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ABSTRACT. In the present paper, we introduce some new subclasses of har-
monic multivalent meromorphic functions defined by generalized Liu-Srivastava
operator. Sufficient coefficient conditions, distortion bounds and extreme
points for functions of these classes are obtained.

1. INTRODUCTION AND PRELIMINARIES

Let f; and f> be two analytic functions in the open unit disk U = {z € C :
|z| < 1}. We say that the function f; is subordinate to f5 in U, and write fi(z) <
f2(z) (z € U), if there exists a Schwarz function w, which is analytic in U with
w(0) =0 and |w(z)| < 1 (2 € U), such that f1(z) = fa2(w(2)) (z € U) [3].

A continuous function f = w + v is a complex valued harmonic function in
a complex domain D if both u and v are real harmonic in D. In any simply
connected domain D C C, we can write f = h 4+ g, where h and ¢ are analytic in
D. we call h the analytic part and g the co-analytic part of f. A necessary and
sufficient condition for f to be locally univalent and sense preserving in D is that
1(2)] > |9/ ()] in D (see [2]).

Denote by Xy (p) the class of p-valent harmonic functions f that are sense pre-
serving in U* = {2 € C:0 < |z| < 1} = U\{0} and f of the form

f=h+7, (1.1)
where

h(z) =27+ Z arpz® and g(z) = Z brz". (1.2)

k=p+1 k=p+1
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Also, we denote by Y7 (p) the class of p-valent harmonic functions f € Xy (p) and
[e.e] (oo}

h(z)=27P— Z lar|z* and g(z) = — Z |br| 2~

k=p+1 k=p+1

Let F be fixed multivalent harmonic function given by

(1.3)

F=H(z)+G(z) =27+ Z Agz" Z Byzh. (1.4)
k=p+1 k=p+1
We define the Hadamard product (or convolution) of F' and f by

(Fxf)(z) =27+ > apdez* + Z b Brzk = (f * F)(2)
k=p+1

z). (1.5)
k=p+1
For positive real values of o; (i = 1

JDand B (j =1, -+ ,m), the generalized
hypergeometric function ; Fy, (with { numerator and m denominator parameters) is
defined by

> (e 71 o (a zk
WFm(ar, - o By s Bm)(2) = Z (a1) -~ (an)k

= (B)k - (B kU
where [ <m+1;1,m € Ny := {0

-~} =NU{0}, and (A),, is the Pochhammer
symbol (or the shifted factorial) defined (in terms of the Gamma function) by

(A)nF(AJrn){l, n =0,

r'(A) AMA+1)--(A+n—1),
Corresponding to the function

hp(ala"' 7al;ﬁ17"'

the linear operator

n € N.

76177,’2:) = Z_plFm(ala"' 7al;61)”' aﬂm)(z)a

Hy(ar, - o381, Bm) : Zu(p) — Zu(p)
is defined by using the following Hadamard product (or convolution)
Hp(on, -+ 003 P10+ B) f(2) = hplan, -+ ou; B, -
For a function f of the form , we have
Hpy(o, - yau; Bry- -, Bm) f(2)

_ a1 (Qu)k (o)
=z P+ 2F 4
kZ B Bl kZ SIEATE

by 2

(1.6)

The above-defined operator Hy; m[o1] (by = 0) was introduced by Liu and Srivas-
tava [7] and it was the development of the Dziok-Srivastava operator (see [4, [5])

Using the same methods of [I0] and [II], we introduce the generalized Liu-
Srivastava operator in Xy (p) as follows:

10&1

/\lmf( )

(1= A Hypm[on]f(2) — gzwp,l,m[al]f(z»'
= I f(5) (A20),
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where

2(Hppmlaa] f(2)) = 2(Hppmlaa]h(2)) — 2(Hpp,mlaalg(2))"-
In general,

Ly f(2) = L W (L f(2)) (1< m+130m € No,7 € N), (L.7)

where

o0 — MY a) e (o) \ T
T AR (( 'p><.;5 <l>k> -

= (- D) (o)
> ( CIEA TR ) o 49
and A > 0,7 € N.

For 1 > 0 and 7 € N, we introduce the following linear operator J* : X5 (p) —
Yu(p), defined by

TFf(2) = TE(2) = [(2) = TF(2) « h(z) + TF(2) x g(2) (2 € U), (1.9)
where J#(z) is the function defined as follows:
1

Lim@* THE) = e (>0 kA#£pzeUY), (1.10)
and
kA T
)(Oél)k"'(oéz)k
Ly (2) =27P + k, 1.11
e Z( EEATEEnT ) -
Since
1 - - - (,u)k k— «
m—zP—FI;WZ P (u>0,2€U"), (1.12)

combining (|1.9 7m, we obtain
' T
JH(z)=2"P+ Z <(1k (B wm)k) ) (u)kzk (> 0,kX\ #p,z € UY).
1)k

k=p+1 ) )(al)k"'(a k!

(1.13)
If f is given by ., then we find from and ( - ) that

TFEf(z) = TPh(z) + TFg(z) = 277 + Z Dhay2” + Z Dbk, (1.14)
k=p+1 k=p+1
where

@Z:<(kﬂm>~«@mk ) Dk (5 0.k £ ). 1.15)

B0 (on)k -+ () k!
Also, from (|1.14) and -, we easily get
2TEN(2)) = pTE0(2) — (p+ @) TEh(2)
and
2TF9(2)) = nTtg(2) — (0 + 1) TFg(2).
By making use of the principle of subordination between analytic functions, we
introduce the class L, (A, B; i, 7, @, 0).
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Dedinition 1.1. A function f € ¥y (p) of the form is said to be in the class
L,(A,B;p,1,0,0) if and only if

14+ Az
1+ Bz’

Xo.u(f) — alxsu(f) — 1] < (1.16)

where
Xou(f) = (1 —=0)2" - TF[f(2) - %Zpﬂ (TEf(R) (1.17)

and JF f(z) is defined by andp e N; ABeR A#B,|B|<1;7eNu>
0, >0,6 >0,kX #p.

For § = 0, we obtain the following new subclass:
A function f € ¥y (p) of the form (|1.1)) is said to be in the class Xy (A, B; u, 7, @)
if and only if

1+4
P TEHE) = el TEE) 1 < e (1.18)
where J# f(z) is defined by (L.14) andp e N; A, Be R, A# B,|B| < 1;7e N, >
0,a > 0,k\ # p.
We also let
ZP(AaB;M7T7a76) = Zﬁ(p) mLP(A’B;M7T7a76)
and

Zﬁ(A7 B; M, T, a) = Eﬁ(p) n EH(Aa B§ oy T,y a)'

Recently, Jahangiri [6], Ahuja and Jahangiri [I] and Murugusundaramoorthy [9]
have introduced and studied some classes of meromorphic harmonic functions. In
this paper, we aim to introduce some new subclasses of harmonic multivalent mero-
morphic functions defined by generalized Liu-Srivastava operator and obtain some
results including sufficient coefficient conditions, distortion bounds and extreme
points for functions of these classes.

2. MAIN RESULTS

Lemma 2.1. (see [§]) Let o > 0,A,B € R,A # B and |B| < 1. If w(z) is an
analytic function with w(0) = 1, then we have

1+ A . . 1+ A
w—alw—1] < 11—73;' = w(l — e ) + ae” < T 1 Bz (peR). (2.1)
Proof. Suppose w—1 = [w—1[e’?, ¢ € R, so we have |w—1| = (w—1)e~*. Therefore,
1+ A < , 1+A
w—alw—1] < 1::__32 = w(l —ae ) +ae” < 1::__32 (¢ €R).
Using Lemma [2.1 and (1.18)), we get that f € Xy (p; A, B; u, 7, ) if and only if
— i 1+ Az
Xou( )1 — ae™™) + ae™ " < T E (2.2)
where x5, (f) is given by (1.17). O

Theorem 2.2. Let f = h+g be such that h and g are given by . Also, suppose
thatp e NJA,B € R and kA #p, A # B,|B| < 1. If
> (LB + a) (& |ax] + ni|lbx]) < |A = B, (2.3)
k=p+1
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where

ok ok
f=(-0- el nf = (-a+ e (2.4)

and @Y is given by , then f € L,(A, B;u, T, v, 9).

Proof. We first show that if the inequality (2.3)) holds for the coefficients of f = h-+g,
then the required condition (2.2)) is satisfied. In view of (2.2, we need to prove
that p(z) < 142 where

1+Bz?
p(2) = x50 (f)(1 — ae™*?) + ae™*. (2.5)
Using the fact that p(z) < }frgz < |1 —p(2)| < |Bp(z) — A, it suffices to show
that
[1—p(2)] — |Bp(z) — A < 0. (2.6)
Therefore, we get
B — B(1 — ae™) Z [€h a2 tP 4 iy 2P 2F] — A
k=p+1
<[(T+a) > lerllanllzl™7 + g lbell= 7] -
k=p+1
(A= Bl =[BI(1+a) > (&K larllz[*7 + [ [lbx][2]**7]
k=p+1

= > (1+ BN+ a) (I ar|[2[*P + [n[[bx][2]* 7] — |A - B]
k=p+1

< D0 (HIBDO+ a)ligllax] + [ [be]] — |4 - B
k=p+1
<0.

By hypothesis the last expression is non-positive. Thus the proof is completed.
The coefficient bound ([2.3)) is sharp for the function

- £ it e )
=2P 4 _ —sz + Ykzk 2.7
Z A+ B0+ o) e ] 27)

where $° (X + Vi) =
k=p+1
O

Corollary 2.3. Let f = h+ g be such that h and g are given by (-) & and ),
are given by (2.4 ' Also, suppose that p € N and A, B € R. Then,
(i) for -1 < B<A<1,B<0,if

o0

> (1= B)(A+a) (& lak| + Infllbx]) < A - B,
k=p+1

then f € L,(A, B, T, 9).
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(ii) for -1 < A< B<1,B>0, if
D (14 B)(1+ ) (& lak| + ng|lb]) < B — A,
k=p+1
then f € L,(A, B;p, 7,0, 9).
Corollary 2.4. Let f = h 4+ g be such that h and g are given by . Also,
suppose that p e NJA,B € R kA #p,A# B and |B| < 1. If
> W+ IBN(L+ )| (Jax| + [br]) < 1A - B,
k=p+1
where ®Y is given by , then f € Xy (A, By u, 7, ).
Theorem 2.5. Let f = h+ g be such that h and g are given by , & and n)!
are given by . Also, suppose that p e NJA B e R, A+# B,|B| <1,kA <p and
0 <4< 52=. Then,

1
(i) for -1 <B<A<1, B<O, f € L,(A B;u,t,a,8) if and only if
> (L=B)(1+ o) lax| +nf[bel) < A B. (2.8)
k=p+1
(ii) for -1 < A< B <1, B>0, f € L,(A, B; i, 7,0, 8) if and only if
> (L4 B)(L+a) (& lan] +nfilowl) < B — A, (2.9)
k=p+1

Proof. Since Ly(A, B;p,7,0,0) C Ly(A, B;p,7,a,6). According to Corollary
we only need to prove the "only if” part of the theorem.
(i) Let f € L,(A, By, 7,,0),—1 < B < A<1,B<0. Then

L

where p(z) is defined by (2.5)). Clearly, (2.10) is equivalent to

(1—ae™®) 3 (Eflagl* P + nfb|-2F)
e — <1 (2.11)
B—B(1—ae™®) Y (&]a]zFTP + nli|bg|zPzF) — A
k=p+1
From (2.11]), we have
(1—ae™®) 3> (&flagl* P + nfbl=2F)
R e A V<l (212
A—B+ B(l—ae ™) > (& |ak|zF+P 4 n)|bk|2P2F)
k=p+1
Taking z =7 (0 <r < 1) and ¢ = , then gives
> (1= B)(1+a) (& lax] + b )r*? < A - B. (2.13)
k=p+1

Letting r — 17 in (2.13]), we will get (2.8)).
(ii) Similar to the proof of (2.8)), we can prove (2.9). O
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Corollary 2.6. Let f = h+g be such that h and g are given by , Pl is given
by . Also, suppose thatp € NJA,B € R; A # B,|B| <1 and kA < p. Then,
(i) for -1 < B<A<1,B<0, fe€Xz5(A, B;u,rT,a) if and only if
> (1= B)(1+a)®y (x| +[bx]) < A - B.
k=p+1
(it) for -1 <A< B<1,B>0, f € 55(A, B;u, 7, ) if and only if
Y 1+ B)(1+ )@ (jax| + [bx]) < B~ A,
k=p+1

Theorem 2.7. Let f = h+ g be such that h and g are given by , & and n)!
are given by . Also, suppose that kA <p,pu>1 and 0 < < 5L—=. Then,

T 2p+1-°
(i) for =1 <B<A<1, B<O,if fe L,(A B;u,T,a,0), then
A—-B A—-B
T—p _ rp-‘rl S f z S T_p + ’I"p+1 214)
-Bi+ae, =M -ni+ae, |
(ii) for =1 < A< B <1, B> 0, if f € L,(A, B; i, 7,0, 6), then
B-A B—-A
P _ P+l < <prP P+ (2,15
LT AR, =G =r OB, (2.15)

Proof. Since f € L,(A, B;u,7,,8), then by using Theorem we have

oo oo

(1=B)1+a)&y > (lal+lbel) < Y (1=B)(1+a)(Ef lar| +;lbr]) < A-B,
k=p+1 k=p+1
(2.16)
which implies that
(i) if -1 < B< A <1and B <0, then from (2.16),we have
- A-B

ag| + [bx]) < . 2.17
3 (a4 D < e (217)

On the other word,

@I <P+ Y (axl + [bi)r

k=p+1

o0
< PPN (la] + i)

k=p+1
A-B
<r P4 pptl
(1-B)A+ )&y,
and
T O [ k- —

1-B) I+,

Hence ([2.14]) follows. The case for (ii) —1 < A < B <1 and B > 0 can be proved
in the same manner and hence we omit it. O
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Corollary 2.8. Let f = h+g be such that h and g are given by , Pl is given
by . Also, suppose that kA < p,|z| =r <1 and p > 1. Then,
(i) for =1 < B<A<1, B<O,if feXz(A B;u,T, ), then

- A-B A-B

_ pPH1 < |f(z)| <rP4 . rPtL
(1-B)(1+a)dr,, (1-B)(1+a)dr,,
(it) for =1 < A< B <1, B>0, if f € ¥5(A, B;u, 7, at), then
B-—A B-—A
r P _— P+l < |f(z)| R p+1
(1+B)A+ )Py, (1+B)A+ )P,

Theorem 2.9. Let f = h +§ be such that h and g are given by , & and n),
are given by . Also, suppose that p e NJA,B € R, A+# B,|B| <1,kA <p and
0<d< ﬁ. Then f € clcoL,(A, B; u,7,,8) if and only if

F2) =Y Xphe+ > Vilhy+gi), 2z €U, (2.18)
k=p k=p+1
where

)
hy, =277,

B—A

— A—B k

hk:{z P - Thirmes kZp+1,-1<B<A<1,B<O,
— k
ZP—WZ, k2p+1,—1SA<BS1,B>O,

B—A

,m&%iw?, k>p+1,-1<B<A<1,B<0,

= ki

" ~arparar sy k2p+1l-1<A<B<1,B>0,
"

and
oo

X, =1- Z (Xk+Yk) (Xk >0,Y: ZO)
k=p+1

In particular, the extreme points of L,(A, B;u, 7, a,6) are hy, and g.
Proof. Let -1 < B< A<1,B<0and kX <p, we get

oo

A-B 1 1 —
=P - RS pp— k I k . 2.1
0= 3 s (g Lt e
=p+1
Since, 0 < X <1 (k=p+1,---), we obtain
—~ (1-B)(1+a)¢  A-B (1—-B)(1 + )’ A-B
Z NXk+ ;LYk
k=p+1 A-B (1= B)(1+a)g; A-B (1=B)(1+a)n
= Z (Xk+yk)
k=p+1
=1-X,
<1

Consequently, using Theorem we have f € L,(A, B;u,7,a,9).



28 SHUHAI LI, HUO TANG, LINA MA, AO EN

Conversely, if f € L,(A, B;u,7,«,§), then
A-B A-B

< , . 2.20
=B eg S T B (220
Putting
(1 - B)(1 + &)&jla, | (1= B)(1+ a)nj|b,|
X, = Y, = 2.21
i A-B ’ A-B (221)
and
X, =1- > (Xp+Y)
k=p+1
we obtain
2)=2"= Y axlsF = D |bfz"
k=p+1 k=p+1
- - A-B - A-B
=X+ > (Xp+Y)zP— > X2 - Y SV, Z
2 e Bt e =B+
= Xpz P+ Z by (2) Xy + Z (27" + g (2)) Y
k=p+1 k=p+1
=Xphp+ > hXp+ Y (hp+a)Ya
k=p+1 k=p+1
_thXk+ Z (hp + g1)Ys
k=p+1
Thus f can be expressed in the form (2.18]). The case for -1 < A< B <1,B>0
can be proved in the same manner and hence we omit it. O

Corollary 2.10. Let f = h+g be such that h and g are given by (1.9), P} is given
by (1.15). Also, suppose that p € NJA/B € R;A # B,|B| <1 andk)\<p Then
fe clcoEﬁ(A, B;u, 7,a) if and only if

ZthkJr Z Yi(h +gk ), z € U*,

k=p+1
where
hp =277,
, pr_(ljgfg‘(wzk k>p+1,-1<B<A<1,B<0,
k= pr_mzk k>p+1,-1<A<B<1,B>0,
u&fiwzk k>p+1,-1<B<A<1,B<0,
Ik = — e k2p+ 1L -1<A<B<1,B>0,
and

oo

Xp=1- > (Xip+Yp).
k=p+1
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In particular, the extreme points of X4 (A, B, 7, ) are hy, and gy.

Theorem 2.11. The class L,(A, By u, 7,0,8)(0 < 4§ < 777 is closed under convex
combinations.

Proof. For j = 1,2, let the functions f; given by

fi() =27 = > lajlz = > bl (2.22)
k=p+1 k=p+1

be in the class L,(A, B; 1, T, &, 6).

o0
For A\;, > A; =1, the convex combinations can be expressed in the form

j=1
Z)\j'fj = 2P — Z Z)\j|ajk| Zk - Z Z)\j|bjk| Ek (223)
J=1 k=p+1 \j=1 k=p+1 \j=1
(i) For kA <p,—-1< B < A<1, B<O, from (2.8), (2.22) and (2.23)), we get
D (=B +a) Q] A (€ lage] + nflbsil)
k=p+1 j=1
=Y N0 D (1= B)(1+ @) (& ajk| + i [bje])]
=1 k=p+1
S A4 B)
j=1
=A-B.

That is, > A\jf; € Lp(A, B;p,7,,6). The case for (i) kA < p, -1 < A< B <
i=1
1, B > 0 can be proved in the same manner and hence we omit it. (]

Corollary 2.12. The class X7 (A, B; p, T, c) is closed under convex combinations.
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