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THREE DIMENSIONAL KINEMATIC SURFACES WITH

CONSTANT SCALAR CURVATURE IN LORENTZ–MINKOWSKI

7-SPACE

E. M. SOLOUMA, M. M. WAGEEDA

Abstract. In this paper we analyzed the problem of studying locally the
scalar curvature S of the three dimensional kinematic surfaces obtained by
the homothetic motion of a helix in Lorentz–Minkowski space E7

1
. We express

the scalar curvature S of the corresponding kinematic surfaces as the quotient
of hyperbolic functions {coshmφ, sinhmφ}, and we derive the necessary and
sufficient conditions for the coefficients to vanishes identically. Finally, an
example is given to show three dimensional kinematic surfaces with zero scalar
curvature.

1. Introduction

Homothetic motion are general form of Euclidean motion. It is crucial that
homothetic motions are regular motions. These motions have been studied in kine-
matic and differential geometry in recent years. An equiform transformation in the
n-dimensional Euclidean space Rn is an affine transformation whose linear part is
composed from an orthogonal transformation and a homothetical transformation.
See [5, 11, 12, 13, 14, 15, 16]. Such an equiform transformation maps points x ∈ Rn

according to

x 7−→ sAx+ d, A ∈ SO(n), s ∈ R+, d ∈ Rn. (1.1)

The number s is called the scaling factor. A homothetic motion is defined if the
parameters of (1.1), including s, are given as functions of a time parameter t. Then
a smooth one-parameter equiform motion moves a point x viaX(t) = s(t)A(t)x(t)+
d(t). The kinematic corresponding to this transformation group is called similarity
kinematics, see [1, 3]. Recently, the similarity kinematics geometry has been used
in computer vision and reverse engineering of geometric models such as the problem
of reconstruction of a computer model from an existing object which is known (a
large number of) data points on the surface of the technical object [9, 10].

In Lorentz-Minkowski (semi-Euclidean) space E3 with scalar product < x, y >=
−x1y1+x2y2+x3y3 the pseudosphere or Lorentz sphere and the pseudohyperbolic

2010 Mathematics Subject Classification. 53A05, 53A17, 53B30.
Key words and phrases. Minkowski space; kinematic surfaces; homothetic motion, scalar

curvature.
c©2016 Universiteti i Prishtinës, Prishtinë, Kosovë.
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surface play the same role as sphere in Euclidean space. Lorentz sphere of radius
r > 0 in E3

1 is the quadric

S2(r) = {p ∈ E3 :< p, p >= r2}.

This surface is timelike and is the hyperboloid of one sheet −x2
1 + x2

2 + x2
3 = r2

which is obtained by rotating the hyperbola −x2
1 + x2

3 = r2 in the plane x2 = 0
with respect to the x1-axis. The pseudohyperbolic surface is the quadratic

H2
0 (r) = {p ∈ E3 :< p, p >= −r2}.

This surface is spacelike and is the hyperboloid of two sheet −x2
1 + x2

2 + x2
3 = −r2

which is obtained by rotating the hyperbola x2
1 − x2

3 = r2 in the plane x2 = 0 with
respect to the x1-axis [8].

In this work we study the scalar curvature S of three dimensional kinematic
surfaces foliated by a homothetic motion of a Lorentzian circular helix h0. Under a
one-parameter homothetic motion of moving space Σ0 with respect to fixed space Σ.
Suppose that h0 ∈ Σ0 which is moved according a homothetic motion. The point
paths of the helix generate three dimensional kinematic surfaces, containing the
positions of the starting helix h0. At any moment, the infinitesimal transformations
of the motion will map the points of the helix h0 into the velocity vectors whose end
points will form an affine image of h0 that will be, in general, a helix in the moving
space Σ. Both curves are space curve and therefore, they span a subspace W of
En
1 , with dim(W ) ≤ 7. This is the reason because we restrict our considerations to

dimension n = 7.
If x(φ) and X(t, φ) denote the parameterization of h0 and the resultant three

dimensional kinematic surfaces foliated by the homothetic motions, respectively,
we can consider a certain position of the moving space given by t = 0, and obtain
information about the motions, at least during a certain period around t = 0, if its
characteristics for one instant is given. The purpose of this paper is to describe the
scalar curvature S of three dimensional kinematic surfaces obtained by the motion
of a Lorentzian circular helix and whose scalar curvature S is constant.

2. Scalar curvature of three dimensional kinematic surfaces

Let h0 be a Lorentzian circular helix h0 on a circular cylinder with unit radius
centered at the origin of the 3-space [x1x2x3] of the moving space Σ0 and represented
by

x(φ) =
(

coshφ, sinhφ, λφ, 0, 0, 0, 0
)T

, t, φ ∈ R.

Under a one-parameter homothetic motion of h0 in the moving space Σ0 with
respect to fixed space Σ. The position of a point x(φ) ∈ Σ0 at time t may be
represented in the fixed system as

X(t, φ) = s(t)A(t)x(φ) + d(t), t ∈ I ⊂ R, φ ∈ R, (2.1)

where d(t) =
(

b1(t), b2(t), b3(t), b4(t), b5(t), b6(t), b7(t)
)T

describes the position of

the origin of Σ0 at the time t, A(t) = (aij(t)), 1 ≤ i, j ≤ 7 a semi orthogonal
matrix and s(t) provides the scaling factor of the moving system. For varying t and
fixed x(φ), X(t, φ) gives a parametric representation of the path (or trajectory) of
x(φ). Moreover, we assume that all involved functions are of class C1. Using the
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Taylor’s expansion up to the first order, the representation of the three dimensional
kinematic surfaces is

X(t, φ) =
{

s(0)A(0) + [ṡ(0)A(0) + s(0)Ȧ(0)]t
}

x(φ) + d(0) + tḋ(0),

where ”· =
d

dt
” . As a homothetic motion has an invariant point, we can assume

without loss of generality that the moving frame Σ0 and the fixed frame Σ coincide
at the zero position t = 0. Then we have

A(0) = I, s(0) = 1 and d(0) = 0.

Thus

X(t, φ) =
[

I + (s′I +Ω)t
]

x(φ) + td′,

where Ω = Ȧ(0) = (ωk), 1 ≤ k ≤ 21 is a semi skew-symmetric matrix. In this paper
all values of s, bi and their derivatives are computed at t = 0 and for simplicity,
we write s′ and b′i instead of ṡ(0) and ḃi(0) respectively. In these frames, the
representation of X(t, φ) is given by




















X1

X2

X3

X4

X5

X6

X7





















(t, φ) =





















1 + s′t tω1 tω2 tω3 tω4 tω5 tω6

tω1 1 + s′t tω7 tω8 tω9 tω10 tω11

tω2 −tω7 1 + s′t tω12 tω13 tω14 tω15

tω3 −tω8 −tω12 1 + s′t tω16 tω17 tω18

tω4 −tω9 −tω13 −tω16 1 + s′t tω19 tω20

tω5 −tω10 −tω14 −tω17 −tω19 1 + s′t tω21

tω6 −tω11 −tω15 −tω18 −tω20 −tω21 1 + s′t





















·





















coshφ
sinhφ
λφ

0
0
0
0





















+ t





















b′1
b′2
b′3
b′4
b′5
b′6
b′7





















,

or in the equivalent form




















X1

X2

X3

X4

X5

X6

X7





















(t, φ) =t





















b′1
b′2
b′3
b′4
b′5
b′6
b′7





















+





















1 + s′t

tω1

tω2

tω3

tω4

tω5

tω6





















coshφ+





















tω1

1 + s′t

−tω7

−tω8

−tω9

−tω10

−tω11





















sinhφ

+





















tω2

tω7

1 + s′t

−tω12

−tω13

−tω14

−tω15





















λφ.

(2.2)
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We now compute the scalar curvature of three dimensional kinematic surfaces
X(t, φ). The proof of our results involves explicit computations of the scalar curva-
ture S of the surface X(t, φ). As we shall see, equation S = constant reduces to an
expression that can be written as a linear combination of the hyperbolic functions
{φi, cosh (nφ), sinh (nφ)}, i, n ∈ N, namely,

6
∑

n=0

6
∑

m=0

(

Em,nφ
m cosh (nφ) + Fm,nφ

n sinh (mφ)
)

= 0,

and Em,n and Fm,n are functions on the variable t. In particular, the coefficients
must vanish. The work then is to compute explicitly these coefficients Em,n and
Fm,n by successive manipulations. The authors were able to obtain the results using
the symbolic program Mathematica to check their work. The computer was used in
each calculation several times, giving understandable expressions of the coefficients
Em,n and Fm,n. See [7] for an example in a similar context. The tangent vectors
to the parametric curves of X(t, φ) are

Xt(t, φ) = (s′I +Ω)x(φ) + d′, Xφ(t, φ) = [I + (s′I +Ω)t]x′(φ).

A straightforward computation leads to the coefficients of the first fundamental
form defined by

g11 = XtX
T
t , g12 = XφX

T
t , g22 = XφX

T
φ .

The scalar product in the above equation in Lorentzian metric. According to the in-
ner product this equation tends to g11 = Xt εX

T
t , g12 = Xφ εX

T
t , g22 = Xφ εX

T
φ

where

ε =





















−1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





















,

is the sign matrix. Then we get

g11 = α0 + α1φ+ α2φ
2 + α3 cosh(φ) + α4 sinh(φ) + α5 cosh(2φ),

g12 = λb′3 + ω1 + s′λ2φ+
(

b′2 + λω2 + λω7φ
)

cosh(φ) −
(

b′1 + λω7 + λω2φ
)

sinh(φ)

+
1

2
t
[

α1 + 2α2φ+ α4 cosh(φ) + α3 sinh(φ) + 2α5 sinh(2φ)
]

,

g22 =
(

1 + λ2
)(

1 + 2s′t
)

+ t2
[

α6 + α5 cosh(2φ)
]

.

(2.3)
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where






























































































































α0 =
7
∑

i=2

b′
2

i −
1

2

11
∑

i=7

ω2
i +

1

2

6
∑

i=2

ω2
i −

(

s′
2
+ b′

2

1

)

+ ω2
1 ,

α1 = 2λ

[

s′b′3 − b′1ω2 + b′2ω7 −

7
∑

i=4

b′iωi+8

]

,

α2 = λ2

[

s′
2
− ω2

2 + ω2
7 +

15
∑

i=12

ω2
i

]

,

α3 = 2

[

−s′b′1 +

6
∑

i=1

b′i+1ωi

]

,

α4 = 2

[

s′b′2 − b′1ω1 −
7
∑

i=3

b′iωi+4

]

,

α5 =
1

2

11
∑

i=2

ω2
i ,

α6 =
(

1 + λ2
)

s′
2
− ω2

1 −
1

2

6
∑

i=2

ω2
i +

1

2

11
∑

i=7

ω2
i + λ2

(

ω2
7 − ω2

2 +

15
∑

12

ω2
i

)

.

(2.4)
The Christoffel symbols of the second kind are defined by

Γk
ij =

1

2

2
∑

m=1

gkm
(

∂gim

∂xj

+
∂gjm

∂xi

−
∂gij

∂xm

)

,

where xi ∈ {t, φ}, {i, j, k} are indices that take the value 1 or 2 and (gij) is the
inverse matrix of (gij). From here, the scalar curvature of X(t, φ) is defined by

S =

2
∑

i,j,l=1

gij

[

∂Γl
ij

∂xl

−
∂Γl

il

∂xj

+

2
∑

m=1

(

Γl
ijΓ

m
lm − Γm

il Γ
l
jm

)

]

,

See [6]. Although the explicit computation of the scalar curvature S can be ob-
tained, for example, by using the Mathematica programme, its expression is some
cumbersome. However, the key in our proofs lies that one can write S as

S =
H
(

φn1 cosh (m1φ), φ
n1 sinh (m1φ)

)

G
(

φn2 cosh (m2φ), φn2 sinh (m2φ)
)

=

4
∑

i=0

4
∑

j=0

(

Ai,j φi cosh (jφ) +Bi,j φj sinh (iφ)

)

6
∑

i=0

6
∑

j=0

(

Ci,j φi cosh (jφ) +Di,j φj sinh (iφ)

)

.

(2.5)

The assumption of the constancy of the scalar curvature S implies that (2.5) con-
verts into

SG
(

φn2 cosh (m2φ), φ
n2 sinh (m2φ)

)

−H
(

φn1 cosh (m1φ), φ
n1 sinh (m1φ)

)

= 0.
(2.6)
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Equation (2.6) means that if we write it as a linear combination of the functions
{φi, cosh (nφ), sinh (nφ)} namely,

6
∑

n=0

6
∑

m=0

(

Em,n φ
m cosh (nφ) + Fm,n φ

n sinh (mφ)
)

= 0,

the corresponding coefficients must vanish. From here, we will be able to describe
all three dimensional kinematic surfaces with constant scalar curvature obtained by
the homothetic motion of a Lorentzian helix h0. As we will see, it is not necessary
to give the (long) expression of S but only the coefficients of higher order for the
hyperbolic functions.

3. Three dimensional Kinematic surfaces with S = 0

Through out this section we will assume that the three dimensional kinematic
surfaces X(t, φ) has zero scalar curvature (S = 0). From (2.5), we have

H
(

φi cosh jφ, φj sinh iφ
)

=

4
∑

i=0

4
∑

j=0

(

Ai,j φi cosh (jφ) +Bi,j φj sinh (iφ)
)

= 0.

Then the work consists in the explicit computations of the coefficients Ai,j and Bi,j .
Assume that b′1b

′

2 6= 0. We distinguish different cases that fill all possible cases.
The coefficients of A2,4 and B3,2 are

A2,4 = −2λ2 α5ω2ω7,

B3,2 = λ2 α5

(

ω2
2 + ω2

7

)

.

It follows that ω2 = ω7 = 0 or α5 = 0.
1. Case ω2 = ω7 = 0. The coefficient A2,2 is

A2,2 = −4α5

(

α2 + α2λ
2 − s′

2
λ4
)

.

In the case that α2 =
s′

2
λ4

1 + λ2
, from expression α2 in (2.4) we conclude

λ2
[

s′
2
+ (1 + λ2)

15
∑

i=12

ω2
i

]

= 0,

which gives a contradiction.
2. Case α5 = 0. From identities (2.4) we conclude ωi = 0 for 2 ≤ i ≤ 11,
α1 = 2λb′3s

′, α3 = −2b′1s
′ and α4 = 2s′b′2. The coefficient A0,2 is

A0,2 = 2
(

b′21 + b′22

)(

− α6 + s′2(1 + λ2)
)

.

We have two possibilities.

(a) If α6 = s′2
(

1 + λ2
)

, then

A2,0 = 4
(

1 + λ2
)(

α2 − s′2λ2
)2

In the case that α2 = s′2λ2, from expression of α2 in (2.4) we conclude
ωi = 0 for i = 1, 12, 13, 14, 15.
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(b) If b′1 = b′2 = 0. Then

A1,0 = 8s′2
[

b′3λ
(

− α6 + s′2(1 + λ2)
)

−
(

α2 + (α2 − α6)λ
2)ω1

]

,

A2,0 = 4
[

α2(α2 − α6)(1 + λ2) + s′2
(

α2 − α2λ
4 + α6λ

4
)]

.

By combining both expression, we conclude α6 = s′2
(

1 + λ2
)

and α2 =

s′2λ2. This case has been considered above.

As conclusion of the above reasoning, we conclude the following theorem.

Theorem 3.1. Let X(t, φ) be a three dimensional kinematic surfaces foliated by
a homothetic motion of motion of a Lorentzian helix h0 given by (2.2). Then the
scalar curvature S vanishes identically on the surface if the following condition
satisfies

ωk = 0, for 1 ≤ k ≤ 15.

Example. In order to end this section we give an example of a such three di-
mensional kinematic surfaces with scalar curvature S = 0. Consider the following
orthogonal matrix.

A(t) =





















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

sin t sinh t 0 0 cos t sin t cosh t 0 0
0 0 0 − sin t cos t cos t sin2 t 0
0 0 0 0 cos2 t sin t cos t sin t

− sin t sinh t 0 0 0 0 − sin t cosh t cos t





















We assume that the factor s(t) = et and d(t) = (t, 2t, t, 0, 0, 0, 0). Here we have

s′ = 1

ω16 = ω21 = 1

ωk = 0, k = 1, 2, ..., 15, 17, 18, 19, 20

b′1 = 1, b′2 = 2, b′3 = 1, bi = 0 for i = 4, 5, 6, 7

Theorem 3.1 says that S = 0. We display a piece of X(t, φ) in axonometric view-
point Y (t, φ). For this, the unit vectorsE4 = (0, 0, 0, 1, 0, 0, 0),E5 = (0, 0, 0, 0, 1, 0, 0),
E6 = (0, 0, 0, 0, 0, 1, 0) and E7 = (0, 0, 0, 0, 0, 0, 1) are mapped onto the vectors
(1, 1, 0), (1, 0, 1), (0, 1, 1) and (1, 1, 1) respectively [4].




















X1

X2

X3

X4

X5

X6

X7





















(t, φ) =





















1 + t

0
0
0
0
0
0





















coshφ+





















0
1 + t

0
0
0
0
0





















sinhφ+λφ





















0
0

1 + t

0
0
0
0





















+





















t

2t
t

0
0
0
0

,





















(3.1)
and

Y (t, φ) =





t

2t
t



+





1 + t

0
0



 coshφ+





0
1 + t

0



 sinhφ+





0
0

1 + t



λφ.
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Figure 1. A piece of three dimensional kinematic surfaces foli-
ated by a homothetic motion of motion of a Lorentzian helix in
axonometric view.

4. Three dimensional kinematic surfaces with K 6= 0

Assume in this section that the scalar curvature S of the three dimensional
kinematic surfaces X(t, φ) given in (2.2) is a non-zero constant. The identity (2.6)
writes then as

6
∑

n=0

6
∑

m=0

(

Em,nφ
m coshnφ+ Fm,nφ

n sinhmφ
)

= 0. (4.1)

Following the same scheme as in the case S = 0 studied in Section 3, we begin to
compute the coefficients Em,n and Fm,n. Let us put t = 0. The coefficient of E6,6

is

E6,6 =
1

4
Sλ4

(

ω4
2 + 6ω2

2ω
2
7 + ω2

7

)

,

then we have ω2 = ω7 = 0. This implies that

E6,0 = 8Sλ2s′
(

s′
2
λ4 − α2(1 + λ2)

)

.

In the case that α2 =
s′

2
λ4

1 + λ2
, from expression α2 in (2.4) we conclude

λ2
[

s′
2
+ (1 + λ2)

15
∑

i=12

ω2
i

]

= 0,

which gives a contradiction.
As conclusion of the above reasoning, we conclude the following theorem.

Theorem 4.1. There are not three dimensional kinematic surfaces in E7
1 foliated

by a homothetic motion of motion of a Lorentzian helix h0 whose scalar curvature
S is a non-zero constant.
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Corollary 4.2. Let X(t, φ) be three dimensional kinematic surfaces foliated by a
homothetic motion of motion of a Lorentzian helix h0 and given by (2.2). If the
scalar curvature S is constant then S = 0.

Conclusion. As a conclusion of our results, the three dimensional surfaces X(t, φ)
which foliated by a homothetic motion of motion of a Lorentzian and given by (2.2)
have in generally zero constant scalar curvature S = 0 on the surface in the cases
if there is a translation in the space containing the starting helix or not, as we get
the results in Theorems (3.1). Also, if S is constant, then ωi = 0 for 1 ≤ i ≤ 15.
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