Combinatorial Results for Certain Semigroups of Transformations Preserving Orientation and a Uniform Partition

LEI SUN
School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo, Henan, 454003, P. R.China
sunlei97@163.com

Abstract. Let T_X be the full transformation semigroup on a set X and E be a non-trivial equivalence on X. The set $T_E(X) = \{f \in T_X : \forall (x,y) \in E, (f(x), f(y)) \in E\}$ is a subsemigroup of T_X. For a finite totally ordered set X and a convex equivalence E on X, the set of all the orientation-preserving transformations in $T_E(X)$ forms a subsemigroup of $T_E(X)$ denoted by $OP_E(X)$. In this paper, under the hypothesis that the totally ordered set X is of cardinality mn $(m, n \geq 2)$ and the equivalence E has m classes such that each E-class contains n consecutive points, we calculate the cardinality of the semigroup $OP_E(X)$, and that of its idempotents.

2010 Mathematics Subject Classification: 20M20, 05A10

Keywords and phrases: Orientation-preserving transformation, cardinality, idempotent.

1. Introduction

Let $X = \{1, 2, \cdots, n\}$ with the usual order and let \mathcal{P}_X and \mathcal{T}_X denote the partial transformation semigroup and the full transformation semigroup on X, respectively. A map $f \in \mathcal{T}_X$ is said to be order-preserving if $x \leq y$ implies $f(x) \leq f(y)$ for $x, y \in X$. The collection of all the order-preserving maps on X is denoted by O_X in [6] (the symbol O_X is replaced by O_n in [2]). A sequence $A = (a_1, a_2, \cdots, a_n)$ is said to be cyclic if there exists no more than one subscript i such that $a_i > a_{i+1}$. A map $f \in \mathcal{T}_X$ is said to be orientation-preserving, if $(f(1), f(2), \cdots, f(n))$ is cyclic, which implies that there exists some $j \in \{0, 1, \cdots, n-1\}$ such that

$$f(j+1) \leq f(j+2) \leq \cdots \leq f(n) \leq f(1) \leq \cdots \leq f(j)$$

(where we adopt the convention that $f(1) \leq f(2) \leq \cdots \leq f(n)$ if $j = 0$). Clearly, if f is order-preserving, then it is also orientation-preserving. The collection of all the orientation-preserving maps on X is denoted by OP_n and has been investigated by Catarino and Higgins in [2]. Combinatorial results of various classes of transformation subsemigroups of \mathcal{P}_X and

Communicated by Kar Ping Shum.
Received: September 29, 2010; Revised: March 7, 2011.
The authors considered the subsemigroup of \(E \) under the supposition that all \(E \) are of the same size, the regularity and Green’s relations for the semigroup \(OP \) were described.

In this paper, as in [14], we always assume the totally ordered set \(X \) and the convex equivalence \(E \) on \(X \), the authors considered the subsemigroup of \(T_e(X) \)

\[
OP_e(X) = \{ f \in T_e(X) : f \text{ is orientation-preserving} \},
\]

and under the supposition that all \(E \)-classes were of the same size, the regularity and Green’s relations for the semigroup \(OP_e(X) \) were described.

In this paper, as in [14], we always assume the totally ordered set \(X = \{1 < 2 < \cdots < mn\} \) \((m, n \geq 2)\) and the equivalence \(E \) to be

\[
E = (A_1 \times A_1) \cup (A_2 \times A_2) \cup \cdots \cup (A_m \times A_m),
\]

where \(A_i = [(i-1)n + 1, in] \) for \(1 \leq i \leq m \). We investigate combinatorial properties of the semigroup \(OP_e(X) \). The paper is organized as follows. In Section 2, we determine the cardinality of \(OP_e(X) \). In Section 3, we characterize the idempotents in the semigroup \(OP_e(X) \) and calculate their number.

Denote by \(X/E \) the quotient set of \(X \). The following result whose proof is routine describes an essential property of the transformations in the semigroup \(T_e(X) \) where \(X \) is an arbitrary set and \(E \) is an arbitrary equivalence on \(X \).

Lemma 1.1. Let \(f \in T_e(X) \), then for each \(B \in X/E \), there exists \(B' \in X/E \) such that \(f(B) \subseteq B' \). Consequently, for each \(A \in X/E \), the set \(f^{-1}(A) \) is either \(\emptyset \) or a union of some \(E \)-classes.

For each \(f \in T_e(X) \), let

\[
E(f) = \{ f^{-1}(A) : A \in X/E \text{ and } f^{-1}(A) \neq \emptyset \}.
\]

Then \(E(f) \) is a partition of \(X \). The following result shows that each orientation-preserving transformation induces a partition of convex subsets.
Lemma 1.2. Let $f \in \text{OP}_{E}(X)$. Then each $U \in E(f)$ is a convex subset of X.

2. The cardinality of $\text{OP}_{E}(X)$

In this section, we focus our attention on the cardinality of $\text{OP}_{E}(X)$. We notice that for each $f \in \text{OP}_{E}(X)$, there exists some j such that $f(j+1) = \min f(X)$ and $f(j) = \max f(X)$ and j is unique if f is not constant. Therefore, there are two cases: $(j, j+1) \notin E$ or $(j, j+1) \in E$. We first consider subsets of $\text{OP}_{E}(X)$ consisting of those elements for which $(j, j+1) \notin E$. It is not hard to see that in this case, j is the greatest number in some E-class A_{i} while $j+1$ is the smallest number in the next E-class A_{i+1}. Define certain subsets $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{m}$ of $\text{OP}_{E}(X)$ by:

$$\mathcal{A}_{1} = \{ f \in \text{OP}_{E}(X) : f(1) = \min f(X) \text{ and } f(mn) = \max f(X) \},$$

$$\mathcal{A}_{2} = \{ f \in \text{OP}_{E}(X) : f(n+1) = \min f(X) \text{ and } f(n) = \max f(X) \},$$

$$\ldots,$$

$$\mathcal{A}_{m} = \{ f \in \text{OP}_{E}(X) : f((m-1)n+1) = \min f(X) \text{ and } f((m-1)n) = \max f(X) \}.$$

Obviously, if $f \in \mathcal{A}_{i}(1 \leq i \leq m)$, then $|f(X)| \leq mn$ and

$$f((i-1)n+1) \leq f((i-1)n+2) \leq \cdots \leq f(mn) \leq f(1) \leq \cdots \leq f((i-1)n).$$

Next, we consider another subsets consisting of those elements for which $(j, j+1) \in E$ and $f(j+1) = \min f(X), f(j) = \max f(X)$. For each $1 \leq s \leq m$, define certain subsets $\mathcal{B}_{s,1}, \mathcal{B}_{s,2}, \ldots, \mathcal{B}_{s,n-1}$ of $\text{OP}_{E}(X)$ by:

$$\mathcal{B}_{s,1} = \{ f \in \text{OP}_{E}(X) : f((s-1)n+2) = \min f(X) \text{ and } f((s-1)n+1) = \max f(X) \},$$

$$\mathcal{B}_{s,2} = \{ f \in \text{OP}_{E}(X) : f((s-1)n+3) = \min f(X) \text{ and } f((s-1)n+2) = \max f(X) \},$$

$$\ldots,$$

$$\mathcal{B}_{s,n-1} = \{ f \in \text{OP}_{E}(X) : f(sn) = \min f(X) \text{ and } f(sn-1) = \max f(X) \}.$$n

If $f \in \mathcal{B}_{s,t}(1 \leq t \leq n-1)$, then f maps all the elements of X into some E-class and

$$f((s-1)n+t+1) \leq f((s-1)n+t+2) \leq \cdots \leq f(mn) \leq f(1) \leq \cdots \leq f((s-1)n+t).$$

Therefore,

$$\text{OP}_{E}(X) = \left(\bigcup_{s=1}^{m} \mathcal{A}_{s} \right) \bigcup \left(\bigcup_{s=1}^{m-1} \bigcup_{t=1}^{n-1} \mathcal{B}_{s,t} \right)$$

and for $s \neq s', t \neq t'$,

$$\mathcal{A}_{s} \cap \mathcal{A}_{s'} = \mathcal{B}_{s,t} \cap \mathcal{B}_{s',t'} = \mathcal{B}_{s,t} \cap \mathcal{A}_{t} = \{(1), (2), \ldots, (mn)\},$$

where (x) denotes the constant map which maps all the elements of X into x.

We give two properties for the subsets $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{m}$ and $\mathcal{B}_{s,1}, \mathcal{B}_{s,2}, \ldots, \mathcal{B}_{s,n-1}(1 \leq s \leq m)$.

Lemma 2.1. Let $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{m}$ be as defined above. Then

$$|\mathcal{A}_{1}| = |\mathcal{A}_{2}| = \cdots = |\mathcal{A}_{m}|.$$
Proof. For \(f \in \mathcal{A}_1 \), define \(\psi_1 : \mathcal{A}_1 \rightarrow \mathcal{A}_2 \) by \(\psi_1(f) = g \) where
\[
g(x) = \begin{cases}
 f(mn + x - n) & 1 \leq x \leq n \\
 f(x - n) & \text{otherwise.}
\end{cases}
\]

Then \(\psi_1 \) is well defined. To see \(g \in \mathcal{A}_2 \), let \((x, y) \in E\), if \(x, y \in A_1 \), then \((mn + x - n, mn + y - n) \in E\) and \((g(x), g(y)) = (f(mn + x - n), f(mn + y - n)) \in E\). If \(x, y \notin A_1 \), then \((x - n, y - n) \in E\) and \((g(x), g(y)) = (f(x - n), f(y - n)) \in E\) which implies that \(g \in T_E(X) \). Moreover,
\[
g(n + 1) = f(1) \leq g(n + 2) = f(2) \leq \cdots \leq g(mn) = f(mn - n) \\
\leq g(1) = f(mn + 1 - n) \leq g(2) = f(mn + 2 - n) \cdots \leq g(n) = f(mn).
\]

So \(g \in \mathcal{A}_2 \). It is clear that \(\psi_1 \) is a bijection from \(\mathcal{A}_1 \) onto \(\mathcal{A}_2 \). Therefore, \(|\mathcal{A}_1| = |\mathcal{A}_2| \). Similarly, we can define \(\psi_2, \psi_3, \cdots, \psi_{m-1} \) and show that \(|\mathcal{A}_2| = |\mathcal{A}_3| = |\mathcal{A}_4|, \cdots, |\mathcal{A}_{m-1}| = |\mathcal{A}_m| \). Consequently, \(|\mathcal{A}_1| = |\mathcal{A}_2| = \cdots = |\mathcal{A}_m| \).

Lemma 2.2. For \(1 \leq s \leq m \), let \(\mathcal{B}_{s,1}, \mathcal{B}_{s,2}, \cdots, \mathcal{B}_{s,n-1} \) be as defined above. Then
\[
(1) \; |\mathcal{B}_{s,1}| = |\mathcal{B}_{s,2}| = \cdots = |\mathcal{B}_{s,n-1}|, \\
(2) \; |\mathcal{B}_{s,l}| = |\mathcal{B}_{s,l}| \text{ for } 1 \leq s, s' \leq m \text{ and } 1 \leq l \leq n - 1.
\]

Proof. (1) For \(f \in \mathcal{B}_{s,t}(1 \leq t \leq n - 1) \), define \(\rho : \mathcal{B}_{s,t} \rightarrow \mathcal{B}_{s,t+1} \) by \(\rho(f) = g \) where
\[
g(x) = \begin{cases}
 f(mn) & x = 1 \\
 f(x - 1) & \text{otherwise.}
\end{cases}
\]

Since \(f \) maps \(X \) into some \(E \)-class and \(g(X) = f(X) \), we have \(g \in T_E(X) \). Moreover,
\[
g((s - 1)n + t + 2) = f((s - 1)n + t + 1) \leq g((s - 1)n + t + 3) = f((s - 1)n + t + 2) \leq \cdots \leq g(mn) = f(mn - 1) \leq g(1) = f(mn) \leq \cdots \leq g((s - 1)n + t + 1) = f((s - 1)n + t).
\]

Thus \(g \in \mathcal{B}_{s,t+1} \). One easily verifies that \(\rho \) is a bijection from \(\mathcal{B}_{s,t} \) onto \(\mathcal{B}_{s,t+1} \). Hence \(|\mathcal{B}_{s,t}| = |\mathcal{B}_{s,t+1}| \) and \(|\mathcal{B}_{s,1}| = |\mathcal{B}_{s,2}| = \cdots = |\mathcal{B}_{s,n-1}| \).

(2) Similar to that of Lemma 2.1.

As we know, the number of \(r \)-combinations of \(k \) distinct objects each available in unlimited supply is \(\binom{r + k - 1}{r} \) (see [1, Theorem 3.5.1, p. 72]).

We now can state and prove the main result of this section.

Theorem 2.1.
\[
|OP_E(X)| = m \sum_{k_1 + k_2 + \cdots + k_m = m} \prod_{s = 1}^{m} \binom{(k_s + 1)n - 1}{k_s n} + m^2(n - 1) \binom{n(m + 1) - 1}{mn} - mn(mn - 1),
\]
where \((k_1, k_2, \cdots, k_m) \) is any non-negative integer solution to the equation \(\sum_{s = 1}^{m} k_s = m \).

Proof. By Lemmas 2.1 and 2.2, in order to calculate \(|OP_E(X)| \), we need only consider \(|\mathcal{A}_1| \) and \(|\mathcal{B}_{1,1}| \). We first calculate \(|\mathcal{A}_1| \). Suppose that
\[
(2.1) \; f([A_1, A_{k_1}]) \subseteq A_1, f([A_{k_1+1}, A_{k_1+k_2}]) \subseteq A_2, \cdots, f([A_{k_1+k_2+\cdots+k_{m-1}+1}, A_m]) \subseteq A_m,
\]
where \((k_1, k_2, \cdots, k_m) \) is one non-negative integer solution to the equation \(\sum_{s = 1}^{m} k_s = m \). Then the number of maps \(f \) satisfying (2.1) is \(\prod_{s = 1}^{m} \binom{(k_s + 1)n - 1}{k_s n} \). Thus,
\[
|\mathcal{A}_1| = \sum_{k_1 + k_2 + \cdots + k_m = m} \prod_{s = 1}^{m} \binom{(k_s + 1)n - 1}{k_s n},
\]
where \((k_1, k_2, \ldots, k_m)\) is any non-negative integer solution to the equation \(\sum_{s=1}^{m} k_s = m\).

Hence it follows from Lemma 2.1 that
\[
|\mathcal{A}_1| = |\mathcal{A}_2| = \cdots = |\mathcal{A}_m| = \sum_{k_1+k_2+\cdots+k_m=m,s=1}^{m} \binom{(k_s+1)n-1}{k_sn}.
\]

Notice that, for any distinct \(s\) and \(s'\),
\[
\mathcal{A}_s \cap \mathcal{A}_{s'} = \{\langle 1 \rangle, \langle 2 \rangle, \cdots, \langle mn \rangle\},
\]
so the number of distinct maps \(f \in \bigcup_{s=1}^{m} \mathcal{A}_s\) is
\[
m \sum_{k_1+k_2+\cdots+k_m=m,s=1}^{m} \prod_{k_s}^{1} \binom{(k_s+1)n-1}{k_sn} - mn(m-1).
\]

We now calculate \(|\mathcal{B}_{1,1}|\). If \(f \in \mathcal{B}_{1,1}\), then \(f(X) \subseteq A\) for some \(A \in X/E\). Set
\[
\mathcal{F}_i = \{f \in \mathcal{B}_{1,1} : f(X) \subseteq A_i\},
\]
where \(1 \leq i \leq m\). It follows that \(|\mathcal{F}_i| = \binom{n(n+1)-1}{mn}\) and so \(|\mathcal{B}_{1,1}| = |\bigcup_{i=1}^{m} \mathcal{F}_i| = m \binom{n(m+1)-1}{mn}\).

By virtue of Lemma 2.2, for \(1 \leq s \leq m\) and \(1 \leq t \leq n-1\), we have \(|\mathcal{B}_{s,t}| = m \binom{n(m+1)-1}{mn}\).

Since
\[
\mathcal{B}_{s,t} \cap \mathcal{B}_{s',t'} = \mathcal{B}_{s,t} \cap \mathcal{A}_{s'} = \{\langle 1 \rangle, \langle 2 \rangle, \cdots, \langle mn \rangle\},
\]
the number of distinct non-constant maps \(f \in \bigcup_{s=1}^{m} \bigcup_{t=1}^{n-1} \mathcal{B}_{s,t}\) is
\[
m^2(n-1) \binom{n(m+1)-1}{mn} - m^2n(n-1).
\]

Therefore,
\[
|OP_E(X)| = m \sum_{k_1+k_2+\cdots+k_m=m,s=1}^{m} \prod_{k_s}^{1} \binom{(k_s+1)n-1}{k_sn} + m^2(n-1) \binom{n(m+1)-1}{mn} - mn(mn-1),
\]
as required.

Earlier the authors [12] considered the class of transformation semigroups
\[
O_E(X) = \{f \in T_E(X) : \forall x, y \in X, x \leq y \Rightarrow f(x) \leq f(y)\},
\]
where the set \(X\) and the equivalence \(E\) are as defined in this paper. It is clear that \(O_E(X) \subseteq OP_E(X)\), and in fact, the semigroup \(O_E(X)\) whose cardinality is not known hitherto, is exactly \(|\mathcal{A}_1|\). Thus, an immediate consequence of Theorem 2.1 is the following corollary.

Corollary 2.1.
\[
|O_E(X)| = m \sum_{k_1+k_2+\cdots+k_m=m,s=1}^{m} \prod_{k_s}^{1} \binom{(k_s+1)n-1}{k_sn},
\]
where \((k_1, k_2, \ldots, k_m)\) is any non-negative integer solution to the equation \(\sum_{s=1}^{m} k_s = m\).

Remark 2.1. Recently I have been told that Fernandes and Quinteiro [4] had calculated the size of the semigroups \(OP_E(X)\) and \(O_E(X)\). However, the approach used differs greatly from that in this paper.

The following Tables 1 and 2 give the size of the semigroups \(OP_E(X)\) and \(O_E(X)\) for smaller \(m\) and \(n\), respectively.
Table 1. The cardinality of $\mathcal{O}_E(X)$

<table>
<thead>
<tr>
<th>$m \setminus n$</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>46</td>
<td>506</td>
<td>5034</td>
<td>51682</td>
<td>575268</td>
</tr>
<tr>
<td>3</td>
<td>447</td>
<td>9453</td>
<td>248823</td>
<td>8445606</td>
<td>349109532</td>
</tr>
<tr>
<td>4</td>
<td>4324</td>
<td>223852</td>
<td>17184076</td>
<td>1819339324</td>
<td>247307947608</td>
</tr>
<tr>
<td>5</td>
<td>42075</td>
<td>5555990</td>
<td>1207660095</td>
<td>387720453255</td>
<td>170017607919290</td>
</tr>
<tr>
<td>6</td>
<td>405828</td>
<td>136530144</td>
<td>83547682248</td>
<td>81341248206546</td>
<td>114804703283314542</td>
</tr>
</tbody>
</table>

Table 2. The cardinality of $O_E(X)$

<table>
<thead>
<tr>
<th>$m \setminus n$</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>19</td>
<td>156</td>
<td>1555</td>
<td>17878</td>
<td>225820</td>
</tr>
<tr>
<td>3</td>
<td>138</td>
<td>2845</td>
<td>78890</td>
<td>2768760</td>
<td>115865211</td>
</tr>
<tr>
<td>4</td>
<td>1059</td>
<td>55268</td>
<td>4284451</td>
<td>454664910</td>
<td>61824611940</td>
</tr>
<tr>
<td>5</td>
<td>8378</td>
<td>1109880</td>
<td>241505530</td>
<td>77543615751</td>
<td>34003513468232</td>
</tr>
<tr>
<td>6</td>
<td>67582</td>
<td>22752795</td>
<td>13924561150</td>
<td>13556873588212</td>
<td>19134117191404027</td>
</tr>
</tbody>
</table>

3. The number of idempotents in $\mathcal{O}_E(X)$

For a given subset M of the semigroup $\mathcal{O}_E(X)$, we denote by $E(M)$ its set of idempotents. In this section, we aim to calculate the cardinality of $E(\mathcal{O}_E(X))$. Since the semigroup $\mathcal{O}_E(X)$ has been divided into some subsets $\mathcal{A}_1(=O_E(X)), \mathcal{A}_2, \cdots, \mathcal{A}_m, \mathcal{B}_{s,1}, \mathcal{B}_{s,2}, \cdots, \mathcal{B}_{s,n-1}(1 \leq s \leq m)$, that is,

$$\mathcal{O}_E(X) = \bigcup_{s=1}^{m} \mathcal{A}_s \bigcup \left(\bigcup_{s=1}^{m} \bigcup_{t=1}^{n-1} \mathcal{B}_{s,t} \right),$$

we need only calculate the cardinality of the sets $E(\mathcal{A}_1), E(\mathcal{A}_2), \cdots, E(\mathcal{A}_m), \bigcup_{t=1}^{n-1} E(\mathcal{B}_{s,t}) (1 \leq s \leq m)$, respectively.

We begin with considering the number of idempotents in the semigroup $O_E(X)$. Recall that, the Fibonacci numbers are recursively defined by

$$F_0 = 0, F_1 = 1, F_{k+1} = F_k + F_{k-1}, \quad k \geq 1.$$

The following lemma which comes from [6, Theorem 2.3] was reproved in [2, Lemma 2.9].

Lemma 3.1. $|E(O_n)| = F_{2n}$.

Lemma 3.2. Let $f \in O_E(X)$ and $f^{-1}(A_j) = [A_{i+1}, A_{i+t}]$ for $1 \leq i, t \leq m-1, i+1 \leq j \leq i+t$. Then the restriction of f to $[A_{i+1}, A_{i+t}]$

$$f|_{[A_{i+1}, A_{i+t}]} : [A_{i+1}, A_{i+t}] \to A_j$$

is an idempotent in $\mathcal{F}_{[A_{i+1}, A_{i+t}]}$ if and only if the restriction of f to the E-class A_j

$$f|_{A_j} : A_j \to A_j$$

is an idempotent in \mathcal{F}_{A_j} and $f([A_{i+1}, A_{j-1}]) = f(a), f([A_{j+1}, A_{i+t}]) = f(b)$ where $a = \min A_j = (j-1)n+1$ and $b = \max A_j = jn$.

Proof. It is immediate for an order-preserving transformation in $T_E(X)$. \[\square\]
Remark 3.1. From Lemma 3.2, in order to construct an idempotent

\[f|_{[A_{i+1}, A_{i+t}]} : [A_{i+1}, A_{i+t}] \to A_j \]

in \(T[A_{i+1}, A_{i+t}] \), we go along the following line:

Step 1. Construct an idempotent \(f|_{A_j} : A_j \to A_j \) in \(T[A_j] \);
Step 2. Let \(f([A_{i+1}, A_{j-1}]) = f(a) \) and \(f([A_{j+1}, A_{i+t}]) = f(b) \) where \(a = \min A_j = (j - 1)n + 1 \) and \(b = \max A_j = jn \).

From Lemma 3.2 and Remark 3.1, we can deduce

Lemma 3.3. Let \(f \in O_E(X) \) and \(f^{-1}(A_j) = [A_{i+1}, A_{i+t}] \) for \(1 \leq i, t \leq m - 1 \), \(i + 1 \leq j \leq i + t \). Then the number of idempotents

\[f|_{[A_{i+1}, A_{i+t}]} : [A_{i+1}, A_{i+t}] \to A_j \]

in \(T[A_{i+1}, A_{i+t}] \) equals that of idempotents in \(T[A_j] \).

Theorem 3.1.

\[|E(O_E(X))| = \sum_{t=1}^{m} \left(\sum_{k_1 + k_2 + \cdots + k_t = m} \prod_{i=1}^{t} k_i 2^{n} \right) \]

where \((k_1, k_2, \cdots, k_t)\) is any positive integer solution to the equation \(\sum_{i=1}^{t} k_i = m \).

Proof. Let \(f \in E(O_E(X)) \). Denote

\[t = | \{ A \in X/E : A \cap f(X) \neq \emptyset \} | , \]

where \(1 \leq t \leq m \). Suppose that

\[f([A_1, A_{k_1}]) \subseteq A_{s_1}, f([A_{k_1+1}, A_{k_1+k_2}]) \subseteq A_{s_2}, \ldots, f([A_{k_1+k_2+\cdots+k_{i-1}+1}, A_m]) \subseteq A_{s_i} \]

where \(A_{s_i} \in X/E \) for \(1 \leq i \leq t \), the subscript set \(\{s_1, s_2, \cdots, s_t\} \subseteq \{1, 2, \cdots, m\} \) and \((k_1, k_2, \cdots, k_t)\) is one positive integer solution to the equation \(\sum_{i=1}^{t} k_i = m \). Then, for each \(i \), there are \(k_i \) choices for \(A_{s_i} \). By Lemma 3.3, for the fixed positive integer solution \((k_1, k_2, \cdots, k_t)\) to the equation \(\sum_{i=1}^{t} k_i = m \), the number of idempotents \(f \) satisfying (3.1) is \(\prod_{i=1}^{t} k_i 2^{n} \). So the number of idempotents \(f \) satisfying (3.1) is \(\sum_{k_1 + k_2 + \cdots + k_t = m} \prod_{i=1}^{t} k_i 2^{n} \), where \((k_1, k_2, \cdots, k_t)\) is any positive integer solution to the equation \(\sum_{i=1}^{t} k_i = m \). Noting that \(1 \leq t \leq m \), we have

\[|E(O_E(X))| = \sum_{t=1}^{m} \left(\sum_{k_1 + k_2 + \cdots + k_t = m} \prod_{i=1}^{t} k_i 2^{n} \right) . \]

Remark 3.2. From Lemma 2.1, \(|\mathcal{A}_1| = |\mathcal{A}_2| = \cdots = |\mathcal{A}_m| \). However, in general, the number of idempotents in \(\mathcal{A}_1 \) doesn’t equal that of \(\mathcal{A}_j \) for \(j \neq 1 \). For example, let \(m = 2, n = 2 \), that is, \(A_1 = \{1, 2\}, A_2 = \{3, 4\} \). By Theorem 3.1, we have

\[|E(\mathcal{A}_1)| = 2F_4 + F_4F_4 = 15 . \]

Denote by \((abcd)\) the map \(f \in OP_E(X) \) which maps \(1, 2, 3, 4 \) into \(a, b, c, d \), respectively, and

\[E(\mathcal{A}_1) = \{ (1), (1222), (2), (1133), (1134), (1144), (1233), (1234), (1244), (2233), (2234), (2244), (3), (3334), (4) \} . \]

However, there are only 6 idempotents in \(\mathcal{A}_2 \), and

\[E(\mathcal{A}_2) = \{ (1), (1211), (2), (3), (4434), (4) \} . \]
Now we calculate the number of idempotents in \mathcal{A}_l for $2 \leq l \leq m$.

Lemma 3.4. Let $f \in \mathcal{A}_l$ $(2 \leq l \leq m)$ and $f^{-1}(A_p) = [A_i,A_p]$ for some E-class A_p with $p \leq l' < l$. Then the restriction of f to $[A_i,A_p]$

$$f|_{[A_i,A_p]} : [A_i,A_p] \to A_p$$

is an idempotent in $\mathcal{T}_{[A_i,A_p]}$ if and only if the restriction of f to A_p

$$f|_{A_p} : A_p \to A_p$$

is an idempotent in \mathcal{T}_{A_p} and $f([A_i,A_{p-1}]) = f(a)$, $f([A_{p+1},A_p]) = f(b)$ where $a = \min A_p = (p-1)n+1$ and $b = \max A_p = pn$.

Remark 3.3. In Lemma 3.4, there are two special cases.

1. if $p = l' = 1$, then the restriction of f to $[A_i,A_1]$

$$f|_{[A_i,A_1]} : [A_i,A_1] \to A_1$$

is an idempotent in $\mathcal{T}_{[A_i,A_1]}$ if and only if the restriction of f to A_1

$$f|_{A_1} : A_1 \to A_1$$

is an idempotent in \mathcal{T}_{A_1} and $f([A_i,A_{m}]) = f(1)$.

2. if $p = l' \geq 2$, then the restriction of f to $[A_i,A_p]$

$$f|_{[A_i,A_p]} : [A_i,A_p] \to A_p$$

is an idempotent in $\mathcal{T}_{[A_i,A_p]}$ if and only if the restriction of f to A_p

$$f|_{A_p} : A_p \to A_p$$

is an idempotent in \mathcal{T}_{A_p} and $f([A_i,A_{p-1}]) = f((p-1)n+1)$.

To illustrate Lemma 3.4, let $m = 4$, $n = 2$ and $A_1 = \{1,2\}, A_2 = \{3,4\}, A_3 = \{5,6\}, A_4 = \{7,8\}$. Then $f_1 = (12111111) \in E(\mathcal{A}_2), f_2 = (12221111) \in E(\mathcal{A}_3)$ and $f_3 = (33344433) \in E(\mathcal{A}_4)$. Clearly, $f_1|_{A_1}$ is an idempotent in $\mathcal{T}_{A_1}, f_1([A_2,A_4]) = f_1(1)$, and $f_2|_{A_1}$ is an idempotent in $\mathcal{T}_{A_1}, f_2([A_3,A_4]) = f_2(1), f_2(A_2) = f_2(2)$, and $f_3|_{A_2}$ is an idempotent in $\mathcal{T}_{A_2}, f_3([A_4, A_1]) = f_3(3), f_3(A_3) = f_3(4)$.

Lemma 3.5. For $2 \leq l \leq m$,

$$|E(\mathcal{A}_l)| = \sum_{v=1}^{l-1} \sum_{j_1+j_2+\cdots+j_v=l-1} \prod_{w=1}^{v} j_w F_{2n} + \sum_{t=1}^{\frac{m-1}{2}+1} \sum_{k_1+k_2+\cdots+k_t=m} \left(\prod_{i=1}^{t-1} k_i F_{2n} \right) (k_t - l + 1) F_{2n},$$

where (j_1,j_2,\cdots,j_v) is any positive integer solution to the equation $\sum_{w=1}^{v} j_w = l - 1$, and (k_1,k_2,\cdots,k_t) is any positive integer solution to the equation $\sum_{i=1}^{t} k_i = m$ and the final positive integer $k_t \geq 1$.

Proof. Let $f \in E(\mathcal{A}_l)$. There are two cases to consider.

Case 1. $f(A_i) \subseteq A_p$ for $p \in \{1,2,\cdots,l-1\}$. Since f is an idempotent, we can deduce that $f([A_i,A_{m}]) \subseteq A_p$. Let

$$v = |\{A \in X/E : A \cap f(X) \neq \emptyset\}|,$$
where \(1 \leq v \leq l - 1\). Suppose
\[
\left(3.2\right) \quad f([A_l, A_{j_1}]) \subseteq A_{s_1}, \quad f([A_{j_1} + 1, A_{j_1} + j_2]) \subseteq A_{s_2}, \ldots
\]
\[
f([A_{j_1} + 2 + \cdots + j_{s-1} + 1, A_{j_1} + j_2 + \cdots + j_{s-1} + j_s = A_{l-1}]) \subseteq A_{s_v},
\]
where \((j_1, j_2, \ldots, j_v)\) is one positive integer solution to the equation \(\sum_{w=1}^{v} j_w = l - 1\), the subscript set \(\{s_1, s_2, \ldots, s_v\} \subseteq \{1, 2, \ldots, l - 1\}\) and
\[
A_p = A_{s_1} < A_{s_2} < \cdots < A_{s_v} \leq A_{l-1}.
\]

If \(v = 1\), then \(f\) maps all the elements of \(X\) into \(A_p\), which has \(l - 1\) possible choices and so the number of \(f\) is \((l - 1)F_{2n}\). Suppose that \(v > 1\) and then, for each \(w (1 \leq w \leq v)\), there are \(j_w\) possible choices for \(A_{s_w}\). By Lemma 3.4, for the fixed positive integer solution \((j_1, j_2, \ldots, j_v)\) to the equation \(\sum_{w=1}^{v} j_w = l - 1\), the number of \(f\) satisfying \(3.2\) should be \(\prod_{w=1}^{v} j_w F_{2n}\). So the number of all \(f\) satisfying \(3.2\) is \(\sum_{v=1}^{l-1} \prod_{w=1}^{v} j_w F_{2n}\). Taking the sum from 2 to \(l - 1\), we obtain that the number of \(f\) satisfying \(3.2\) is \(\sum_{v=1}^{l-1} \prod_{w=1}^{v} j_w F_{2n}\). Therefore, the number of \(f\) satisfying the condition that \(f(A_l) \subseteq A_p\) for \(p \in \{1, 2, \ldots, l - 1\}\) is
\[
(l - 1)F_{2n} + \sum_{v=2}^{l-1} \prod_{w=1}^{v} j_w F_{2n} = \sum_{v=1}^{l-1} \prod_{w=1}^{v} j_w F_{2n}.
\]

Case 2. \(f(A_l) \subseteq A_p\) for \(p \in \{l, l + 1, \ldots, m\}\). Set
\[
t = |\{A \in X/E : A \cap f(X) \neq \emptyset\}|,
\]
where \(1 \leq t \leq m - (l - 1)\). Suppose
\[
\left(3.3\right) \quad f([A_l, A_{k_1}]) \subseteq A_{s_1}, \quad f([A_{k_1} + 1, A_{k_1} + k_2]) \subseteq A_{s_2}, \ldots
\]
\[
f([A_{k_1} + k_2 + \cdots + k_{s-1} + 1, A_{k_1} + k_2 + \cdots + k_{s-1} + k_t = A_{l-1}]) \subseteq A_{s_t},
\]
where \((k_1, k_2, \ldots, k_t)\) is any integer solution to the equation \(\sum_{i=1}^{t} k_i = m - 1\) and \(k_1 \geq 0, k_2 \geq 1, k_3 \geq 1, \ldots, k_{s-1} \geq 1, k_t \geq l\) (since \(f\) maps at least \(E\)-classes \(A_m, A_1, \ldots, A_{l-1}\) into \(A_{s_t}\)), the subscript set \(\{s_1, s_2, \ldots, s_t\} \subseteq \{l, l + 1, \ldots, m\}\) and
\[
A_l \leq A_p = A_{s_1} < A_{s_2} < \cdots < A_{s_t} \leq A_m.
\]

If \(t = 1\), it is clear that the number of \(f\) is \((m - l + 1)F_{2n}\). If \(t = 2\), then there are \((k_1 + 1)\) choices for \(A_{s_1}\) and \((k_2 - l + 1)\) choices for \(A_{s_2}\). Thus the number of \(f\) is
\[
\sum_{k_1 + k_2 = m-1} ((k_1 + 1)F_{2n})((k_2 - l + 1)F_{2n}).
\]

If \(3 \leq t \leq m - (l - 1)\), there are \((k_1 + 1)\) choices for \(A_{s_1}\), and, for each \(i (2 \leq i \leq t - 1)\), \(k_i\) choices for \(A_{s_i}\), and \((k_t - l + 1)\) choices for \(A_{s_t}\). So, for the fixed integer solution \((k_1, k_2, \ldots, k_t)\) to the equation \(\sum_{i=1}^{t} k_i = m - 1\), the number of \(f\) satisfying \(3.3\) is \((k_1 + 1)F_{2n} (\prod_{i=2}^{t-1} k_i F_{2n}) (k_t - l + 1)F_{2n}\). Thus, the number of all \(f\) satisfying \(3.3\) is
\[
\sum_{k_1 + k_2 + \cdots + k_t = m-1} ((k_1 + 1)F_{2n} (\prod_{i=2}^{t-1} k_i F_{2n}) (k_t - l + 1)F_{2n}).
\]
Taking the sum t from 3 to $m - l + 1$ yields

$$
\sum_{t=3}^{m-l+1} \sum_{k_1+k_2+\ldots+k_t=m-1} ((k_1+1)F_{2n}\left(\prod_{i=2}^{t-1} k_i F_{2n}\right)(k_t-l+1)F_{2n})
$$

Therefore, the number of f satisfying the condition that $f(A_i) \subseteq A_p$ for $p \in \{l,l+1,\ldots,m\}$ is

$$
(m-l+1)F_{2n} + \sum_{t=3}^{m-l+1} \sum_{k_1+k_2+\ldots+k_t=m-1} ((k_1+1)F_{2n}\left(\prod_{i=2}^{t-1} k_i F_{2n}\right)(k_t-l+1)F_{2n})
$$

$$
= \sum_{t=1}^{m-l+1} \sum_{k_1+k_2+\ldots+k_t=m-1} ((k_1+1)F_{2n}\left(\prod_{i=2}^{t-1} k_i F_{2n}\right)(k_t-l+1)F_{2n}),
$$

where (k_1,k_2,\ldots,k_t) is any positive integer solution to the equation $\sum_{i=1}^t k_i = m$ and the final positive integer $k_t \geq l$. Consequently,

$$
|E(\mathcal{A}_t)| = \sum_{v=1}^{l-1} \sum_{j_1+j_2+\ldots+j_v=l-1} \prod_{i=1}^v j_i F_{2n} + \sum_{t=1}^{m-l+1} \sum_{k_1+k_2+\ldots+k_t=m} \left(\prod_{i=1}^{t-1} k_i F_{2n}\right)((k_t-l+1)F_{2n}).
$$

Remark 3.4. In Lemma 3.5, when $t = 1$, we have

$$
\sum_{k_1+k_2+\ldots+k_t=m} \left(\prod_{i=1}^{t-1} k_i F_{2n}\right)((k_t-l+1)F_{2n}) = (m-l+1)F_{2n}.
$$

Example 3.1. By virtue of Lemma 3.5, we calculate $|E(\mathcal{A}_2)|, |E(\mathcal{A}_3)|, |E(\mathcal{A}_4)|$ for $m = 4, n = 3$ and have

$$
|E(\mathcal{A}_2)| = F_6 + (3F_6 + 2F_6 F_6 + F_6(2F_6) + F_6 F_6 F_6) = 800,
$$

$$
|E(\mathcal{A}_3)| = (2F_6 + F_6 F_6) + (2F_6 + F_6 F_6) = 160
$$

and

$$
|E(\mathcal{A}_4)| = (3F_6 + F_6(2F_6) + 2F_6 F_6 + F_6 F_6 F_6) + F_6 = 800.
$$

Finally we consider the number of idempotents in $\bigcup_{1 \leq s \leq m} \mathcal{B}_{s,t}$. The following lemma comes from [2, Theorem 2.10].

Lemma 3.6. $|E(OP_t)| = F_{2n-1} + F_{2n+1} - (n^2 - n + 2)$.

Lemma 3.7. Let $f \in \mathcal{B}_{s,t}$ with $1 \leq s \leq m$ and $1 \leq t \leq n-1$.

1. If $f(X) \subseteq A_q$ for $q \neq s$, then $f: X \to A_q$ is an idempotent in $OP_E(X)$ if and only if $f|_{A_q}: A_q \to A_q$ is an idempotent in \mathcal{B}_{A_q} and

$$
f([s-1]n + t + 1, A_{q-1}) = f(a), \quad f([A_{q+1}, (s-1)n + t]) = f(b),
$$

where $a = \min A_q = (q-1)n + 1$ and $b = \max A_q = qn$.

(2) If \(f(X) \subseteq A_s \), then \(f : X \rightarrow A_s \) is an idempotent in \(OP_E(X) \) if and only if \(f|_{A_s} : A_s \rightarrow A_s \) is an idempotent in \(\mathcal{F}_{A_s} \), moreover, if \(f((s-1)n+t+1) \leq (s-1)n+t \), then \(f((s-1)n+t+1, f((s-1)n+t+1)) = f((s-1)n+t+1) \), and if \(f((s-1)n+t+1) > (s-1)n+t \), then \(f([A_{s+1}, (s-1)n+t] = f(sn) \).

Proof. Here we only show (2). Since \(f \in \mathcal{B}_{s,t} \), we have
\[
f((s-1)n+t+1) \leq f((s-1)n+t+2) \leq \cdots \leq f(mn) \leq f(1) \leq \cdots \leq f((s-1)n+t).
\]

We now suppose that \(f : X \rightarrow A_s \) is an idempotent in \(OP_E(X) \), then \(f|_{A_s} : A_s \rightarrow A_s \) is also an idempotent in \(\mathcal{F}_{A_s} \). Let \(c = f((s-1)n+t+1) \) and \(x \in [(s-1)n+t+1, c] \). If \(c \leq (s-1)n+t \), then \(f(x) \leq f(c) = c \) and \(f(x) \geq f((s-1)n+t+1) = c \). Thus \(f(x) = c \). If \(c > (s-1)n+t \) and \(x \in [A_{s+1}, (s-1)n+t] \), then \(f(sn) \leq f(x) \) and we can assert that \(f(sn) = f(x) \). Indeed, if \(f(sn) < f(x) \). Noting that \(f \) maps \(X \) into \(A_s \), we have \(f(x) \leq sn \) and \(f(x) = f^2(x) \leq f(sn) \), a contradiction. The sufficiency is clear and the proof is completed.

Remark 3.5. In Lemma 3.7(1), we consider two special cases.

1. If \(q = 1 \), then \(f : X \rightarrow A_1 \) is an idempotent in \(OP_E(X) \) if and only if \(f|_{A_1} : A_1 \rightarrow A_1 \) is an idempotent in \(\mathcal{F}_{A_1} \), and
\[
f(((s-1)n+t+1, A_m]) = f(1), f([A_2, (s-1)n+t]) = f(n).
\]

2. If \(q = m \), then \(f : X \rightarrow A_m \) is an idempotent in \(OP_E(X) \) if and only if \(f|_{A_m} : A_m \rightarrow A_m \) is an idempotent in \(\mathcal{F}_{A_m} \) and
\[
f(((s-1)n+t+1, A_{m-1}]) = f((m-1)n+1), f([A_1, (s-1)n+t]) = f(mn).
\]

To illustrate Lemma 3.7, let \(m = 3, n = 5 \) and \(A_1 = \{1, 2, 3, 4, 5\} \), \(A_2 = \{6, 7, 8, 9, 10\} \), \(A_3 = \{11, 12, 13, 14, 15\} \). Let
\[
g_1 = \left(\begin{array}{cccccccccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 14 & 14 & 14 & 14 & 14 & 14 & 14 & 14 & 14 & 14 & 14 & 14 & 14 & 14 \end{array} \right) \in E(\mathcal{B}_{2,2}),
\]
\[
g_2 = \left(\begin{array}{cccccccccccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 \end{array} \right) \in E(\mathcal{B}_{2,2}),
\]
and
\[
g_3 = \left(\begin{array}{cccccccccccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 \end{array} \right) \in E(\mathcal{B}_{2,2}).
\]

Clearly, \(g_1|_{A_3} \) is an idempotent in \(\mathcal{F}_{A_3} \), \(g_1([8, 10]) = g_1(11) \), \(g_1([A_1, 7]) = g_1(15) \), and \(g_2|_{A_2} \) is an idempotent in \(\mathcal{F}_{A_2} \), \(g_2([8, g_2(8)]) = g_2(8) \), and \(g_3|_{A_2} \) is an idempotent in \(\mathcal{F}_{A_2} \), \(g_3([A_3, 7]) = g_3(10) \).

Lemma 3.8. For \(1 \leq s \leq m \),
\[
\sum_{t=1}^{n-1} |E(\mathcal{B}_{s,t})| = (n-1)(m-1)F_{2n} + 2(F_{2n-1} - 1).
\]

Proof. Let \(f \in E(\mathcal{B}_{s,t}) \) for \(1 \leq t \leq n-1 \). Set
\[
M^s_{t} = \{ f \in E(\mathcal{B}_{s,t}) : f(X) \subseteq A_q \}.
\]

There are two cases to consider.
Case 1. \(q \neq s \). Then, by Lemmas 3.1 and 3.7 (1), \(|M_{q}^{E, s}| = F_{2n} \) since \(f \) is order-preserving on the \(E \)-class \(A_{q} \). Thus \(|\cup_{q \neq s} M_{q}^{E, s}| = (m - 1)F_{2n} \).

Case 2. \(q = s \). Then, by Lemma 3.7(2),

\[
|M_{s}^{E, s}| = |\{ f \in E(OP_{n}) : f(t + 1) \leq f(t) + 2 \leq \cdots \leq f(n - 1) \leq f(n) \leq f(1) \leq \cdots \leq f(t) \}|.
\]

Noting that in \(OP_{n} \), by Lemmas 3.6, the number of idempotents which are not order-preserving is \(F_{2n-1} + F_{2n+1} - (n^2 - n + 2) - F_{2n} \), we have

\[
\sum_{t=1}^{n-1} |M_{s}^{E, s}| = F_{2n-1} + F_{2n+1} - (n^2 - n + 2) - F_{2n} + (n - 1)n = 2(F_{2n-1} - 1).
\]

Consequently,

\[
\sum_{t=1}^{n-1} |E(B_{s, t})| = (n - 1)(m - 1)F_{2n} + \sum_{t=1}^{n-1} |M_{s}^{E, s}| = (n - 1)(m - 1)F_{2n} + 2(F_{2n-1} - 1).
\]

Observing that for \(1 \leq s, s' \leq m, 1 \leq t, t' \leq n-1 \),

\[
E(A_{s}) \cap E(A_{s'}) = E(A_{s}) \cap E(A_{s'}) = E(A_{s}) \cap E(A_{s'}) = \{ \langle 1 \rangle, \langle 2 \rangle, \cdots, \langle mn \rangle \},
\]

and that the total number of idempotents \(\langle 1 \rangle, \langle 2 \rangle, \cdots, \langle mn \rangle \) in \(A_{2}, A_{3}, \cdots, A_{m}, \cup_{s=1}^{m-1} B_{s, t} \) \((1 \leq s \leq m) \) is \((m - 1)mn + (n - 1)m^2n \), by Theorem 3.1, Lemma 3.5 and Lemma 3.8, we obtain the main result in this section.

Theorem 3.2.

\[
|E(OP_{E}(X))| = \sum_{t=1}^{m} k_{t}F_{2n} + \sum_{i=1}^{m} \sum_{j_{1}+j_{2}+\cdots+j_{i}=m}^{l-1} \left\{ \sum_{v=1}^{l-1} \left(\prod_{i=1}^{v-1} k_{i}F_{2n} \right) \left(\prod_{i=1}^{l-1} k_{i}F_{2n} \right) \right\} \left(k_{l} - l + 1 \right) F_{2n}
\]

\[
+ m ((n - 1)(m - 1)F_{2n} + 2(F_{2n-1} - 1)) - (m - 1)mn + (n - 1)m^2n,
\]

where \(k_{1}, k_{2}, \cdots, k_{l} \) is any positive integer solution to the equation \(\sum_{i=1}^{l} k_{i} = m \), and \(j_{1}, j_{2}, \cdots, j_{v} \) is any positive integer solution to the equation \(\sum_{w=1}^{v} j_{w} = l - 1 \), and \(k_{1}', k_{2}', \cdots, k_{l}' \) is any positive integer solution to the equation \(\sum_{i=1}^{l} k_{i}' = m \) and the final positive integer \(k_{l}' \geq l \).

Example 3.2. Let \(m = 4, n = 3 \). By Theorem 3.1,

\[
|E(A_{4})| = 4F_{6} + (F_{6}(3F_{6}) + (2F_{6})(2F_{6}) + 3F_{6}(F_{6})) + (F_{6}F_{6}(2F_{6}) + F_{6}(2F_{6})F_{6} + (2F_{6})F_{6}F_{6}) + F_{6}F_{6}F_{6}F_{6} = 7840.
\]

From Example 3.1, we know \(|E(A_{2})| = 800, |E(A_{3})| = 160 \) and \(|E(A_{4})| = 800 \). It follows from Lemma 3.8 that \(\sum_{t=1}^{2} |E(B_{s, t})| = 6F_{6} + 2(F_{5} - 1) = 56 \) for \(1 \leq s \leq 4 \). Thus,

\[
|E(OP_{E}(X))| = 7840 + 800 + 160 + 800 + 56 \times 4 - (36 + 96) = 9692.
\]
To conclude this section, we give the following Tables 3 and 4 providing the number of idempotents in $OP_E(X)$ and $O_E(X)$ for smaller m, n, respectively.

Table 3. The number of idempotents in $OP_E(X)$

<table>
<thead>
<tr>
<th>$m \backslash n$</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>19</td>
<td>114</td>
<td>643</td>
<td>3727</td>
<td>22972</td>
</tr>
<tr>
<td>3</td>
<td>102</td>
<td>1016</td>
<td>12414</td>
<td>186328</td>
<td>3116238</td>
</tr>
<tr>
<td>4</td>
<td>513</td>
<td>9692</td>
<td>278337</td>
<td>10545529</td>
<td>454295384</td>
</tr>
<tr>
<td>5</td>
<td>2503</td>
<td>95198</td>
<td>6376621</td>
<td>600770505</td>
<td>66322745434</td>
</tr>
<tr>
<td>6</td>
<td>12066</td>
<td>941118</td>
<td>146363082</td>
<td>34233146606</td>
<td>9682664464596</td>
</tr>
</tbody>
</table>

Table 4. The number of idempotents in $O_E(X)$

<table>
<thead>
<tr>
<th>$m \backslash n$</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>15</td>
<td>80</td>
<td>483</td>
<td>3135</td>
<td>21024</td>
</tr>
<tr>
<td>3</td>
<td>72</td>
<td>792</td>
<td>11088</td>
<td>178640</td>
<td>3069360</td>
</tr>
<tr>
<td>4</td>
<td>345</td>
<td>7840</td>
<td>254541</td>
<td>10179345</td>
<td>448105536</td>
</tr>
<tr>
<td>5</td>
<td>1653</td>
<td>77608</td>
<td>5843355</td>
<td>580044025</td>
<td>65420338896</td>
</tr>
<tr>
<td>6</td>
<td>7920</td>
<td>768240</td>
<td>134142624</td>
<td>33052330080</td>
<td>9550921373280</td>
</tr>
</tbody>
</table>

Acknowledgement. I would like to thank the referee for his/her valuable suggestions and comments which help to improve the presentation of this paper. The paper is partly supported by National Natural Science Foundation of China (No. 10971086), Natural Science Foundation of Henan Province (No. 112300410120) and Young Backbone Teachers Funded Project.

References

