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Abstract A graph is said to be exceptional if it is connected, has
least eigenvalue greater than or equal to —2, and is not a generalized line
graph. Such graphs are known to be representable in the root system FEg.
The 473 maximal exceptional graphs were found initially by computer, and
the 467 with maximal degree 28 have subsequently been characterized. Here
we use constructions in Eg to prove directly that there are just six mazximal
exceptional graphs with mazximal degree less than 28.
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1. Introduction

A graph is said to be exceptional if it is connected, has least eigenvalue
greater than or equal to —2, and is not a generalized line graph. Generalized
line graphs have been studied in [9, 14], while exceptional graphs first ap-
peared in the context of spectral characterizations of certain classes of line
graphs by A. J. Hoffman and others in the 1960s (see, for example, [12, pp.
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12-14]). The key paper [5] introduced root systems as a means of investi-
gating graphs with least eigenvalue —2; in particular it was shown by this
technique that an exceptional graph has at most 36 vertices and each vertex
has degree at most 28. The regular exceptional graphs, 187 in number, were
found in [2, 3], but the problem of finding a suitable description of all the
exceptional graphs remained open. Much information on these topics can
be found in the monographs [1, 6, 8] and in the expository paper [4]. We
described in [11] the results of an exhaustive computer search for the excep-
tional graphs which are maximal in the sense that every exceptional graph
is an induced subgraph of (at least) one such graph. These graphs, 473 in
all, were found as maximal extensions of appropriate star complements (cf.
[10, 13, 14, 17] and below). An independent means of constructing those
with maximal degree 28 was included in [11]: the crucial property is that the
neighbours of a vertex of degree 28 induce a subgraph which is switching-
equivalent to the line graph L(Kg) and hence determined by a 2-colouring of
the edges of Kg. In [15] we used a variant of this approach to obtain various
constructions for the maximal exceptional graphs with maximal degree less
than 28, but the number of isomorphism classes was not verified. Here we
determine these ‘exceptional maximal exceptional graphs’ directly from the
root system Fg and prove that there are precisely six of them. They are
necessarily the graphs labelled M001, M002, M 417, M428, M437, M 462 in
[11], and definitions of them appear below. The graph M001 was identified
in [16] as a non-regular graph with just three distinct eigenvalues.

It is well known that an exceptional graph G is representable in the root
system Eg (see [6, Chapter 3] or [1, Chapter 3]). This means that if G has
A as a (0, 1)-adjacency matrix then I + A is the Gram matrix of a set of
normalized vectors in Eg; explicitly, if {e1,...,eg} is an orthonormal basis
for IR® then 8 + 4A is the Gram matrix of a subset of the following set of
240 vectors (cf. [2, 11]):

type a: 28 vectors of the form a;; = 2e; +2e;; ¢,7=1,...,8, 1 < j;

type a’: 28 vectors opposite to those of type a;

type b: 28 vectors of the form b;; = —2e; — 2e; + 22:1 ex;

type b': 28 vectors opposite to those of type b;

type c: 56 vectors of the form c;; = 2e; —2e;; 4,5 =1,...,8, i # j;

type d: 70 vectors of the form d;ji = —2e; — 2e; — 2ej, — 2e; + Zle e,
with distinct 4, 7, k,l € {1,...,8};

type e: 2 vectors e and —e, where e = Y% e;.

These 240 vectors determine 120 lines at 60° or 90°. Let I' denote the
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graph which has these lines as vertices, with two vertices adjacent if and
only if the corresponding lines are orthogonal. We recall from [7, p.85]
some properties of the automorphism group of I' (communicated by P. J.
Cameron). This group has as a subgroup of index 2 the orthogonal group
O™ (8,2), which is transitive on the vertices of I'. Moreover the stabilizer
of a vertex v acts as a rank 3 group on the subgraph I'(v) induced by the
neighbours of v; in particular, the stabilizer of v is edge-transitive on I'(v).

By a representation of the exceptional graph G we mean a subset R(G)
of Eg whose Gram matrix is a scalar multiple of 81 + 4A, where A is the
adjacency matrix of G. Note that if R(G) is a representation of G then so
is —R(G) = {—u:u € R(G)}. In view of the transitivity of Aut(T"), we
can therefore assume that e represents a vertex of maximal degree, and in
this case we call R(G) a standard representation. Note that then no vector
of type @,V features in R(G); moreover a second standard representation
is given by ¢(R(G)) where the involutory map ¢ is defined by: ¢(e) =
e, p(aij) = bij, o(bij) = ay, ¢(cij) = cji(—cij), p(dijn) = (= —dijr)-
We refer to R(G) and ¢(R(G)) as dual representations. (Accordingly we may
assume if necessary that the number of vectors of type b in R(G) does not
exceed the number of vectors of type a.) We give standard representations
of the graphs M001, M 002, M417, M428, M 437 and M462:

e MO001 (22 vertices, with degrees 164, 7%; the vertices of degree 16
induce the cocktail-party graph 7Ks, while those of degree 7 form a
coclique)
a;;(ij = 12,13,14,15,23, 24, 26, 34, 37, 48);
b;;(ij = 56,57, 58,67, 68, 78);

Cij(ij = 15, 26, 37,48); d5678; e.

e MO002 (28 vertices, with degrees 227,164, 107; the vertices of degree
10 form a coclique)
a;;(ij = 12,13,14,17,18,23, 25,27, 28, 36, 37, 38, 78);
b;;(ij = 45,46, 47,48,56, 57, 58,67, 68);
Cij(ij = 14, 25, 36); d4567, d4568§ e.
o M417 (29 vertices, with degrees 261,242 1816 128 10?)
a;;(ij = 12,15,16,17, 18,25, 26, 27, 28,57, 68);
b;;(ij = 13,24, 34,35, 36,37, 38,45, 46, 47, 48, 56, 58,67, 78);
C13,C24; €.

o M428 (29 vertices, with degrees 262,221, 1816146 10%)
a;;(ij = 12,15,16,17, 18,25, 26,27, 28);
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bz-j(z'j = 13,24, 34,35, 36,37, 38,45,46,47, 48, 56, 57, 58, 67, 68, 78);
C13,C24; €.

e M437 (30 vertices, with degrees 262,24%, 208 178,161,142, 13%,114)
a;;(ij = 12,15,16,17,18,25,26,27, 28, 56);
bi;(ij = 13,24, 34,35,36,37,38,45,46,47, 48, 57,58, 67, 68, 78);
C13, C24; d3qrs; €.

e M462 (31 vertices, with degrees 263,224,198, 164,156, 126)
a;;(ij = 12,15,16,17,18,25,26,27, 28, 56, 67);
bi;(ij = 13,24,34,35,36,37,38, 45,46, 47, 48,57, 58, 68, 78);
C13, Ca4; d34s58, d3ars; e.

These standard representations are not unique; indeed others arise in the
course of our constructions, and in such cases we specify an isomorphism
with one of the above graphs. The isomorphisms are found by means of star
complements, as we now explain. We write V(G) for the set of vertices of
the graph G, and A(v) for the set of neighbours of the vertex v. Further, if
H is a subgraph of G then Ay (v) = A(v) NV (H).

Recall that if p is an eigenvalue of G with multiplicity k, then a star
complement for p is an induced subgraph H = G — X(X C V(G)) such
that |X| = k and p is not an eigenvalue of G — X. If u ¢ {—1,0} then
the H-neigbourhoods Ag(v)(v € V(H)) are distinct [12, Corollary 7.3.6].
Now let G, G’ be graphs with H, H' respectively as star complements for p,
where ;1 # —1,0. If ¢ is an isomorphism H — H'’ such that 1) maps the neig-
bourhoods Ay (v)(v € V(H)) onto the neighbourhoods Ay (v')(v' & V(H'))
then by the Reconstruction Theorem [12, Theorem 7.4.1], ¢ extends to an
isomorphism G — G’, defined outside H by ¥(Ag(v)) = Ag(¢(v)). For
the six graphs above, the isomorphisms required in Section 4 are constructed
using star complements for —2 isomorphic to K12 U 5K, the graph labelled
E443 in [11].

In a standard representation R(G) of an exceptional graph G, the fol-
lowing are the pairs of vectors which are incompatible because they have
inner product —4.

(CC) Cij and Cjk:,

(DD) dijkl and di/j’k’l’ whenever |{i,j, k, l} N {i,,j,, k:,, l/}’ <1,
(AB) a;; and bij,

(AC) ajj and cpj(h # 4, 7), aij and cpi(h # 4, j),
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(AD) ay, and d;ji; whenever {u,v} C {i,j,k,1},

) bij and cip(k # i, 7), bij and cji(k # 14, j),

)

)

(BC
(BD) by, and d;ji whenever {u,v} N{i,j, k, 1} =0,
(

CD) cyuy and djji whenever {u,v} N{i,5,k, 1} = {u}.
The following consequence is a reformulation of [11, Theorem 3.6].

Lemma 1.1. If for some pair i, j the vectors a;j and b;; are absent from
a standard representation R(G) of a mazimal exceptional graph G then R(G)
includes vectors v and w such that e, v,w are pairwise orthogonal.

P r o o f. By the maximality of G, a;; and b;; are excluded by the
presence of certain vectors, which in view of the complete list of incompat-
ibilities above, are of type ¢ or d. Now the vectors of type ¢ or d which
exclude a;; are those in the set A;; comprising cx;(h # 4,7), cpj(h # i,7)
and the vectors dpqrs for which {i,j} C {p,q,r,s}. Those which exclude
b;; are those in the set B;; comprising c;,(k # 14,7), cjx(k # i,7) and the
vectors dpgrs for which {4, 5} N {p,q,r, s} = 0. Note that the inner product
of any vector in A;; with any vector in B;; is non-positive; in particular,
two orthogonal vectors v and w, each of type c or d, must be present. Since
these vectors are orthogonal to e the Lemma is proved. O

Henceforth we consider a standard representation R(G) of a maximal
exceptional graph G with maximal degree less than 28.

In Aut(T"), the stabilizer of the line (e) is edge-transitive on the subgraph
induced by the neighbours of (e) and so in view of Lemma 1.1 we may assume
that R(G) contains two orthogonal vectors v,w of type c. (Alternative
representations, in which at least one of the vectors v, w is of type d, will be
described elsewhere.) Let 6 be the maximum number of pairwise orthogonal
vectors of type ¢ in R(G), and note that 2 < § < 4. We analyze the cases
0 = 4,3,2 in Sections 2,3,4, respectively. When 6 = 4 we find that G is
MO001; when 8 = 3 we find that G is M002; and when 6 = 2 we find that G
is one of M001, M002, M417, M428, M437, M462. We may summarize the
results as follows.

Main Theorem. If G is a maximal exceptional graph in which every
vertex has degree less than 28 then G is isomorphic to one of M001, M002,
MA17, MA428, M437 and M462.

In the sequel we identify vertices of G with corresponding vectors in
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2. The case 8 = 4

Without loss of generality, R(G) contains the vectors ci5, €26, €37, Cas.
In view of the incompatibilities (AC), (BC), (CC) the further possible
vectors of types a, b, c in R(G) are

ay;(ij = 12,13, 14,23, 24, 34, 15, 26, 37, 48);

bi;(ij = 15, 26,37, 48,56, 57,58, 67, 68, 78);

and
c;j(ij = 16,17,18,25,27,28, 35, 36, 38, 45, 46, 47).

Moreover, if d;ji is present then |{7,j,k,I} N {5,6,7,8} > 2. (For
example, neither dja34 nor dasys is compatible with cgs.) It follows that
ds5g7s is compatible with all possible vectors, hence is present by maximality.
Now dsg7s is adjacent to each of cy5,Cog,C37,Cq8, and is adjacent to all
possible neighbours of e except a;; and b;;(ij = 15, 26, 37, 48).

Recall now that deg(e) > deg(dsers), while for given ij at most one of
a;;, b;; is present. It follows that (i) deg(e) = deg(dsers); (ii) one of a;j, by;
is present for each ij = 15,26,37,48; (iii) no further vectors of type c are
present (for any such vector would be adjacent to dsgrs); (iv) similarly, if
another vector d;ji; is present then |{4,j,k,1} N {5,6,7,8} = 2.

It follows from (iv) by (CD) that the only possible vectors of type d are
d;ji for ijkl = 1256, 1357, 1458, 2367, 2468, 3478.

Next we show that either all a;;(ij = 15,26,37,48) are present or all
b;;j(ij = 15,26,37,48) are present. Without loss of generality, suppose
by way of contradiction that ajs and bsgg are present. Then the vectors
d;jr(ijkl = 1256,1357,1458,3478) are excluded and dagrg is compatible
with all of the possible vectors remaining; but then by maximality dogrg is
present, a contradiction.

The presence of a;;(ij = 15,26,37,48) or by;(ij = 15,26,37,48) now
excludes all possible vectors of type d other than dsg7s, and so there remain
just two possible maximal sets of 22 pairwise compatible vectors. By duality
we may assume that the number of vectors of type b does not exceed the
number of vectors of type a. Accordingly just one graph arises, namely the
graph MO001 defined in Section 1.
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3. The case 8 = 3

Without loss of generality suppose that {c14, 25, c36} is a largest set of
pairwise orthogonal vectors of type c. In view of the incompatibilities (AC),
(BC), (CC) the further possible vectors of types a,b,c in R(G) are

a;;(ij = 12,13,17,18,23,27,28,37,38,78, 14, 25, 36);

b;;(ij = 45,46,47,48, 56,57, 58,67, 68,78,14,25,36);

and
c;ij(ij = 15,16,17,18, 24, 26,27, 28, 34, 35, 37, 38, 74, 75, 76, 84, 85, 86).

Moreover, if d;ji; is present then by (CD) either [{4, j, k,1}N{4,5,6}| > 2
or ijkl € {1478,2578,3678}.

Now the compatible vectors d4s67, dgsgs are compatible with all possible
vectors, and are therefore present by maximality.

We show next that the vectors ajs,ais,ass and bys, byg, bsg are all
present. If ajs is absent it must be excluded by di245, and if bys is absent
it must be excluded by dsg7s. (The reasons are that ajs, bys are compat-
ible with all possible vectors of type ¢, while any vector of type d which
is present must be compatible with ci4 and ca5.) If djo45 is present then
dsg7s is absent and so ays is present; but then deg(bss) > deg(e) since
aj4, ass, bgr, bgs, brg, bgg are excluded. Similarly, if dsgrzg is present then
b1s is present and deg(ajz) > deg(e). In either case we have a contradiction
and so ajs, bys are present. Similarly, a3, byg are present and ass, bsg are
present.

Let

S = {a; : ij = 37,38,78,14,25,36} U {by; : ij = 67,68, 78,14, 25,36},

T = {aj; : ij = 13,17,18,23,27,28} U {by; : ij = 46,47, 48,56, 57, 58},

and let o be the number of adjacencies between {aj2,bss} and vectors of
type c or d.

Note that the elements of TNA(e), together with e, c14, 25, 4567, d4568,
are adjacent to both ajo and bys; while those of S N A(e), together with
{a12,bys}, are adjacent to just one of aja, bys. It follows that

deg(aje) + deg(bas) = |[SNA(e)| + 2T NA(e)| + 4 + «a.
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Now
2deg(e) =2|SNA(e)|+2|T N A(e)| + 4 > deg(ai2) + deg(bas)

and so [SNA(e)| > a. On the other hand, o > 8 and |[SNA(e)| < 8, whence
ISNA(e)] =a=8.

It follows that (i) deg(e) = deg(ai2) = deg(bus); (ii) asr,ass, ber, bes
are present, and either a;; or b;; is present for each ij = 14, 25, 36, 78.

If both aj4 and ags are present then so are asg and azg, because deg(e) =
deg(aje) = deg(bys). Similarly, if both by and bos are present then
so are bsgg and brg. Identical arguments hold when we apply the per-
mutation (123)(456) to subscripts, and we conclude that either a;;(ij =
14,25,36,78) are present or b;;(ij = 14,25,36,78) are present. Moreover
all of ajo,a13,as3, bys, bag, bsg have the same degree as e. It follows that
there are no further vectors of type ¢, and no vectors of type d other than
dys67,dsses. The 28 vectors which remain are ajs, bys, €14, €25, €36, das67,
dys6s, €, the 8 vectors in S N A(e) and the 12 vectors in 7. By duality
we may assume that the number of vectors of type b does not exceed the
number of vectors of type a. Accordingly just one graph arises, namely the
graph M002 defined in Section 1.

4. The case = 2

Without loss of generality, suppose that {ci3,co4} is a largest set of
pairwise orthogonal vectors of type c. In view of the incompatibilities (AC),
(BC), (CC) the further possible vectors of types a,b,c in R(G) are

a;;(ij = 13,24;12;15,16,17,18, 25, 26, 27, 28; 56, 57, 58, 67, 68, 78);
b;;(ij = 13,24;34; 35,36, 37, 38,45, 46,47, 48; 56,57, 58,67, 68, 78);
and

c;j(ij = 14,15,16, 17,18, 23, 25, 26, 27, 28, 53, 54, 63, 64, 73,74, 83, 84).

Lemma 4.1 The vectors ajo and by are present.

Proof Ifap is absent then it is excluded by a vector of type d
compatible with ci3 and co4, and this is necessarily dj234. Similarly, if bgy
is absent then it is excluded by dsg7s. Since di234 and dsgrg are incompatible
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at least one of a9, bgy is present. If only ajo is present then dsgrg is present
and so the further possible vectors of type a or b are:

a;;(ij = 13,24,12,15,16, 17,18, 26, 26, 27, 28)
and
b;;(ij = 35,36, 37,38, 45,46,47,48; 56,57, 58, 67,68, 78).

Thus ajs is adjacent to all other neighbours of e, as well as to dsg7g and
c13. Then deg(aj2) > deg(e), a contradiction. If only bsy is present then we
obtain similarly the contradiction deg(bss) > deg(e). Consequently both
a9 and bg, are present. O

Let us now introduce some more notation: 7, (resp. 72) is the number of
vectors of type ¢ adjacent to one (resp. both) of aja, bsg, while §; (resp. d2)
is the number of vectors of type d adjacent to one (resp. both) of ajo, bsy.
Note that vo > 2. Let

S={a;;: ij = 13,24,56,57,58,67,68,78} U {b;;: ij = 13,24,56, 57,58, 67,68, 78},

T={a,;: ij = 15,16,17,18,25,26,27,28} U {b,; : ij = 35,36, 37, 38,45, 46,47, 48}.

Lemma 4.2 With the above notation, the following holds:
Y1+ 272 + 01 4 202 < |S N A(e)]. (1)
Proof. We have
deg(aiz) + deg(bys) =4+ 2|SNA(e)| + [T NA(e)| + 71 + 272 + d1 + 202

and
deg(e) =2+ [SNA(e)| + |T N A(e)].
The lemma follows because deg(aj2) + deg(bas) < 2deg(e). O

Lemma 4.3 At most one of the vectors ci14 and cos is present.

Proof. If both c14 and co3 are present then do > 4 and so [SNA(e)| > 8
by Lemma 4.2. On the other hand, ass and b3 are excluded by cy4, while
bas and a3 are excluded by co3. Thus |S N A(e)| < 6, a contradiction. O

The next three lemmas are symmetric in 5,6,7,8.

Lemma 4.4 If azg and bsg are absent then either (a) dsars is present
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or (b) brs and asg are absent. In particular, if brg and asg are present then
dsyrs is present.

P r oo f The vector dsy7s is compatible with all remaining possible
vectors of type a, b or ¢. Accordingly if (a) does not hold then ds47s is
excluded by some vector d;j;. Since by is present (by Lemma 4.1), it
follows from (DD) and (BD) that {7, 7, k,1} N {3,4,7,8} is {3} or {4}. In
the former case, ijkl = 1356 since coq4 excludes dasse: and in the latter
case, ijkl = 2456 since c13 excludes dyg56. In both cases, brg and agzg are
excluded. O

Note that the assertions of Lemmas 4.1 to 4.4 remain true of ¢(R(G))
when we apply the permutation (13)(24) to subscripts, and this justifies the
duality arguments used in the sequel.

Lemma 4.5 If ass and bsg are absent then there ewist vectors d;jr; and
di’j’k’l’ with {5, 6} - {i,j, k, l} and {5, 6} N {’i,,j/, k,, l/} = Q)

P r o o f. The vector ass can be excluded by ci5, 16, €25, C26 Or d;ji
where {5,6} C {i,7,k,1}; and bss can be excluded by cs3, cs4, C3, Co4 OF
dy/jrpry where {5,6} N {i', ', k', '} = (. By duality it suffices to exclude two
possibilities: (i) each of asg, bsg is excluded by a vector of type ¢, (ii) asg is
excluded by a vector of type ¢ and bsg is excluded by a vector of type d.

In case (i) we may assume without loss of generality first that asg is
excluded by c15, and then that bsg is excluded by cg3 (since c¢15 excludes
cs3 and cs4). In view of (AC) and (BC) the possible vectors in SN A(e) are
a;;(ij = 67,68,78;13,24) and b;;(ij = 57,58, 78;13,24). Note that by (AB),
SN A(e)| < 7. Since 71 > 2 and 2 > 2 we have |[S N A(e)| > 6 by Lemma
4.2. Hence at most one of the vectors bs7, bsg, ag7, ags is absent. Wihtout
loss of generality, agy and bsg are present. By Lemma 4.4, dssg7 is present,
and so 62 > 1. Now Lemma 4.2 yields the contradiction [S N A(e)| > 8.

In case (ii) we may suppose without loss of generality that asg is excluded
by c15 and bsg is excluded by dj/jig/r. This last vector must be compatible
with C13,C24,C15, and hence is one of d34787 d2478, d2347, d2348.

Since ap9 is adjacent to e, bsg, €13, 24 and ci5, we know that

deg(aj2) > 5+ |SNA(ap)| + |TNAe),
while
deg(e) =24 SN A(ar)| +[SNA(bss)| + [T NA(e)].

Since deg(e) > deg(ai2), it follows that [SNA(bs4)| > 3. Since SNA(bss) C
{ba4, ag7, ags, ars} we conclude that not both bg; and bgg are present. If
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say bg7 is absent then we may apply Lemma 4.4 to asg, bgr to deduce that
either (a) dsysg is present or (b) bsg, agy are absent.

In subcase (a), |[S N A(e)| = 7 and either asg, bs7 are present or ags, bs7
are present. By Lemma 4.4 either dssg7 or dssgs is present, and so 62 > 2. By
Lemma 4.2, |SN A(e)| > 8, a contradiction. In subcase (b), [SNA(e)| =5,
SN A(b34) = {b24,a68,a78}, (51 =0 and (52 = 0. Then di’j’k’l’ = d2478, a
contradiction because this vector is not compatible with azg. O

Lemma 4.6 If asg and bsg are absent then so are azg and brg.

P r oo f. We suppose that the conclusion does not hold, and obtain
a contradiction. By Lemma 4.4, either ayg and dsy4s6 are present or brs
and ds4vg are present. By duality, we may assume that the former is the
case. By Lemma 4.5, a vector d;;i is present, with {5,6} N {7,j,k,} =
(). This vector must be compatible with ajo and azg, and so ijkl is one
of 1347,1348,2347,2348. Without loss of generality, suppose that di347 is
present. Now

SN A(e) C {bi3,az, bay, asz, bs7, asg, as7, ber, ags, arg }

and so |S N A(aj2)| < 3. Also, in view of (AB), we have |SNA(e)| <7. On
the other hand, 75 > 2, 61 > 1 and d, > 1, whence |SNA(e)| > 7 by Lemma
4.2.

Next, bsy is adjacent to ajo, €13, Ca4, d3456, d1347 and e and so

deg(bss) > 6+ |S N A(bsy)| + |T'N A(e)].

Now, arguing as in Lemma 4.5, we obtain the contradiction |[SNA(aj2)| > 4.
(]

We are now in a position to determine the graphs which can arise. It
is convenient to discuss the various possibilites in terms of the graph ) on
{5,6,7,8} in which ¢ and j are joined by a red edge if a;; is present, and
by a blue edge if b;; is present. By duality we may assume that ny(Q), the
number of blue edges of @, is not less than n,(Q), the number of red edges.
We distinguish five cases: (1) @ is incomplete, (2) (ny(Q),n.(Q)) = (6,0),
9 <;%<cz>,nr<cz>> — (5,1), (3) (m(Q), n,(Q) = (4,2), (5) (ms(Q), n,(Q) =
3,3).

Case 1: H 1s incomplete.

Without loss of generality, suppose that asg and bsg are absent. By
Lemma 4.5, a vector dj;i is present, with {5,6} N {7, k,1} = (. If also
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{1,2} n{i,4,k, 1} = 0 then d;ji; = dsarg and d2 > 2. Since also 2 > 2,
Lemma 4.2 yields |S N A(e)| > 8, a contradiction. Since d;ji; must be
compatible with c13 and co4 the possibilities for ijkl are 1378, 2478.

By Lemma 4.6, ayg and byg are absent, and so similarly either diss¢ or
d2456 is present. Since d1356 and d2478 are incompatible, and d2456 and d1378
are incompatible, we may assume without loss of generality that dsss¢ and
doy7s are present. Then asy and bis are excluded and we note that cy4 is
compatible with all possible vectors of type a, b or c¢. It follows that cy4 is
present, for otherwise it is excluded by a vector of type d compatible with
ajo and bsy: such a vector has the form djs,, where {u,v} C {5,6,7,8},
and is therefore not compatible with both doys6 and dag7s.

Now agg, big are excluded, and we have 75 > 3. Since |S N A(e)| < 6
it follows from Lemma 4.2 that [SNA(e)| =6, 72 =3, 71 =09 =02 =0
and deg(aj2) = deg(bss) = deg(e). In view of Lemma 4.4 (applied to non-
adjacent edges of H), there are just two possibilities for S N A(e), namely
{ai3,a57, ass, baa, be7, bsg} and {ai3, bs7, bes, bas, ag7, ass }.

Since 79 = 3 and 73 = 0 there can be no vectors of type ¢ other than
C13, C24,C14. Moreover there are no vectors of type d other than doysg, dog7s:
the only possible vectors of type d compatible with ajo, by, o4, dogsg, doars
are dis57, diass, diser, dises (i = 1,2), but each of these is incompatible with
both candidates for SNA(e). (For example, d;467 is incompatible with both
b58 and 367')

Since d2456 excludes 825,826,b37,b38 and d2478 excludes b35,b36,a27,
asg, we have

TN A(e) = {ais5, a16, a17, a18, bas, bas, baz, bas}
By applying the permutation (56) if necessary we may assume that
SN A(e) = {ai3, as7, ags, bag, bss, b7}

The vectors which remain are ajs, b4, €13, Cogq, €14, dogs6, d247s, € together
with those in S N A(e) and T'N A(e); they are pairwise compatible and
determine a maximal graph with 22 vertices. An isomorphism  from the
resulting graph to M001 is given by:

u | a13 Coa bszs ajz byg bar bss bug
P(u) | dsera1s € a2 a3 aia bgr beg

u | ay; ag bas €13 as7 agg € Az a5 Cia bgr bsg dosse daars
P(u) | ags Ay ass Az asy asgs bsg bsy bsg brg €15 cag €37 cug
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Here, and in isomorphisms exhibited subsequently, the first eight vec-
tors induce a subgraph H isomorphic to F443, with degrees in H equal to
5,6,6,7,7,7,7.7.

Case 2: np(Q) =6, n.(Q) = 0.

Arguing as in Lemma 4.5, we find that SN A(bss)| > 2. Since SNA(e)
contains the six vectors b;;({7,7} € {5,6,7,8}) it follows that

SN A(e) = {by; : ij = 13,24, 56,57, 58,67, 68, 78}.

In view of (BC) the only vectors of type ¢ which are present are cizcay;
and in view of (BD) there are no vectors of type d. The 29 vectors which
remain are ajs, bsg, €13, €4, € together with those in SN A(e) and T. They
are pairwise compatible and determine a maximal graph which is the graph
M428 defined in Section 1.

Case 3: np(Q) =5, ny(Q) = 1.

We may suppose that the red edge of @) is 56. Thus asg and brg are
present, while bss and arg are absent. By Lemma 4.4, ds4vg is present,
and so deg(aiz) > 5+ [SNA(ae)|+ |7 N A(e)|. Since deg(e) > deg(aiz),
it follows that |S N A(bsy4)| > 3, and hence that bys and bgy are present.
Since also the vectors by;(ij = 57,58,67,68,78) are present, we conclude
from (BC) that c;3,coq are the only vectors of type ¢ present. If another
vector of type d is present then it must have the form d;j7s(ij # 34) for
compatiblity with ass and b;j(ij = 56,57,67,68,78). However, no such
vector is compatible with aj9, c13, ca4, b13, bog. The 30 vectors which remain
are ajg, b4, €13, Coq, d347s, € together with those in S N A(e) and T. They
are pairwise compatible and determine a maximal graph which is the graph
M437 defined in Section 1.

Case 4: np(Q) =4, ny(Q) = 2.

We distinguish two subcases depending on the factorization of ) induced
by the edge-colouring.

Subcase 4a: The two red edges are non-adjacent.

We assume, without loss of generality, that edges 57 and 68 are red, so
that S N A(e) contains as7, ags, bsg, bss, bgr, brs. These vectors exclude all
vectors of type d, and all further vectors of type ¢ other than ci4, cos.

By Lemma 4.3, at most one of ci4, co3 is present. If say ci4 is present
then bis, a04 are excluded, and by maximality a;3, boy are present. In this
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case the vectors which remain are ajs, b4, €13, Co4, C14, € together with those
in SNA(e) and T. They are pairwise compatible and determine a maximal
graph with 30 vertices. An isomorphism 1 from this graph to M437 is given
by:

u

¢(u)

bss bss ais aiz aig bss air e | ajg bsy bag axs bsg bas asy
ajg ags bsg ajz ais bzs bsr e | aig air ags azr asg asg bis

ags b3y azy azs azg bss bsr bsg brs bsg bgr aiz €13 € ciy
bay bzs bss bss bys bar bas bsy bsg bgr bgg brs €13 cas daars

u

()

If c14 and cog3 are absent then cy4 is excluded by b3 or ass, while co3 is
exluded by aj3 or boy. Thus either bqz, boy are present and we obtain the
graph M417 defined in Section 1; or a3, as4 are present and an isomorphism
¥ from the resulting graph to M428 is given by:

a;s bss bss ajz ajs air aig e | bzs bzr bss by bsar byg
b3s a5 azs ajz bzs bzr bizg e | ajg air ajg ag axr ass

u

()

u

P(u)

b3y ags azs azy azg bas biz brs bgs bgr bsg bsr bsg €13 coy
bss bys bss bsar bsg biz bas bsg bsy bsg bgr bgg brg €13 coy

Subcase 4b: Two red edges are adjacent.

We assume, without loss of generality, that edges 56 and 67 are red,
so that S N A(e) contains asg, agr, bs7, bss, bgs, brs. By Lemma 4.4 (ap-
plied to azg, bss and to asg, bgr), we know that dssrs, dssss are present. It
follows that d9 > 2. Since also o > 2, it follows from Lemma 4.2 that
7=06 =0,7 =0 =2, [SNA(e)] = 8 and deg(aiz) = deg(bzs) =
deg(e). Since deg(aiz) = 6 + |S N A(aze)| + |T N A(e)], it follows that
|S N A(bss)| > 4, and hence that by and bay is present. In view of (BD)
there are no further vectors of type d. The 31 vectors which remain are
ajo, b3y, €13, coq, d3458, d3q7s, € together with those in SN A(e) and T. They
are pairwise compatible and determine a maximal graph which is the graph
M462 defined in Section 1.

Case 5: np(Q) = 3, ny(Q) = 3.

We show first that the three red edges form a path. Otherwise thay
form a star, say with edges 56, 57 and 58. By Lemma 4.4, the vectors
ds47s, dsges, d3a67 are present. Now we have v9 > 2 and §2 > 3, contradicting
Lemma 4.2.
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Accordingly we assume, without loss of generality, that edges 56, 58 and
67 are red, so that S N A(e) contains asg, ass, ag7, bs7, bgs, brg. By Lemma
4.4 (applied to azg, bsg), we know that dss7g is present, and so d2 > 1. The
vectors in S N A(e) exclude all further possible vectors of type ¢ other than
C14 and C23.

By Lemma 4.3, at most one of c14, cog is present. If say cq4 is present then
b3, a4 are excluded, and 7o > 3. By Lemma 4.2, we have v; = §; = 0,
Y2 = 3,02 =1, |[SNA(e)| = 8 and deg(aje) = deg(bss) = deg(e). In
particular, a;3 and bgy are present, but no further vectors of type c are
present.

Now the only further vector of type d compatible with SNA(e), a2, ¢13, co4
and c14 is dog7g. If this vector is present then as7, asg, bss, bsg are excluded.
The 28 vectors which remain are ajo, b3y, €13, C24, €14, dog7s, d3q7s, € together
with the 8 vectors in S N A(e) and the 12 vectors in T'N A(e). They are
pairwise compatible and determine a maximal graph with 28 vertices. An
isomorphism v from this graph to M002 is given by

u | dog7spi2 €  bug ajs brg ajz ag| bsa asy azs bus ciz3 bsr
Y(u) | aia bus bag a1z a1z a7 ajg € | axz azs Azy Ay Aze Ay
u | aijg bsy air bssg byr cia dsarabas ase beg cou asg bas ass

(u)

ags arg bar bug bsg bsr bss bgr bes cia €25 €36 daserdases

If doyrg is absent then we obtain a maximal graph with 31 vertices, and
an isomorphism 1 from this graph to M462 is given by

u

P(u)

bss ajs bsr bay ajg aig bsr e | by byg axs agr ajz brg bes
ajz bsg bsg a2 a5 ajg a;r e | ags ags Azr Azg Ase asr bis

bs7 aja bss bzs air azx azxs bis agr ase asg bas €13 €y cig dayrs
bos bss bss bag bsr bus bsys bar bsr bsg bgs brs €13 coy dasredssss

u

P(u)

If c14 and co3 are absent then (arguing as above) we find that the only
possible vectors of type d in addition to ds47s are disgrg,dog7s. If both
are present then the vectors a;;(ij = 27,28,17,18,24,13) and by;(ij =
35,36, 45,46,24,13) are excluded. The vectors which remain are ajo, bsg,
C13, Ca4, d1378da47s, dsa7s, € together with the 6 vectors in SN A(e) and the
8 vectors in TN A(e). They are pairwise compatible and determine a maxi-
mal graph with 22 vertices. An isomorphism v from this graph to M001 is
given by
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u | dzgrse  bsy ajg brg bsr bar agps

Y(u) | dsgrsars €  aiz aiz as bgr bes
u | bag b3y agr ass bgs asgs ais ase bsg azx dosrcis dizrs cos
P(u) | ags ags azs ass agy asg bsg bsy bsg brg ci5 € €37 cug

If just one of di3vg,d247s is present we obtain a contradiction because
either co3 or co4 is then not excluded. If neither di37g nor day7g is present
then either a3, agq or by, boy must be present to exclude c14 and co3. By
duality we may assume that by, boy are present. The vectors which remain
are aj2, bsg, €13, €24, d347s, € together with the 8 vectors in SN A(e) and the
16 vectors in T'. They are pairwise compatible and determine a maximal
graph with 30 vertices. An isomorphism % from this graph to M437 is given
by

u

¢(u)

bss ass ajs bas bsr bzs bsg e | ajg ajs bag bsus asr brg bes
ajg ags bsg ajz ais bss bsr e | ajg air ag azy asg asg bis

u

(u)

bs7 ajp a7 bss axg azx bur agr bas biz asg asg €13 cas daars
bas bss bss bys bys bar bas bsy bsg bgr bes brg €13 cos dayrs

This completes the proof of the Main Theorem formulated in Section 1.
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