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ON WEAK SYMMETRIES OF δ- LORENTZIAN β- KENMOTSU

MANIFOLD

(COMMUNICATED BY UDAY CHAND DE)

VILAS KHAIRNAR

Abstract. The purpose of this paper is to study weakly symmetric and
weakly Ricci symmetric δ- Lorentzian β- Kenmotsu Manifolds. We prove

that the sum of the associated 1- forms of weakly symmetric δ- Lorentzian
β- Kenmotsu Manifold and weakly Ricci symmetric δ- Lorentzian β- Ken-

motsu Manifold is nonzero everywhere provided that nonvanishing ξ-sectional

curvature. The existence of δ- Lorentzian β- Kenmotsu Manifold is ensured
by an example.

1. Introduction

In the year 1987, Chaki [4] establish the proper generalization of pseudosymmet-
ric manifolds. Furthermore, in 1989, Tamassy and Binh [11] introduced the notion
of weakly symmetric manifolds. A non-flat Riemannian manifold (Mn, g)(n > 2)
is called weakly symmetric if its curvature tensor R̄ of the type (0, 4) satisfies the
condition

∇XR̄(Y,Z, U, V ) = A(X)R̄(Y, Z, U, V ) +B(Y )R̄(X,Z,U, V ) + C(Z)R̄(Y,X,U, V )

+D(U)R̄(Y, Z,X, V ) + E(V )R̄(Y,Z, U,X) (1.1)

for all vector fields X,Y, Z, U, V ∈ X(Mn), A, B, , C, , D and E are 1-forms ( not
simultaneously zero) and ∇ denotes the operator of covariant differentiation with
respect to the Riemannian metric g. The 1-Forms are called the associated 1-forms
of the manifold and n- dimensional manifold of this kind is denoted by (WS)n. If
in (1.1) 1-form A is replaced by 2A and E is replaced by A, then a (WS)n reduces
to the notion of generalized pseudosymmetric manifold by Chaki [5]. Furthermore,
in 1999, De and Bandyopadhyay [7] studied a (WS)n and provided that in such
manifold the associated 1- form B = C and D = E and hence the equation (1.1)
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reduces as follows

∇XR̄(Y,Z, U, V ) = A(X)R̄(Y,Z, U, V ) +B(Y )R̄(X,Z,U, V ) +B(Z)R̄(Y,X,U, V )

+D(U)R̄(Y, Z,X, V ) +D(V )R̄(Y,Z, U,X) (1.2)

Thereafter, in the year 1993, Tamassy and Binh [12] introduced the notion of weakly
Ricci symmetric manifolds. A Riemannian manifold (Mn, g)(n > 2) is called weakly
symmetric if its curvature tensor R̄ of the type (0, 2) is not identically zero satisfies
the condition

∇XS(Y,Z) = A(X)S(Y, Z) +B(Y )S(X,Z) + C(Z)S(Y,X) (1.3)

where A, B, , C, are three nonzero 1- forms called the associated 1- forms of the
manifold and ∇ denotes the operator of covariant differentiation with respect to
the metric g and this type of n- dimensional manifold is denoted by (WRS)n.
As an equivalent notion of (WRS)n, Chaki and Koley [6] introduce the notion of
generalized pseudo Ricci symmetric manifold. If in the equation (1.3) the 1-form A
is replaced by 2A, then a (WRS)n reduces to the notion of generalized pseudo Ricci
symmetric manifold by Chaki and Koley. Now, if A = B = C = 0 then (WRS)n
reduces to Ricci symmetric manifold and if B = C = 0 then it reduces to Recci
recurrent manifold.

At the same time, in the year 1969, Takahashi [13] has introduced the Sasakian
manifolds with Pseudo-Riemannian metric and prove that one can study the Lorentzian
Sasakian structure with an indefinite metric. Furthermore, in 1990, K. L. Duggal [8]
has initiated the space time manifolds with contact structure and analyzed the pa-
per of Takahashi. T. [13]. In 2009, S. Y. Perktas, E. Kilie, M. M. Tripathi [15] have
studied the various properties of Lorentzian β-Kenmotsu manifolds and S.S. Pujar
[10] have introduced the notion of δ Lorentzian β-Kenmotsu manifolds and studied
basic results in δ Lorentzian β-Kenmotsu manifolds and its properties. Inspired
by these papers and some other papers (see the exhaustive list [1, 9, 11, 14]) we
have studied on weak symmetres of δ Lorentzian β-Kenmotsu manifolds. In section
2, we consider the (2n + 1) dimensional differentiale manifold M with Lorentzian
almost contact metric structure with indefinite metric g. This section deals with
preliminaries of δ Lorentzian β-Kenmotsu manifolds. In section 3 of the paper it is
proved that the sum of the associated 1-forms of a weakly symmetric δ Lorentzian
β-Kenmotsu manifolds of non-vanishing ξ-sectional curvature is nonzero everywhere
and hence such a structure exists. In section 4 we study weakly Ricci symmetric
δ -Lorentzian β-Kenmotsu manifolds and prove that in such astructure, with non-
vanishing ξ-sectional curvature, the sum of the associated 1-forms is non-vanishing
everywhere and consequently such a structure exists. Finally section 5 deals with
a concrete example of δ Lorentzian β-Kenmotsu manifolds.

2. δ-Lorentzian β-Kenmotsu manifold

In this section we study δ-Lorentzian - β-Kenmotsu manifold. For the manifold
almost-Lorentzian contact, we have

φ2X = X + η(X)ξ, η(ξ) = −1, η(X) = g(X, ξ)

where φ is a tensor field of type (1, 1) and ξ is a characteristic vector field and η is the
1-form. Therefore, from these conditions one can reduce that φ(ξ) = 0, η(φ(X)) =
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0 for any vector field X on M . It is well known that the Lorentzian contact metric
structure [2] or Lorentzian Kenmotsu structure [11] satisfies

(∇Xφ)Y = g(φ(X), Y ) + η(Y )φ(X)

for any C∞ vector field X and Y on M . More generally, one has the notion of
Lorentzian - β-Kenmotsu structure [9] which may be defined by the requirement

(∇Xφ)Y = β[g(φ(X), Y ) + η(Y )φ(X)] (2.1)

for any C∞ vector field X and Y on M and β is a nonzero constant on M . Using
the equation (2.1), one can reduce the Lorentzian - β-Kenmotsu manifold.

(∇Xξ) = β[X + η(X)ξ] and, (∇Xη)Y = β[g(X,Y ) + η(X)η(Y )].

At this stage, S.S Pujar [10] introducing the notion of δ- Lorentzian β-Kenmotsu
manifold in the following definition.

Definition 2.1. A differentiable manifold M of dimension (2n + 1) is called a δ-
Lorentzian manifold, if it admits as a one-one tensor field φ a contravariant vector
field ξ, a covariant vector field η and an indefinite metric g which satisfy

(i) φ2X = X + η(X)ξ, η(ξ) = −1, η(φ(X)) = 0

(ii) g(ξ, ξ) = −δ, η(X) = δg(X, ξ)

(iii) g(φX, φY ) = g(x, Y ) + δη(X)η(Y )

where δ is such that δ2 = 1 and for any vector field X, Y on M .The structure
defined above is called a δ- Lorentzian almost contact metric structure. Manifold
M together with the structure (φ, ξ, η, g, δ) is also called a δ Lorentzian kenmotsu
manifold if

(∇φ)(Y ) = g(φ(X), Y )ξ + δη(Y )φ(X)

more generally, S. S. Pujar introduce the definition.

Definition 2.2. A δ- Lorentzian almost contact metric manifold M (φ, ξ, η, g, δ) is
called a Lorentzian β-kenmotsu manifold if

(∇φ)(Y ) = β{g(φ(X), Y )ξ + δη(Y )φ(X)} (2.2)

where ∇ is the Levi-Civita connection with respect to g. β is a smooth function
on M and X,Y are vector fields on M and δ is such that δ2 = 1 or δ = ±1. If
δ = 1, then δ- Lorentzian β- kenmotsu manifold is usual Lorentzian β- kenmotsu
manifold and is called the time like manifold. In this case ξ is called a time like
vector field. From (2.2) it follows that

∇Xξ = δβ{X + η(X)ξ} (2.3)

(∇Xη)Y = β{g(X,Y ) + δη(X)η(Y )} (2.4)

R(X,Y )ξ = β2{η(Y )X − η(X)Y }+ δ{(Xβ)φ2Y − (Y β)φ2X} (2.5)

R(ξ, Y )ξ = {β2 + δ(ξβ)}φ2Y,R(ξ, ξ)ξ = 0 (2.6)
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R(ξ, Y )X = β2[δg(X,Y )ξ − η(X)Y ] + δ[(Xβ)φ2Y − g(φX, φY )(gradβ)] (2.7)

S(Y, ξ) = 2nβ2η(Y )− (2n− 1)δ(Y β) + δη(Y )(ξβ) (2.8)

S(ξ, ξ) = −2n[β2 + δ(ξβ)] (2.9)

QY = 2nβ2Y,where β is constant. (2.10)

where R is the curvature tensor of type (1, 3) of the manifold and Q is the symmetric
endomorphism of the tangent space at each point of the manifold corresponding to
the Ricci tensor S, that g(QX,Y ) = S(X,Y ) for any vector fieldsX, Y on M. The ξ-
sectional curvature K(ξ,X) = g(R(ξ,X)ξ,X) for a unit vector filed X orthogonal
to ξ plays an important role in the study of an almost contact metric manifold.
In our paper we consider a δ-Lorentzian β-Kenmotsu manifold of non-vanishing ξ-
sectional curvature.

In the next section, we prove the sum of the associated 1- forms Weakly Sym-
metric δ-Lorentzian β-Kenmotsu manifold of non-vanishing ξ- sectional curvature
is nonzero everywhere.

3. Weakly Symmetric δ-Lorentzian β-Kenmotsu
manifolds

Definition 3.1. A δ-Lorentzian β-Kenmotsu manifold M2n+1, g) (n > 1) is said to
be weakly symmetric if its Riemannian curvature tensor R̄ of a type (0, 4) satisfies
(1.2). Let ei : i = 1, 2, ..., (2n+ 1) be an orthonormal basis of the tangent space
Tp(M) at any point P of the manifold. After, setting Y = V = ei in equation (1.2)
and taking summation over i, 1 ≤ i ≤ 2n+ 1, we get

(∇XS)(Z,U) = A(X)S(Z,U) +B(Z)S(X,U) +D(U)S(X,Z)

+B(R(X,Z)U) +D(R(X,U)Z) (3.1)

Now, putting X = Z = U = ξ, in equation (3.1) and using (2.5) and (2.9), we get

A(ξ) +B(ξ) +D(ξ) =
2β(ξβ) + δξ(ξβ)

β2 + δ(ξβ)
(3.2)

provided that β2+δ(ξβ) 6= 0. The ξ- sectional curvature K(ξ,X) of a δ- Lorentzian
β- Kenmotsu manifold for a unit vector field X orthogonal to ξ is given byK(ξ,X) =
g(R(ξ,X)ξ,X).Hence equation (2.6) yields K(ξ,X) = β2+δ(ξβ). If β2+δ(ξβ) = 0,
then the manifold is of vanishing ξ- sectional curvature. Hence we can state the
following.

Theorem 3.2. In a weakly symmetric δ- Lorentzian β- kenmotsu manifold (M (2n+1), g)
(n > 1) of non-vanishing ξ- sectional curvature, relation (3.2) holds.

Next, substituting X and Z by ξ in equation (3.1) and then using (2.9) we obtain

(∇ξS)(ξ, U) = [A(ξ)+B(ξ)]S(ξ, U)+[β2+δ(ξβ)][(−2n+1)D(U)+η(U)D(ξ)] (3.3)
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Again, we have

(∇ξS)(ξ, U) = ∇ξS(ξ, U)− S(∇ξξ, U)− S(ξ,∇ξU)

= ∇ξS(ξ, U)− S(ξ,∇ξU) (using equation (2.8))

= [4n(β(ξβ))]η(U)− (2n− 1)δU(ξβ) + δη(U)ξ(ξβ) (3.4)

From equations (3.2), (3.3) and (3.4), we get

D(U) =
[4nβ(ξβ) + δξ(ξβ)]η(U)

(−2n+ 1)(β2 + δ(ξβ))

− (2n− 1)δU(ξβ)

(−2n+ 1)((β2 + δ(ξβ))

+D(ξ)

[
(2n− 1)[β2η(U)− δ(Uβ)]

(−2n+ 1)(β2 + δ(ξβ))

]
−
[

2β(ξβ) + δξ(ξβ)

(−2n+ 1)(β2 + δ(ξβ))2

]
[2nβ2η(U)− (2n− 1)δ(Uβ) + δη(U)(ξβ)]

(3.5)

for any vector field U , provided that β2 + δ(ξβ) 6= 0. Next, setting X = U = ξ in
equation (3.1) and proceeding in a similar manner as above we get

B(Z) =
[4nβ(ξβ) + δξ(ξβ)]η(Z)

(−2n+ 1)(β2 + δ(ξβ))

− (2n− 1)δZ(ξβ)

(−2n+ 1)((β2 + δ(ξβ))

+D(ξ)

[
(2n− 1)[β2η(Z)− δ(Zβ)]

(−2n+ 1)(β2 + δ(ξβ))

]
−
[

2β(ξβ) + δξ(ξβ)

(−2n+ 1)(β2 + δ(ξβ))2

]
[2nβ2η(Z)− (2n− 1)δ(Zβ) + δη(Z)(ξβ)]

(3.6)

for any vector field Z, provided that β2 + δ(ξβ) 6= 0. This leads to the following:

Theorem 3.3. In a weakly symmetric δ- Lorentzian β- kenmotsu manifold (M (2n+1), g)
(n > 1) of non-vanishing ξ- sectional curvature, the associated 1-forms D and B
are given by relation (3.5) and (3.6), respectively.

Again, setting Z = U = ξ in equation (3.1) we get

(∇XS)(ξ, ξ) = A(X)S(ξ, ξ) + [B(ξ) +D(ξ)]S(X, ξ)

+B(R(X, ξ)ξ) +D(R(X, ξ)ξ)

= −2n(β2 + δ(ξβ))A(X) + [B(ξ) +D(ξ)]S(X, ξ)

− (β2 + δ(ξβ))[η(X)B(ξ) +D(ξ) +B(X) +D(X)] (3.7)

Now we have

(∇XS)(ξ, ξ) = ∇XS(ξ, ξ)− 2S(∇Xξ, ξ),
which yields by using equations (2.3) and (2.8),that

(∇XS)(ξ, ξ) = −2β(Xβ)− 2nδX(ξβ). (3.8)
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In view of equations (3.5), (3.6), (3.7) and (3.8) yields

A(X) +B(X) +D(X) =
2nδX(ξβ)

β2 + δ(ξβ)

− [4nβ(ξβ) + δξ(ξβ)]η(X)

2n(β2 + δ(ξβ))

+
(2n− 1)δX(ξβ) + β(Xβ)

2n(β2 + δ(ξβ))

+

[
2β(ξβ) + δξ(ξβ)

2n(β2 + δ(ξβ))2

]
[2nβ2η(X)− (2n− 1)δ(Xβ) + δη(X)(ξβ)]

(3.9)

for any vector field X, provided that β2 + δ(ξβ) 6= 0. This leads to the following:

Theorem 3.4. In a weakly symmetric δ- Lorentzian β- kenmotsu manifold (M (2n+1), g)
(n > 1) of non-vanishing ξ- sectional curvature, the sum of the associated 1-forms
is given by relation (3.9).

In particular, if φ(gradα) = gradβ then (ξβ) = 0 and hence relation (3.9) to the
following form

A(X) +B(X) +D(X) =
β(Xβ)

nβ2
(3.10)

for any vector field X, provided that β2 6= 0.

Corollary 3.5. If a weakly symmetric β 6= 0, δ- Lorentzian β- kenmotsu manifold
(M (2n+1), g) (n > 1) satisfies the condition φ(gradα) = gradβ, then the sum of the
associated 1-forms is given by relation (3.10).

If β = 1 then equation (3.9) yields

A(X) +B(X) +D(X) =
2nδX(ξ)

1 + δ(ξ)

− [4n(ξ) + δξ(ξ)]η(X)

2n(1 + δ(ξ))

+
(2n− 1)δX(ξ) +X

2n(1 + δ(ξ)

+

[
2(ξ) + δξ(ξ)

2n(1 + δ(ξ))2

]
[2nη(X)− (2n− 1)δ(X) + δη(X)(ξ)]

(3.11)

Corollary 3.6. There is no weakly symmetric δ- Lorentzian β- kenmotsu manifold
(M (2n+1), g) (n > 1),unless the sum of the associated 1-forms is given by relation
(3.11).

If β = 0, then (3.9) yields

A(X) +B(X) +D(X) = 0 (3.12)

for all X.This leads to the following:

Corollary 3.7. There is no weakly symmetric cosympletic δ- Lorentzian β- ken-
motsu manifold (M (2n+1), g) (n > 1),unless the sum of the associated 1-forms is
everywhere zero.
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In the next section, we prove the sum of the associated 1- forms Weakly Ricci
Symmetric δ-Lorentzian β-Kenmotsu manifold of non-vanishing ξ- sectional curva-
ture is nonzero everywhere.

4. Weakly Ricci Symmetric δ-Lorentzian β-Kenmotsu manifolds

Definition 4.1. A δ-Lorentzian β-Kenmotsu manifold (M2n+1, g) (n > 1) is said
to be weakly Ricci symmetric if its Ricci tensor of type (0, 2) is not identically zero
and satisfies relation (1.3).

Theorem 4.2. In a weakly Ricci symmetric δ- Lorentzian β- kenmotsu manifold
(M (2n+1), g) (n > 1) of non-vanishing ξ- sectional curvature, thefollowing relations
hold:

A(ξ) +B(ξ) + C(ξ) =
2β(ξβ) + δξ(ξβ)

β2 + δ(ξβ)
(4.1)

[r − 2nβ2 − δ(ξβ)][A(ξ) +B(ξ)] =
r(3β(ξβ) + δξ(ξβ) + δβ3)

β2 + δδ()ξβ

− (6n+ (2n+ 1)δ − 1)β(ξβ)− δξ(ξβ)− 2n(2n+ 1)β3

+ (2n− 1)δ[div(grad.β)− (ρ1β)− (ρ2β)] (4.2)

where r is the scaler curvature of the manifold, div denotes the divergence,ρ1, ρ2
being the associated vector fields corresponding to the 1-form A and B, respectively.

Proof. From equation (1.3) it follows that

(∇XS)(Y, ξ) = A(X)S(Y, ξ) +B(Y )S(X, ξ) + C(ξ)S(Y,X) (4.3)

In view of (2.8) we obtain from (4.3)

A(X)[2nβ2η(Y )− (2n− 1)δ(Y β) + δη(Y )(ξβ)]

+B(Y )[2nβ2η(X)− (2n− 1)δ(Xβ) + δη(X)(ξβ)] + C(ξ)S(Y,X)

= 4nβ(Xβ)η(Y )− (2n− 1)X(Y β)δ + δX(ξβ)η(Y ) + [2nβ3 + δβ(ξβ)]g(X,Y )

+ (2n− 1)[(∇XY β)δ + β(Y β)η(X)]− δβS(Y,X) (4.4)

where (2.9) has been used. Setting X = Y = ξ in (4.4) and then using (2.9) we
obtain relation (4.1). Let ei, i = 1, 2..., (2n+ 1) be an orthonormal basis of the
tangent space TPM at any point of the manifold. then setting X = Y = ei in (4.4)
and taking summation over i, 1 ≤ i ≤ 2n+ 1 and then using (2.8) we obtain

[A(ξ) +B(ξ)](2nβ2 + δ(ξβ))− (2n− 1)δ[(ρ1β) + (ρ2β)] + rC(ξ)

= (6n+ (2n+ 1)δ − 1)β(ξβ) + δξ(ξβ) + 2n(2n+ 1)β3

− (2n− 1)div(gradβ)δ − δβr (4.5)

where r =
∑2n+1
i=1 S(ei, ei) eliminating C(ξ) from (4.1) and (4.5) we obtain (4.2).

This proves the theorem. �
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5. Example of δ-Lorentzian β-Kenmotsu manifolds

We consider the 3-dim. manifold M = (x, y, z) ∈ R3 : Z 6= 0, where (x, y, z)
are the standard coordinates in R3. Let e1, e2, e3 be a linearly independent global
frame on M given by

e1 = e−z
∂

∂y
, e2 = e−z(

∂

∂x
+

∂

∂y
), e3 = β

∂

∂z

Let g be the an indefinite metric defined by

g(e1, e1) = g(e2, e2) = 1, g(e3, e3) = −δ
g(e1, e2) = g(e2, e3) = g(e1, e3) = 0

and the δ- Lorentzian metric g is thus given by

g = g11(dx)2 + g22(dy)2 + g33(dz)2 + 2g12dx ∧ dy

= 2e2z(dx)2 + e2z(dy)2 − δ

β2
(dz)2 − 2e2zdx ∧ dy

(gij) =

 2e2z −2e2z 0
−e2z e2z 0

0 0 δ
β2


where δ = ±1. If δ = −1, then δ-Lorentzian metric g becomes a Riemannian
positive definite metric on M so that in this case the characteristic vector field ξ
becomes aspace like and if δ = 1, Then it becomes a light like. Let η be the 1-form
defined by

η(X) = δg(X, ξ)

for any vector field X on M3. Let φ be the tensor field of type (1, 1) defined by

φ(e1) = −e1, φ(e2) = −e2, φ(e3) = 0

using the linearity property of g and φ, one can deduce

φ2X = X + η(X)ξ, η(X) = −1, g(ξ, ξ) = −δ
g(φX, φY ) = g(X,Y ) + δη(X)η(Y ).

Also, η(e1) = 0, η(e2) = 0, η(e3) = −1 for any vector field X and Y on M . Let ∇
be the Levi-Civita connection with respect to g. Then we have

[e1, e2] = 0, [e1, e3] = δβe1, [e2, e3] = δβe2

Using Koszule’s formula for Levi-Civita connection ∇ with respect to g, that is

2g(∇XY, Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )

− g(X, [Y,Z])− g(Y, [X,Z]) + g(Z, [X,Y ])
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one can easily calculate

∇e1e3 = δβe1, ∇e3e3 = 0, ∇e2e3 = δβe2

∇e2e2 = −δβe3, ∇e1e2 = 0, ∇e2e1 = 0

∇e1e1 = δβe3, ∇e3e2 = 0, ∇e3e1 = 0

with these information the structure (φ, ξ, η, g, δ) satisfies (2.2) and (2.3). Hence
M3(φ, ξ, η, g, δ) defines a δ-Lorentzian β-Kenmotsu manifold.
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