
Bulletin T.CXXXIII de l’Académie serbe des sciences et des arts − 2006
Classe des Sciences mathématiques et naturelles
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A b s t r a c t. After a short survey on Gevrey functions and ultradistri-
butions, we present the inhomogeneous Gevrey ultradistributions introduced
recently by the authors in collaboration with A. Morando, cf. [7]. Their def-
inition depends on a given weight function λ , satisfying suitable hypotheses,
according to Liess-Rodino [16]. As an application, we define (s, λ)-hyperbolic
partial differential operators with constant coefficients (for s > 1), and prove
for them the well-posedness of the Cauchy problem in the frame of the cor-
responding inhomogeneous ultradistributions. This sets in the dual spaces a
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Introduction

Let us begin this note by a short survey on Gevrey classes and related ul-
tradistributions. Starting from the investigation of the solutions of the heat
equation, Gevrey [9] considered subclasses of C∞(Ω), set of the infinitely
differentiable functions in an open set Ω ⊂ R

n. Namely, with the notation
we shall use in the following:

f belongs to Gs(Ω), 1 ≤ s < ∞, if for every compact subset K ⊂⊂ Ω it is
satisfied:

sup
x∈K

|Dαf(x)| ≤ RC |α|α!s (1)

for suitable positive constants R and C independent of the multi-index α.

In particular, for s = 1 we recapture the class of the analytic functions of
the real variable x ∈ Ω. Somewhat different classes are defined if we assume
that for every C > 0 there exists R such that (1) is satisfied (Beurling-type
Gevrey functions, we say now with reference to Beurling [1]). Concerning
the applications to the heat equation, we have that all the solutions f , also
in the weak sense, of

Hf = ∂tf − Δf = 0

are in G2(Rn+1). Moreover, assuming space dimension n = 1 and denoting
y for the space variable, the Cauchy problem at y = 0:⎧⎪⎨⎪⎩

Hf = 0
f(t, 0) = f0

∂yf(t, 0) = f1

(2)

admits solution f(t, y) , y ∈ R, if and only if f0, f1 ∈ Gs(R), s < 2 (note
that, with respect to the standard parabolic problem with datum at t = 0,
one is rather treating here H as a weakly hyperbolic operator, with initial
data at y = 0). Starting from the original contribution of Gevrey, researches
proceeded then along different lines. Let us distinguish two main streams.
From one side, it is natural to generalize (1) as

sup
x∈K

|Dαf(x)| ≤ RC |α|M|α|, (3)

where M = (Mj), j = 0, 1, 2, . . ., is a sequence of positive numbers satis-
fying suitable properties, cf. f.i. [13, 17]. The corresponding classes are
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usually denoted by CM (Ω). It is easy to see that when Mj = (j!)s we
recapture from (3) the Gevrey classes defined by (1). Other interesting ex-

amples are given by the classes for which
∞∑

j=0

Mj−1

Mj
= ∞, as for the case

Mj = j!; they are called quasi-analytic classes, because of their properties,
which are similar to those of the analytic class. See for example Mandel-
brojt [18], Beurling [1], Rudin [24] and the references there, for details. In
the non-quasi-analytic case, functions in CM (Ω) with compact support in
Ω exist, and the corresponding set is denoted by CM

0 (Ω). Giving the nat-
ural topology to CM

0 (Ω) and taking the dual, one obtains the space of the
generalized functions D′

M (Ω), see for example Roumieu [22], Komatsu [13],
Lions-Magenes [17] and Matsumoto [20], containing as a subset the space of
the Schwartz distributions D′(Ω) . Researches in this area are still very ac-
tive, see for example the alternative presentation of Braun-Meise-Taylor [2].
A further generalization is given by Roumieu [23], who considers sequences
Mα depending on all components of α.
In strict connection with such a study, we emphasize a second point of
view, where the main objective is given by the analysis of partial differential
equations, and the previous spaces play the role of natural functional frames
to obtain results of existence, uniqueness and regularity. In this line, the
attention is often limited to the Gevrey spaces defined by (1) and to the
corresponding ultradistribution spaces D′

s(Ω).As an example, let us men-
tion the famous result of Hörmander (see [12]), concerning the regularity
of the solutions of the partial differential equations with constant coeffi-
cients P (D)u = 0. Namely, all the solutions u ∈ D′(Ω) are actually in
Gs(Ω) if and only if the symbol P (ξ) satisfies for large |ξ| the estimates
|DαP (ξ)|/|P (ξ)| ≤ C|ξ|− |α|

s , i.e. P (D) is s-hypoelliptic. One can easily de-
duce from this the above-mentioned result of regularity for the solutions of
the heat equation.
Concerning the Cauchy problem (2), this also can be extended to general op-
erators with constant coefficients. Namely, the Cauchy problem with respect
to the time variable is well posed for initial data in the class Gr, 1 ≤ r < s,
if P (D) is s-hyperbolic (according to the definition of Larsson [14])in the
following sense:

P (τ, ξ) = τm +
∑

|ν|+j≤m,j �=m

aνjξ
ντ j = 0 for (τ, ξ) ∈ C × R

n =⇒ |�τ | ≤ C〈ξ〉 1
s , (4)

where τ and ξ denote the duals of the time and space variables, respec-
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tively, and we write 〈ξ〉 =
√

1 + |ξ|2. For the proof we refer for instance to
[12], Theorem 12.7.5, [21], Theorem 2.5.2 and [14]. Generalizing such con-
tributions, several other papers appeared, addressed to linear partial differ-
ential equations with analytic-Gevrey coefficients, or non-linear equations
with analytic-Gevrey nonlinearity, dealing with the problems of the local
existence and regularity of the solutions, the well-posedness of the Cauchy
problem and related questions. In particular, in these last thirty years,
new techniques of proof and terminology were given by Microlocal Analysis
(Gevrey pseudo-differential operators, Gevrey wave front sets, etc). We ad-
dress to the references in Rodino [21] and Mascarello-Rodino [19] for some
recent results in this connection.
Finally, to introduce the contents of the present paper, we recall that the
Fourier transform f̂ of f ∈ Gs

0(R
n) = Gs(Rn)∩C∞

0 (Rn) satisfies for positive
constants C and ε the estimates

|f̂(ξ)| ≤ C exp(−ε〈ξ〉 1
s ). (5)

Starting from (5), we extend the definition of Gevrey classes by replac-
ing 〈ξ〉 by a weight function λ(ξ), satisfying suitable properties. When
λ(ξ) = λ̃(|ξ|), one can establish precise connections with generalizations
in terms of (3), see for instance Braun-Meise-Taylor [2]. Generic inhomoge-
neous weight functions λ(ξ) were considered by Liess-Rodino [16] and Rodino
[21], Section 1.8; the corresponding classes cannot in general be identified in
terms of the estimates (3), however there are natural applications to hypoel-
liptic partial differential equations, motivating the inhomogeneous approach,
cf. [16].
In the next section we shall recall shortly the definition of weight function
from Liess-Rodino [16] and present also the corresponding Gevrey classes
and ultradistributions, as treated recently by Calvo-Morando-Rodino [7].
We observe that a different approach is presented in Björk [3], under more
restrictive hypotheses on the weight function; our setting allows us to in-
clude also the multi-anisotropic classes as particular case (cf. [6]). In the
last section we shall give a new application, concerning the Cauchy problem
for operators with constant coefficients in the frame of inhomogeneous ultra-
distributions. This extends to the dual spaces the above-mentioned result
of Larsson [14] for the standard Gevrey classes, and preceding contributions
of Calvo [4, 5] concerning the inhomogeneous and multi-anisotropic Gevrey
classes.



Inhomogeneous Gevrey ultradistributions and Cauchy problem 179

1. Inhomogeneous Gevrey ultradistributions

We introduce the weight functions, following Liess-Rodino [16].

Definition 1.1. We say that a function λ : R
n → R+ is a weight func-

tion if there are constants C, C ′, δ > 0 such that

(i) |λ(ξ) − λ(η)| ≤ C|ξ − η|, ∀ξ, η ∈ R
n,

(ii) 〈ξ〉δ ≤ C ′λ(ξ), ∀ξ ∈ R
n.

Observe that (i) implies λ(ξ) ≤ C〈ξ〉 for a constant C > 0, so that δ must
be smaller than 1.

From now on λ is a weight function according to Definition 1.1 and s > 1.
For short, in the sequel we refer to classes of functions and distributions in
R

n; classes in an open subset Ω of R
n can be defined similarly.

Definition 1.2. A distribution f ∈ D′(Rn) belongs to the inhomoge-
neous Gevrey class Gs,λ(Rn) if for any Gevrey function χ ∈ Gs

0(R
n) of the

same order s, χf satisfies for suitable C, ε > 0 the condition

|χ̂f(ξ)| ≤ C exp(−ελ(ξ)
1
s ), ∀ξ ∈ R

n. (6)

Definition 1.3. The inhomogeneous Gevrey classes with compact sup-
port are

Gs,λ
0 (Rn) = Gs,λ(Rn) ∩ C∞

0 (Rn).

It follows easily that the space Gs,λ
0 (Rn) is defined by the following inhomo-

geneous version of (5) (cf. [7], Theorem 2.1).
A compactly supported distribution f ∈ E ′(Rn) belongs to Gs,λ

0 (Rn) if and
only if its Fourier transform satisfies for suitable C, ε > 0 the condition

|f̂(ξ)| ≤ C exp(−ελ(ξ)
1
s ), ∀ξ ∈ R

n.

In order to endow the spaces Gs,λ
0 (Rn) and Gs,λ(Rn) with a topology, we

then define the following Banach spaces.

Definition 1.4. Let K be a compact subset of R
n and ε a positive num-

ber. Then

Gs,λ
0 (K, ε) := {f ∈ E ′(Rn) : suppf ⊂ K, sup

ξ∈Rn
exp(ελ(ξ)

1
s )|f̂(ξ)| < ∞}.
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Therefore, if {Kj}j∈N is an exhaustive sequence of compact sets in R
n and

{εj}j∈N a decreasing sequence of positive numbers converging to 0, we define
the topology in Gs,λ

0 (Rn) as

Gs,λ
0 (Rn) = indlimKj→Rn,εj→0G

s,λ
0 (Kj , εj).

Hence, Gs,λ
0 (Rn) is a (DFS)- space, cf. [11].

We now define the topology of the classes Gs,λ(Rn) with arbitrary support.
Firstly let {Kj}∞j=1 be an exhaustive sequence of compact sets of R

n (we
set K0 := ∅) and, for every j = 1, 2, . . ., take a function χj ∈ Gs

0(Kj) such
that χj ≡ 1 on Kj−1. For any pair of positive integers l > j we define the
continuous map

ρl,j : Gs,λ
0 (Kl) −→ Gs,λ

0 (Kj), f �−→ χjf.

We can then define Gs,λ(Rn) = projliml>j

(
Gs,λ

0 (Kj), ρl,j

)
.

The space Gs,λ(Rn) is a complete Schwartz space, as it is the projective limit
of complete Schwartz spaces (cf. [11]).
For the properties of the inhomogeneous Gevrey functions and the algebraic
operations on them, we refer to Calvo-Morando-Rodino [7]; we just point
out that, for δ as in Definition 1.1, the following inclusions involving the
inhomogeneous and the standard Gevrey classes hold:

Gs(Rn) ⊂ Gs,λ(Rn) ⊂ G
s
δ (Rn). (7)

We now pass to define the inhomogeneous Gevrey ultradistributions associ-
ated to the inhomogeneous Gevrey classes previously defined.

Definition 1.5. We denote by D′
s,λ(Rn) := (Gs,λ

0 (Rn))′ the topological
dual space of Gs,λ

0 (Rn). We also set E ′
s,λ(Rn) := (Gs,λ(Rn))′ for the topolog-

ical dual of Gs,λ(Rn).

The space E ′
s,λ(Rn) coincides with the subspace of the ultradistributions in

D′
s,λ(Rn) with compact support. As a consequence of (7), the following

inclusions of the standard and inhomogeneous ultradistributions hold:

D′
s
δ
(Rn) ⊂ D′

s,λ(Rn) ⊂ D′
s(R

n).

We point out the following property of the Fourier transform on E ′
s,λ(Rn),

that we will use to prove the well-posedness of the Cauchy problem in the
next section.
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Proposition 1.6. If u belongs to E ′
s,λ(Rn), then for every ε > 0 there

exists a constant Cε > 0 such that the Fourier transform û of u satisfies

|û(ξ)| ≤ Cε exp
(
ελ(−ξ)

1
s

)
, ∀ξ ∈ R

n. (8)

To antitransform a generic function û(ξ) satisfying (8), we need some spaces
of inhomogeneous ultradistributions in which the Fourier transform is an
automorphism. Namely, we first introduce the space Ss,λ(Rn), in analogy
with [3], [22], [23].

Definition 1.7. We say that a function f ∈ L1(Rn) belongs to Ss,λ(Rn)
if f, f̂ ∈ C∞(Rn) and there is a constant ε > 0 such that for all α ∈ N

n it
holds:

pα,ε(f) = sup
x∈Rn

exp(ελ(x)
1
s )|Dαf(x)| < ∞

πα,ε(f) = sup
ξ∈Rn

exp(ελ(ξ)
1
s )|Dαf̂(ξ)| < ∞.

(9)

Then we can naturally define a locally convex topology in Ss,λ(Rn) given
by the semi-norms pα,ε, πα,ε. We easily see that Gs,λ

0 (Rn) ⊂ Ss,λ(Rn) ⊂
Gs,λ(Rn) and Ss,λ(Rn) is included in the Schwartz space S(Rn). In analogy
with [3], from (9) we have that the Fourier transform is an automorphism
in Ss,λ(Rn). Therefore, we define the dual spaces of Ss,λ(Rn).

Definition 1.8. The space of the inhomogeneous ultradistribution
S ′

s,λ(Rn) is the topological dual of Ss,λ(Rn).

We have obviously the inclusions E ′
s,λ(Rn) ⊂ S ′

s,λ(Rn) ⊂ D′
s,λ(Rn) and

S ′(Rn) ⊂ S ′
s,λ(Rn), where S ′(Rn) is the space of tempered distributions.

We can define the Fourier transform for u ∈ S ′
s,λ(Rn) using Parseval’ for-

mula: û(f) = u(f̂), for all f ∈ Ss,λ(Rn) (as also f̂ ∈ Ss,λ(Rn)). The Fourier
transform is an automorphism in S ′

s,λ(Rn). Note finally that any function
û(ξ) satisfying for all ε > 0 the condition (8) can be regarded as an element
of S ′

s,λ(Rn), and therefore is the Fourier transform of an inhomogeneous ul-
tradistribution in S ′

s,λ(Rn). It follows that if û satisfies (8), then u belongs
to D′

s,λ(Rn) from the inclusion S ′
s,λ(Rn) ⊂ D′

s,λ(Rn).
For other properties of the inhomogeneous ultradistributions we refer to [7].
An important example of the inhomogeneous Gevrey functions is repre-
sented by the multi-anisotropic case, that is widely studied in literature and
presents many applications to the theory of partial differential equations, cf.
f.i. [5], [10], and the bibliography there; and see [6] for the dual spaces. Here
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the weight function is defined in terms of a completely regular polyhedron,
according to

Definition 1.9. A convex polyhedron P ⊂ R
n is complete if it satisfies

the following conditions:
i) all vertices (we denote their set by V(P)) have rational non-negative co-
ordinates;
ii) the origin (0, . . . , 0) belongs to P;
iii) P has one vertex in each coordinate axis (different from the origin);
iv) the outer normals (we denote by N1(P) their set) to the non-coordinate
faces of P have strictly positive components.

Then we define μ = maxj=1,...,n maxν∈N1(P) ν−1
j the formal order of P.

Therefore, the function |ξ|P =
∑

v∈V(P) |ξv| 1
μ is a weight function according

to Definition 1.1. The multi-anisotropic Gevrey classes obtained by fixing
λ(ξ) = |ξ|P in (6), can be defined also in terms of estimates on the deriva-
tives, cf. the previous references (with respect to (3), bounds are given in
terms of a suitable multi-sequence Mα, depending on each component of α).

2. Cauchy problem in inhomogeneous ultradistributions

As an application of the inhomogeneous Gevrey ultradistributions, we
study in this setting the well-posedness of the Cauchy problem, by consid-
ering a class of weakly hyperbolic operators, called (s, λ)-hyperbolic: these
operators were introduced in [4], modeled to have well-posedness in the in-
homogeneous Gevrey classes. They are an extension of the s-hyperbolic
operators of Larsson [14] (see formula (4) and of the multi-quasi-hyperbolic
operators in [5]). For simplicity, we suppose that λ(ξ) = λ(−ξ), for all
ξ ∈ R

n, as satisfied in the standard homogeneous and multi-anisotropic
cases.

Definition 2.1. We say that a differential operator with constant coef-
ficients in Rt × R

n
x:

P (D) = P (Dt, Dx) = Dm
t +

∑
|ν|+j≤m,j �=m

aνjD
ν
xDj

t (10)

is (s, λ)-hyperbolic if there exists a constant C > 0 such that for any (τ, ξ) ∈
C × R

n the symbol of P (D) satisfies the condition:

P (τ, ξ) = τm+
∑

|ν|+j≤m,j �=m

aνjξ
ντ j = 0 for (τ, ξ) ∈ C×R

n =⇒ |�τ | ≤ Cλ(ξ)
1
s .
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Obviously, if P (D) is (s, λ)-hyperbolic, then P (D) is also (r, λ)-hyperbolic
for 1 < r < s and s-hyperbolic (cf. [14]). The (s, λ)-hyperbolic operators
are obviously weakly hyperbolic, i.e. all the roots τ of the characteristic
equation Pm(τ, ξ) = τm +

∑
|ν|+j=m,j �=m ξντ j = 0 are real. In the opposite

direction, if Pm(τ, ξ) satisfies the weakly hyperbolic assumption, in order
to have the (s, λ)-hyperbolicity, we need to ask some Levi-type conditions
on the lower order terms, modeled on the weight function λ, as shown for
instance by the following result. We omit the proof, detailed in [4] together
with many other examples.

Proposition 2.2. Let P (D) in (10) be weakly hyperbolic. Assume that
the multiplicity of the roots of its principal symbol Pm(τ, ξ) is equal to M ≤
m and the lower order terms satisfy for some k < M and a constant C > 0:

|aνjξ
ν | ≤ Cλ(ξ)k〈ξ〉m−M−j for |ν| + j ≤ m − 1.

Then P (D) is (M
k , λ)-hyperbolic.

Finally, we can state the announced new result, of which we give a short
proof.

Theorem 2.3. Let P (D) be an (s, λ)-hyperbolic differential operator in
Rt × R

n
x. Let 1 < r < s and uk ∈ D′

r,λ(Rn
x) (k = 0, 1, . . . , m − 1). Then the

Cauchy problem:⎧⎨⎩ P (D)u = Dm
t u +

∑
|ν|+j≤m, j �=m aνjD

ν
xDj

t u = 0

Dk
t u(0, x) = uk(x), k = 0, 1, . . . , m − 1

(11)

admits a unique solution

u ∈ C∞([−T, T ],D′
r,λ(Rn

x))

for any T > 0. If r = s, the solution is only local in time.

P r o o f. As P (D) is a weakly hyperbolic operator with constant coeffi-
cients, then the phenomena related to P (D) propagate with a finite speed,
and therefore it is not restrictive to prove the theorem for data in the set
of compactly supported inhomogeneous ultradistributions E ′

r,λ(Rn). Analo-
gously to [4], [12] and [14], after performing the partial Fourier transform
with respect to the space variable in the Cauchy problem (11), the unique
solution u(t, x) is obtained by anti-transforming

û(t, ξ) =
m−1∑
j=0

ûj(ξ)Fj(t, ξ), (12)
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where ûj (j = 0, . . . , m − 1) are the Fourier transforms of the data of (11)
and Fj are the unique solutions of the Cauchy problems{

P (Dt, ξ)Fj = 0
Dk

t Fj(0, ξ) = δjk, k = 0, . . . , m − 1,

for δjk = 1 if j = k and 0 otherwise. As uj belong to E ′
r,λ(Rn), then

from (8) it follows that for all ε > 0 there is a constant Cε > 0 such that
|ûj(ξ)| ≤ Cε exp(ελ(ξ)

1
r ). To estimate Fj we use the following result (cf.

[12], Lemma 12.7.7):

Lemma 2.4. Let L(D) = Dm +
∑m−1

j=0 ajD
j be an ordinary differential

operator with constant coefficients aj ∈ C. Write Λ = {τ ∈ C : L(τ) = 0}
and assume: maxτ∈Λ |τ | ≤ A and maxτ∈Λ |�τ | ≤ B. Then the solutions
vj(t), j = 0, 1, . . . , m − 1, of the Cauchy problems:{

L(D)vj = 0
(Dkvj)(0) = δjk, k = 0, . . . , m − 1

satisfy the estimates:

|DNvj(t)| ≤ 2m(A + 1)N+m+1e(B+1)|t|, N = 0, 1, . . . , t ∈ R. (13)

We now determine the constants A, B in order to apply the estimate (13),
for N = 0, to the functions Fj(t, ξ), j = 0, 1, . . . , m−1 (with ξ as parameter).
As P (D) is (s, λ)-hyperbolic, then we can take B = C ′λ(ξ)

1
s , while it is easy

to see that A = C1〈ξ〉. This leads to have for new constants:

|Fj(t, ξ)| ≤ (C1〈ξ〉)m+1c1 exp(C ′|t|λ(ξ)
1
s ) ≤ c2 exp(C2(1 + |t|)λ(ξ)

1
s ).

Then we can estimate û(t, ξ) given by (12) as follows: for all ε > 0 there is
a constant Cε > 0 such that

|û(t, ξ)| ≤
m−1∑
j=0

c2Cε exp(ελ(ξ)
1
r ) exp(C2(1 + |t|)λ(ξ)

1
s ).

As r < s, for t ∈ [−T, T ] (for T > 0 fixed), for all ε′ > 0, taking ε suffi-
ciently small (depending on ε′, r, s, T ), then there is a constant Cε′ > 0 such
that holds |û(t, ξ)| ≤ Cε′ exp(ε′λ(ξ)

1
r ), ∀ξ ∈ R

n, implying that u belongs to
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C∞([−T, T ],D′
r,λ(Rn)). We observe that for r = s the solution is only local

in time. �

To conclude our treatment, let us show the application of Theorem 2.3
to some operators. Let P (Dx) =

∑
cαDα

x be a hypoelliptic operator with
constant coefficients in R

n and let P be its Newton polyhedron, i.e. the
convex hull of the points {0} ∪ {α : cα �= 0}, it is a complete polyhedron,
according to the classical result of Friberg [8]. If μ is the formal order of P
and m > μ, then the operator

Dm
t + P (Dx)

is (m
μ , | · |P)-hyperbolic, and therefore the Cauchy problem (11) admits a

unique solution u ∈ C∞([−T, T ],D′
r,P(Rn)) (for all T > 0) for any data

uk ∈ D′
r,P(Rn) (k = 0, . . . , m − 1), if r < s = m

μ .
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