Bulletin, Classe des Sciences Mathématiques et Naturelles, Sciences mathématiques naturelles / sciences mathematiques Vol. CXXVII, No. 28, pp. 31–40 (2003) |
|
On the coefficients of the Laplacian characteristic polynomial of treesI. Gutman and Ljiljana PavlovicIFaculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia and MontenegroAbstract: Let the Laplacian characteristic polynomial of an $n$-vertex tree $T$ be of the form $\psi(T,\lambda) = \sum\limits_{k=0}^n (-1)^{n-k} c_k(T) \lambda^k$ . Then, as well known, $c_0(T)=0$ and $c_1(T)=n$ . If $T$ differs from the star ($S_n$) and the path ($P_n$), which requires $n \geq 5$ , then $c_2(S_n) < c_2(T) < c_2(P_n)$ and $c_3(S_n) < c_3(T) < c_3(P_n)$ . If $n=4$ , then $c_3(S_n)=c_3(P_n)$ . Keywords: Laplacian spectrum, Laplacian characteristic polynomial, Trees, Distance (in graph), Wiener number Classification (MSC2000): 05C05, 05C12, 05C50 Full text of the article: (for faster download, first choose a mirror)
Electronic fulltext finalized on: 17 Sep 2003. This page was last modified: 20 Jun 2011.
© 2003 Mathematical Institute of the Serbian Academy of Science and Arts
|