppose that $n \geq 3$ and that $G$ is different from
$K_{n}$ and $\overline{K_{n}}$. Then

$$
\begin{aligned}
L E(G)+L E(\bar{G}) & =\mu_{1}-\mu_{n-1}+\frac{2 m}{n}+\sum_{i=2}^{n-2}\left|\mu_{i}-\frac{2 m}{n}\right| \\
& +\mu_{1}-\mu_{n-1}+\frac{2 \bar{m}}{n}+\sum_{i=2}^{n-2}\left|n-\mu_{i}-\frac{2 \bar{m}}{n}\right| \\
& \geq 2\left(\mu_{1}-\mu_{n-1}\right)+n-1+\sum_{i=2}^{n-2} 1=2\left(\mu_{1}-\mu_{n-1}\right)+2 n-4
\end{aligned}
$$

By Lemma 4.1, $L E(G)+L E(\bar{G})>2 n-2$.
Theorem 4.3. Let $G$ be a graph with $n$ vertices. Then

$$
L E(G)+L E(\bar{G})<n \sqrt{n^{2}-1}
$$

Proof. Denote by $d_{1}, d_{2}, \ldots, d_{n}$ the vertex degrees of $G$. Assume that $n \geq 2$. Let the auxiliary quantity $M$ be defined as [15]

$$
M=M(G)=m+\frac{1}{2} \sum_{i=1}^{n}\left(d_{i}-\frac{2 m}{n}\right)^{2}
$$

Then

$$
M(\bar{G})=\bar{m}+\frac{1}{2} \sum_{i=1}^{n}\left(d_{i}-\frac{2 m}{n}\right)^{2}
$$

Using the fact

$$
\sum_{i=1}^{n}\left(d_{i}\right)^{2} \leq 2(n-1) m
$$

with equality if and only if $G$ is the empty graph or the complete graph, we have

$$
\begin{aligned}
M(G)+M(\bar{G}) & =\frac{1}{2} n(n-1)+\sum_{i=1}^{n}\left(d_{i}-\frac{2 m}{n}\right)^{2} \\
& =\frac{1}{2} n(n-1)+\sum_{i=1}^{n}\left(d_{i}\right)^{2}-\frac{4 m^{2}}{n} \\
& \leq \frac{1}{2} n(n-1)+2(n-1) m-\frac{4 m^{2}}{n} \\
& \leq \frac{1}{2} n(n-1)+\frac{1}{4} n(n-1)^{2}=\frac{1}{4}(n-1) n(n+1)
\end{aligned}
$$

Now, because for $n \geq 2$ the number of edges of $K_{n}$ and $\overline{K_{n}}$ differs from $n(n-1) / 4$, we have

$$
\begin{equation*}
M(G)+M(\bar{G})<\frac{1}{4}(n-1) n(n+1) \tag{6}
\end{equation*}
$$

In [15] it has been shown that $L E(G) \leq \sqrt{2 n M}$, which combined with (6) implies

$$
L E(G)+L E(\bar{G}) \leq \sqrt{4 n[M(G)+M(\bar{G})]}<n \sqrt{n^{2}-1}
$$

Example 4.4. Let $G \cong K_{n / 2} \cup \overline{K_{n / 2}}$. Then the Laplacian eigenvalues of $G$ are

$$
\frac{n}{2}\left(\frac{n}{2}-1 \text { times }\right) \text { and } 0\left(\frac{n}{2}+1 \text { times }\right)
$$

and therefore

$$
L E(G)=\left(\frac{n}{2}-1\right) \frac{n+2}{4}+\left(\frac{n}{2}+1\right) \frac{n-2}{4}=\frac{1}{4}\left(n^{2}-4\right) .
$$

The Laplacian eigenvalues of $\bar{G}$ are

$$
n\left(\frac{n}{2} \text { times }\right), \frac{n}{2}\left(\frac{n}{2}-1 \text { times }\right) \text { and } 0(1 \text { time })
$$

and therefore

$$
L E(\bar{G})=\frac{n}{2} \frac{n+2}{4}+\left(\frac{n}{2}-1\right) \frac{n-2}{4}+\frac{3 n-2}{4}=\frac{1}{4}\left(n^{2}+2 n\right) .
$$

This implies

$$
L E(G)+L E(\bar{G})=\frac{1}{2}\left(n^{2}+n-2\right)
$$

Acknowledgement. This work was supported by the National Natural Science Foundation of China through Grant no. 10671076, and by the Serbian Ministry of Science and Environmental Protection, through Grant no. 144015G.

## REFERENCES

[1] N. Achuthan, N. R. Achuthan, L. Caccetta, On the Nordhaus-Gaddum class problem, Australas. J. Combin. 2 (1990) 5-27.
[2] Y. A l a v i, M. B e h z a r d, Complementary graphs and edge chromatic numbers, SIAM J. Appl. Math. 20 (1971) 161-163.
[3] R. B a l a k r i s h n a n, The energy of a graph, Lin. Algebra Appl. 387 (2004) 287-295.
[4] R. B. B a p a t, S. P a t i, Energy of a graph is never an odd integer, Bull. Kerala Math. Assoc. 1 (2004) 129-132.
[5] G. Chartrand, S. Schuster, On the independence numbers of complementary graphs, Trans. New York Acad. Sci. Ser. II 36 (1974) 247-251.
[6] D. C v e t k o vi ć, M. D o o b, H. S a c h s, Spectra of Graphs - Theory and Application, Academic Press, New York, 1980; 2nd revised ed.: Barth, Heidelberg, 1995.
[7] M. F i e d l e r, Algebraic connectivity of graphs, Czechoslovak Math. J. 25 (1975) 607-618.
[8] W. G o d d a r d, M. A. H e n n i n g, Nordhaus-Gaddum bounds for independent domination, Discr. Math. 268 (2003) 299-302.
[9] W. G o d d a r d, M. A. H e n n i n g, H. C. S w a r t, Some Nordhaus-Gaddum-type results, J. Graph Theory 16 (1992) 221-231.
[10] R. G r o n e, R. M e r r i s, The Laplacian spectrum of a graph II, SIAM J. Discr. Math. 7 (1994) 221-229.
[11] R. G r o n e, R. M e r r i s, V. S. S u n d e r, The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl. 11 (1990) 218-238.
[12] I. G u t m a n, The energy of a graph: old and new results, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer-Verlag, Berlin, 2001, pp. 196-211.
[13] I. G u t m a n, Topology and stability of conjugated hydrocarbons. The dependence of total $\pi$-electron energy on molecular topology, J. Serb. Chem. Soc. 70 (2005) 441-456.
[14] I. Gutman, O. E. P olansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986.
[15] I. G u t m a n, B. Z h o u, Laplacian energy of a graph, Lin. Algebra Appl. 414 (2006) 29-37.
[16] F. H a r a r y, T. W. H a y n e s, Nordhaus-Gaddum inequalities for domination in graphs, Discr. Math. 155 (1996) 99-105.
[17] Y. H o n g, J. S h u, A sharp upper bound for the spectral radius of the NordhasGaddum type, Discr. Math. 211 (2000) 229-232.
[18] J. H. K o o l e n, V. M o u l t o n, Maximal energy graphs, Adv. Appl. Math. 26 (2001) 47-52.
[19] J. H. K o olen, V. M oulton, I. Gutman, Improving the McCelland inequality for total $\pi$-electron energy, Chem. Phys. Lett. 320 (2000) 213-216.
[20] H. L i u, M. L u, F. T i a n, On the ordering of trees with the general Randic index of the Nordhaus-Gaddum type, MATCH Commun. Math. Comput. Chem. 55 (2006) 419-426.
[21] R. M e r ris, Laplacian matrices of graphs: A survey, Lin. Algebra Appl. 197-198 (1994) 143-176.
[22] B. M o h a r, The Laplacian spectrum of graphs, in: Y. Alavi, G. Chartrand, O. R. Oellermann, A. J. Schwenk (Eds.), Graph Theory, Combinatorics, and Applications, Wiley, New York, 1991, pp. 871-898.
[23] E. A. N or d haus, J. W. G a d d u m, On complementary graphs, Amer. Math. Monthly 63 (1956) 175-177.
[24] E. N o s a l, Eigenvalues of Graphs, M. Sc. thesis, Univ. Calgary, 1970.
[25] J. R a d a, Energy ordering of catacondensed hexagonal systems, Discr. Appl. Math. 145 (2005) 437-443.
[26] J. R a d a, A. T i n e o, Upper and lower bounds for energy of bipartite graphs, J. Math. Anal. Appl. 289 (2004) 446-455.
[27] H. S. R a mane, I. Gutman, H. B. W alikar, S. B. H alk arni, Another class of equienergetic graphs, Kragujevac J. Math. 26 (2004) 15-18.
[28] H. S. R amane, H. B. Walik ar, S. B. R a o, B. D. A charya, P. R. H a m piholi, S. R. Jog, I. Gutman, Equienergetic graphs, Kragujevac J. Math. 26 (2004) 5-13.
[29] H. S. R a mane, H. B. W alik ar, S. B. R a o, B. D. A charya, P. R. H a m piholi, S. R. Jog, I. Gutman, Spectra and energies of iterated line graphs of regular graphs, Appl. Math. Lett. 18 (2005) 679-682.
[30] I. S h p a r linski, On the energy of some circulant graphs, Lin. Algebra Appl. 414 (2006) 378-382.
[31] M. S t e n c e l, Theorems of Nordhaus-Gaddum type for some numbers, Discuss. Math. 7 (1985) 107-112.
[32] D. S t e vanovi ć, Energy and NEPS of graphs, Lin. Multilin. Algebra 53 (2005) 67-74.
[33] D. Stevanović, I. Stanković, Remarks on hyperenergetic circulant graphs, Lin. Algebra Appl. 400 (2005) 345-348.
[34] M. Stiebitz, On Hadwiger's number - a problem of the Nordhaus-Gaddum type, Discr. Math. 101 (1992) 307-317.
[35] W. Y a n, L. Y e, On the minimal energy of trees with a given diameter, Appl. Math. Lett. 18 (2005) 1046-1052.
[36] L. Z h a n g, B. W u, The Nordhaus-Gaddum-type inequalities for some chemical indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 189-194.
[37] B. Z hou, I. Gutman, On Laplacian energy of graphs, MATCH Commun. Math. Comput. Chem. 57 (2007) 211-220.

Department of Mathematics
South China Normal University
Guangzhou 510631
P. R. China

Faculty of Science
University of Kragujevac
P. O. Box 60

34000 Kragujevac
Serbia

