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Abstract A graph G on n vertices vi,ve,...,V, is said to be
harmonic if (d(v1),d(va), ..., d(vy,))! is an eigenvector of its (0, 1)-adjacency
matriz, where d(v;) is the degree (= number of first neighbors) of the vertex
vi , © = 1,2,...,n. Farlier all acyclic, unicyclic, bicyclic and tricyclic
harmonic graphs were characterized. We now show that there are 2 regular
and 18 non-reqular connected tetracyclic harmonic graphs and determine
their structures.
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1. Introduction

Let G = (V(G), E(G)) be a graph with |V (G)| = n vertices and |E(G)| =
m edges, whose vertices are labeled by vi,ve,...,v,. A walk of length k in
G is an ordered (k + 1)-tuple of vertices, (vi,, Vi, .., i, ), such that for all
jg=1,...,k, (vi_,,vi;) € E(G). The number of all walks of length % in
the graph G is denoted by Wi (G). It is both consistent and convenient to
set Wp(G) = n; note also that W1 (G) = 2m.
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In a recent work [7] the way in which Wy (G) increases with k was studied.
For this an auxiliary quantity Ag(G) was introduced [4, 5], defined as

Ak(G) = Wis1(G) Wi-1(G) = Wi(G)? .

It is easy to show that the equality Ax(G) = 0 holds for all & > 1 if
and only if G is a regular graph. There exist graphs for which the equality
Ak(G) = 0 holds for all K > 1. These were named harmonic graphs [4, 5] and
may be viewed as a peculiar generalization of regular graphs. Grinewald
[6] determined all harmonic trees (for details see below) and the present
authors together with Griinewald determined all unicyclic, bicyclic and tri-
cyclic harmonic graphs [1]. In this work we go a step further and find all
tetracyclic harmonic graphs. In order to do this we need some preparation.

If the graph G has p components, then ¢ = m — n + p is the cyclomatic
number of G and this graph is said to be c-cyclic. In particular, if ¢ = 4 we
speak of tetracyclic graphs. If the graph G is connected (p = 1) and ¢ =0
then G is a tree.

The number of first neighbors of the vertex v; is the degree of this vertex
and is denoted by d(v;) . A vertex of degree k will be referred to as a k-vertex.
The column—vector (d(vy),d(vs),...,d(v,))! is denoted by d(G) .

The number of k-vertices is denoted by nj . Then

Se = 0 )

k>0

k>0

A graph G is said to be harmonic [4, 5] if there exists a constant A, such

that the equality
@)= Y dy) 3)
(viw;)EE(G)

holds for all i = 1,2,...,n. The fact that the property Wi(G) = 0 for all
k > 0 is a consequence of Eq. (3) has been demonstrated elsewhere [4, 5].

In [1] the following connection to graph spectral theory [2] was pointed
out. If A(G) is the adjacency matrix of G then the system of equations (3)
is equivalent to

A(G)d(G) = Nd(G) . (4)

Consequently, the graph G is harmonic if and only if d(G) is one of its
eigenvectors. A graph satisfying Egs. (3) and (4) will be referred to as a A-
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harmonic graph. Clearly, X is the eigenvalue associated with the eigenvector
d(Q). Tt is easy to show [1] that A must be a non-negative integer.

Summing the expressions (3) over all i = 1,2,...,n we obtain
S k(k—A)ng=0, (5)
k>0

which is a necessary, but not sufficient, condition that harmonic graphs must
obey.

2. Some Auxiliary Results

In our previous work [1] a number of results were obtained, applicable
either to all harmonic graphs or to harmonic graphs with small number of
cycles. Here we re-state (without proof) some of these results, needed for
the proof of our main result, i. e., of Theorem 10. These are the Lemmas 1,
2,4,5,6,7and 8. The result stated here as Theorem 3 is due to Griinewald
[6]. We also state (with proof) a novel Lemma 9.

Lemma 1. (a) Let the graph G’ be obtained from the graph G by adding
to it an arbitrary number of 0-vertices. Then G’ is harmonic if and only if
G is harmonic.

(b) If G is a graph without 0-vertices, then G is A-harmonic if and only if
all its components are A-harmonic.

(c) Every regular graph is harmonic. FEvery reqular graph of degree k is
k-harmonic.

Lemma 2. Let G be a connected A-harmonic graph. Then
(a) X is the greatest eigenvalue of G and its multiplicity is one;
(b) if m >0 then A\ >1;

(c) N\=1if and only if n =2 and m = 1.

From Lemma 1 we conclude that it is reasonable to restrict our con-
siderations to connected non-regular graphs. The fact that such harmonic
graphs do exist and that their structure is non-trivial became evident after
the discovery of Theorem 3 [6].

Let A\ be a positive integer. Construct the Grinewald tree Ty in the
following manner. Ty has a total of A3 — A2 + X\ + 1 vertices, of which
one vertex is a (A% — X + 1)-vertex, A> — A + 1 vertices are A-vertices and
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(A = 1)(A%2 — X\ + 1) vertices are 1-vertices. Each A-vertex is connected to
A — 1 l-vertices and to the (A% — \ + 1)-vertex.

Theorem 3 [6]. For any positive integer \ there exists a unique \-
harmonic tree, isomorphic to T .

Lemma 4. The Grinewald tree Ty is the unique connected non-reqular
2-harmonic graph.

Bearing in mind Lemmas 2 and 4, in the following we may assume that
A>3

Lemma 5. (a) In a \-harmonic graph every 1-vertex is adjacent to a
vertex of degree \ .
(b) If a A\-harmonic graph is not reqular, then it has a vertex of degree greater
than A .
(¢) In a harmonic graph (with n > 2) no 1-vertex is attached to any vertex
of greatest degree.

Lemma 6. Ifz is a verter of a A\-harmonic graph, then d(z) < \2—\+1.
If d(x) = X2 — X + 1 then x belongs to a Grimewald tree Ty . Otherwise,
d(z) <A —=X+1.

Lemma 7. Let G # Ty be a connected c-cyclic \-harmonic graph with
A>3. Thenc> 1 (A2 —2X+2).

Lemma 8. For the A\-harmonic tree, ny = (A — 1)ny. For any other
connected A\-harmonic graph, n; < (A —2)ny .

For the below considerations is of importance the relation [1]

> (k—=2)ng=2c—2 (6)

k>0

obtained by combining the equalities (1) and (2) and using the fact that the
respective graphs are connected (m =n+c¢—1).

Before we formulate our main result — Theorem 10 — we demonstrate the
validity of another auxiliary result that will be often used in the proof of
Theorem 10.

Lemma 9. Let v be a vertex of a A-harmonic graph, such that d(v) >
A2 —3X+4, and let u be a vertex adjacent to v. Then d(u) = \.
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Proof Letve V(G), dwv) > A —3X+4 and u,ug, ..., ugy) be
the vertices of G adjacent to the vertex v. Assume first that d(u) = A —1.
Then, because of (3),

Ad(u) = AN —=1)=d(v) +d(z1) + -+ d(zxr—2)
where v, 1, ..., %40,)—1 are the vertices adjacent to the vertex . This yields

d(zy) + - +d(zy) = AN —X—d)
< M- A-(A2-3)1+4)
200 —2) .

If follows that there must exist at least one ¢ (i =1,2,..., A —2), such that
d(z;) = 1, which because of Lemma 5 (a) is impossible.

Therefore, it cannot be d(u) =\ —1.

Consider now the case d(u) = X\ — ¢t for some ¢t > 2. Then from Eq. (3),

Ad(u) = AA—t) = d(v) +d(z1) + -+ d(zry—1) > N> = 3A+4+A—t—1

AA—=t) >\ =2 +3 ¢

At—2)<t—3. (7)

This again is a contradiction: for t = 2 inequality (7) becomes 0 < —1. For
t > 2 inequality (7) implies A < (¢t — 3)/(t — 2) < 1 which is impossible in
view of the assumption A > 3.

Thus, it cannot be d(u) < A —1.

Consequently, if d(v) > A2 — 3\ +4 and (u,v) € E(G) then it must be
d(u) > \.

If, however, the degree of any neighbor of the vertex v is greater or equal
to A then from

Ad(v) = d(u) + d(u2) + - + d(ug))

there follows that it must be d(u) = d(uz) = -+ = d(ug)) = A. This
implies Lemma 9. g
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3. The Main Result

Theorem 10. There are exactly 18 non-reqular comnected tetracyclic
harmonic graphs, depicted in Fig. 1.

Fig 1. The connected non-regular tetracyclic harmonical graphs

P r o o f. Because of Lemma 7, if ¢ = 4 then A cannot be greater than
3. Then, in view of Lemmas 2 and 4, we conclude that it must be A = 3.
By Lemma 6, if D is the maximal vertex degree in a tetracyclic harmonic
graph, then D < 6. From Lemma 5 (b) we then conclude that only the
following three cases need to be examined:
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Case1: A\=3, D=6,
Case 2: A\=3, D=5,
Case3: A\=3, D=4.

Case 1. From Lemma 8 follows that n3 —n; > 0. By means of
relation (6), for ¢ = 4 we get

—n1+n3+2n4+3n5+4ng =26

from which
2n4 +3n5+4ng—6=n1 —n3 <0

and we conclude that
ng<l ; ns;=0 ; mng=1. (8)
From Eq. (5) we get
—2n1—2n9+4n4 +10n5 + 18 ng =0
which, by taking into account (8), implies
ni+ne=94+2ny4 .

According to Lemma 9, a 6-vertex (i. e., a vertex of degree 6) is ad-
jacent only to 3-vertices. The two neighbors of every 3-vertex, adjacent to
a 6-vertex, must be a 1 and a 2-vertex. Therefore, ny > 6, no > 3 and,
consequently, n; + ng > 9. In what follows we distinguish between two
subcases.

Subcase 1.1
ng=0 ; ns=0 ; mg=1 ; ng=mn1+2 ; ni+ne=9 (9)

In this case it is easy to see that ny = 6, ng = 3, ng = 8, ng = 0,
ns = 0, ng = 1. Each of the three 2-vertices must be adjacent to two
3-vertices (which, in turn, are adjacent to the 6-vertex), and an excess of
two 3-vertices remains. Therefore there cannot exist a 3-harmonic graph
satisfying the conditions (9).

Subcase 1.2

n=1 3 ng=0 ; ng=1 ;3 ng=ny ; ni+ng=11 (10)
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The 4 and 6-vertices are adjacent only to 3-vertices, and therefore the num-
ber of 3-vertices is greater than or equal to 10. Because of ns > 3 we now
have n; = ng > 10 and n; + ng > 13, which contradicts to the last equality
in (10). Therefore, there cannot exist a 3-harmonic graph satisfying the
conditions (10).

Case 2. Equations (5) and (6) now become

—2n1 —2ng+4ng+10n5 =
—ni+n3+2ng+3ns =

which together with the relation ng—n; > 0 imply that either ny =0, n5 =2
orng =1,n5 = 1ormng =0,n5; = 1. We distinguish between three
subcases.

Subcase 2.1.
ng=0 ;3 ms=2 ; ng=n; ; nyi+ne=10 (11)

Because of Lemma 9, every 5-vertex is adjacent only with 3-vertices.
Therefore ng > 10 and n; > 10 and in view of the last equality in (11),
n; = 10, ng =0, n3 = 10, ng = 0, ns = 2. Denote the two 5-vertices by
u and v. Denote the 3-vertices adjacent to u and v by x1,x9,...,z5 and
Y1,Y2,...,Ys5, respectively. The three neighbors of any 3-vertex are a 5—, a
3— and a 1-vertex. The graph induced by the 3-vertices is 5 Ky, and there
are either one or three or five edges connecting the vertices {x1, z2,..., x5}
and {y1,vy2,...,y5}. In view of this, G1, G2 and G5 (depicted in Fig. 1)
are the only 3-harmonic graphs satisfying the conditions (11).

Subcase 2.2
ng=1 ; nsy=1 ; n3g=m+1 ; ni+n=7 (12)

By Lemma 9, the 5— and 4-vertices are adjacent only with 3-vertices.
Furthermore, no 3-vertex can be simultaneously adjacent to a 5— and a 4-
vertex. Consequently, ng > 9, which implies ny =ng—1 > 8 and ny +ns >
8. This violates the last equality in (12), and we conclude that there cannot
exist a 3-harmonic graph satisfying the conditions (12).

Subcase 2.3.

ng=0 3 mg=1 ; ng=n1+3 ; nNi+ne=2>5 (13)
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If there is a 3-harmonic graph obeying conditions (13), then its vertices
have the following properties:
(i) The 5-vertex is adjacent only to 3-vertices (by Lemma 9), and thus nz > 5
and ny =ng—3>2.
(ii) The 1-vertices are adjacent to only those 3-vertices which are adjacent
to the 5-vertex.
(iii) Every 2-vertex is adjacent to two 3-vertices. Furthermore, ng # 1,
because if it were ny = 1 then the 3-vertex adjacent to this 2-vertex would
be adjacent either to another 2-vertex or to a 4-vertex, which both are
impossible.
(iv) Exactly n; 3-vertices, which are adjacent to the 5-vertex, are adjacent
to one 3— and one 1-vertex. Each of the remaining 5—n; 3-vertices, adjacent
to the 5-vertex, are adjacent to a pair of 2-vertices.

Bearing in mind the above, the parameters ni, ng, ng, n4, N5 may assume
the following values:

Ny N2 | N3 |ng|ns

(a)
(b)
(©)

(a) In view of the properties (i)—(iv), we conclude that the graph G4
(depicted in Fig. 1) is the only 3-harmonic graph satisfying the values of
the parameters n; , i =1,2,...,5, given under (a).

(b) The only 3-vertex not adjacent to the 5-vertex, is adjacent to three
other 3-vertices, implying that G5 is the only 3-harmonic graph with the
vertex degree distribution (b) .

(c) Any of the three 3-vertices, which are not adjacent to the 5-vertex,
are adjacent only to 3-vertices. The graph induced by these vertices is either
K3 or P3. Therefore Gg and Gy are the only 3-harmonic graphs obeying
the choice (¢) of the parameters n; .

1
1
1
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Q0| O] Ot
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Case 3. Equalities (5) and (6) now become

ny+mng = 2ny
—ni1+n3+2n = 6

from which, in view of ng —n; > 0, there follows that ns may assume the
value 1 or 2 or 3. We thus distinguish three subcases.
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Subcase 3.1.
ng=1 ;3 nyg=n1+4 ; ni+ng=2 (14)

In this case n; = 0. Indeed, if it were ni > 0 then the 3-vertex adjacent
to a 1-vertex would be adjacent also to two 4-vertices, which is impossible.
Therefore, ny =0, ny =2, ng =4, ng = 1. The 4-vertex must be adjacent
to four 3-vertices. Every 3-vertex is adjacent to a 2—, a 3— and a 4-vertex.
From this we conclude that Gg and Gg (depicted in Fig. 1) are the only
graphs with the required properties.

Subcase 3.2
ng=2 ; ny3=n1+2 ; ni+nyg=4 (15)

The vertices of 3-harmonic graphs obeying conditions (15) have the fol-
lowing properties:
(i) Every 1-vertex is adjacent to a 3-vertex.
(ii) n1 3-vertices are adjacent to one 1- and two 4-vertices. The remaining
two 3-vertices are adjacent to a 2—, a 3— and a 4-vertex.
(iii) Exactly one 2-vertex is adjacent to two 3-vertices. All other 2-vertices
are adjacent to a 2— and a 4-vertex. Therefore the number of 2-vertices is
odd.
(iv) Every 4-vertex is adjacent to an even number of vertices of odd degree
(i. e., to an even number of 3-vertices).

From the above follows that the parameters ni,ns,n3,ns may assume
two sets of values:

ny | na | N3 | ng
()| 3|1 |52
o 1332

The graphs G1p and Gy; are the only 3-harmonic graphs satisfying con-
ditions (a) and (b), respectively.

Subcase 3.3.
ng=3 ; nm3=mny ; ni+ng==~6 (16)

This time the vertices have the following properties:
(i) Every 1-vertex is adjacent to a 3-vertex.
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(ii) Every 3-vertex is adjacent to one 1- and two 4-vertices.
(iii) Every 2-vertex is adjacent to a 4— and a 2-vertex. Therefore the number
of 2-vertices is even.
(iv) Every 4-vertex is adjacent to an even number of vertices of odd degree
(i. e., to an even number of 3-vertices).

In this subcase the following vertex degree distributions may occur:

ny|ng |n3g|ng
(@ 6]0]6]3
@) | 4243
2423
d[0[6]0]3

(a) Taking into account properties (4i) and (iv) we conclude that the 3—
and 4-vertices are connected by exactly 12 edges, and that every 4-vertex is
adjacent to four 3-vertices. This results in the graph Gio .

(b) Taking into account properties (i) and (iv) we see that the 3— and 4-
vertices are connected by exactly 8 edges. Further, one 4-vertex is adjacent
to four 3-vertices whereas each of the other two 4-vertices is adjacent to one
2-, one 4— and two 3-vertices. This results in the graph Gis.

(c) Because of (73) and (iv) this time two 3-vertices must be adjacent to
the same pair of 4-vertices. These two 4-vertices are not adjacent, because
otherwise the third 4-vertex would be adjacent to 2-vertices only, which is
impossible. Further, every 4-vertex adjacent to 3-vertices is adjacent also to
a 2— and a 4-vertex. Taking into account the mutual connectedness of the 2-
vertices we arrive at the graphs G14 and G5, which are the only 3-harmonic
species with vertex degree distribution (c).

(d) Every 4-vertex is adjacent to two 2-vertices and to two 4-vertices.
Thus, the 4-vertices must be mutually adjacent. In view of this, and bearing
in mind (%i7), the only possible solutions are the graphs Gi6, G17 and Gig,
depicted in Fig. 1.

By this all possible cases have been examined. The proof of Theorem 10

is complete. O

4. The Regular Case

In order to complete the list of connected tetracyclic harmonic graphs
we prove the following elementary result.
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Theorem 11. There are exactly 2 reqular connected tetracyclic har-
monic graphs, depicted in Fig. 2.

Fig 2. The connected regular
tetracyclic harmonic graphs

Proof. Aregular graph of degree D has %nD edges. If it is connected
and tetracyclic, then

%nD—n+1:4 i. e, n:%
For D = 3,4,5 and D > 6 we obtain n = 6,3,2 and n < 2, respectively.
Thus only the case D = 3, n = 6 is possible.

It is well known [3] (and easy to show) that there are exactly two cubic

graphs on 6 vertices, the graphs G19 and G depicted in Fig. 2. O

5. Summary

Together with the results reported elsewhere [1, 6] we may now summa-
rize the achievements of the search for harmonic graphs with small number
of cycles. For a fixed value of the cyclomatic number ¢ the number of con-
nected c-cyclic regular and non-regular harmonic graphs is denoted by #r(c)
and #nr(c), respectively. The following are the known values of #r(c) and

#nr(c):

¢ | #r(c) | #nr(c) remark
0 1 00 one for each A > 1
1 00 0 one for each n > 3; A =2
2 0 0
3 1 4 all with A =3
4 2 18 all with A =3
> 5 | finite | finite
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