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TRIPLE FIXED POINTS IN ORDERED UNIFORM SPACES

(COMMUNICATED BY M. S. MOSLEHIAN)

LE KHANH HUNG

ABSTRACT. In this paper, we prove some tripled fixed point theorems for gen-
eralized contractive mappings in uniform spaces and apply them to study the
existences-uniqueness problem for a class of nonlinear integral equations of
with unbounded deviations. We also give some examples to show that our
results are effective.

1. INTRODUCTION

Fixed point theory plays a crucial role not only in the existence theory of differ-
ential equations, integral equations, functional equations, partial differential equa-
tions, random differential equations and but also in computer science and econom-
ics. In 2006, Bhashkar and Lakshmikantham introduced the concepts of coupled
fixed point and mixed monotone property for contractive mappings of the form
F: X xX — X, where X is a partially ordered metric space, and established
some interesting coupled fixed point theorems. Recently, Berinde and Borcut [9]
introduced the concept of the triple fixed point and investigated some tripled fixed
point theorems in partially ordered metric spaces. Later, various results on triple
fixed points have been obtained, see e.g. [, [5], [6].

The main purpose of our work is to present some results concerning the tripled
fixed point theorems in uniform spaces as natural extensions of tripled fixed point
theorems, which have been recently exposed by many authors (see [7], [8] and the
references given therein) in metric spaces.

2. PRELIMINARIES

Let X be a uniform space. The uniform topology on X is generated by a family
of uniform continuous pseudometrics on X (see [I3]). In this paper, by (X,P)
we mean a Hausdorfl uniform space whose uniformity is generated by a saturated
family of pseudometrics P = {dq(z,y) : @ € I'}, where I is an index set. Note that,
(X, P) is Hausdorff if and only if dy(z,y) = 0 for all o € I implies z = y.
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2 LE KHANH HUNG

Definition 2.1. ([1]) Let (X, P) be a Hausdorff uniform space.

1) The sequence {z,} C X is Cauchy if do(zn, Tm) — 0 as m,n — oo for every
ael

2) X is said to be sequentially complete if every Cauchy sequence {z,} in X
converges to z € X.

Definition 2.2. ([I]) Let j : I — I be an arbitrary mapping of the index I into
itself. The iterations of j can be defined inductively

(@) =, %) = (7" (), k=1,2,...
The following concept was introduce by Vasile Berinde and Marin Borcut.

Definition 2.3. ([5]) Let (X, <) be a partially ordered set and F' : X x X x X — X.
The mapping F' is said to have the mized monotone property if for any z,y,z € X

$1,$2€X,.’E1§1'2:>F(5U1,y,2) (1'2,2,/,2),

< F
Y1,Y2 S Xayl S Yo = F(-Tayluz> Z F(x7y2wz)
and
21,20 € X, 21 < 29 = F(x,y,21) < F(x,y, 22).

Definition 2.4. ([5]) Let F/: X x X x X — X. An element (z,y,2) is called a
triple fized point of F if

F(x,y,2) =z, F(y,x,y) =y and F(z,y,2) = 2.

Definition 2.5. Let X be a uniform space. A mapping T : X — X is said to be
ICS if T is injective, continuous and has the property: for every net {z,} in X, if
net {Tz,} is convergent then {z,} is also convergent.

Now, we introduce the class of functions which plays a crucial role in the fixed
point theory. Sometimes, they are called to be control functions.
Let ® = {p, : @ € I} be a family of functions (which one call ®-contractive)
with the properties:
i) ¥q : [0, 400) — [0, +00) is monotone non-decreasing;
i) 0 < pqa(t) <t forall £ > 0 and ¢, (0) =0.

Remark 2.6. If (X, d) is a metric space, then the uniform topology generated by
the metric d coincides with the metric topology on X. More precisely, d,(x,y) =
d(z,y) for all z,y € X and a € I, where the family of pseudometrics P = {d, :
« € T} generates a uniform structure of X. Therefore, as a corollary of our results,
we obtain the tripled fixed point theorems in the metric space.

3. TRIPLE FIXED POINTS IN UNIFORM SPACES

From now on, we denote X3 = X x X x X. We begin this section at giving a
new triple fixed point theorem in ordered uniform spaces.

Theorem 3.1. Let (X, <) be a partially ordered set and P = {dn(z,y) : a € I}
be a family of pseudometrics on X such that (X, P) is a Hausdorff sequentially
complete uniform space. Let T : X — X is an ICS mapping and F : X3 — X be a
mapping having the mized monotone property on X. Suppose that
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1) For every o € I there exists @, € ® such that
do (TF(2z,y,2), TF(u,v,w))

(3.1)
< o max {dja) (T, Tu), dj(a) (Ty, Tv), dj(a (T2, Tw) }),

forallz <wu,y >v and z < w;
2) For each o € I, there exists B, € ® such that

sup{@jn(a)(t) :n=0,1,...} <@,(t) for all t >0,

t
. Pa(t)

3) There are xg,yo,20 € X such that xo < F(Zo,¥0,20),%0 > F(Yo,Zo,¥0),
20 < F(20,%0,%0) and

is mon-decreasing on (0,400);

max {djn(a) (Txo, TF($07 Yo, ZO))7 djn(a) (Tyo, TF(y07 xg, yo))’
djn(a) (TZo,TF(Zo,yo,zo))} < p(a) < oo,

for every o € I,n € N.
Also, assume either a) F is continuous, or
b) X has the property:
i) If a non-decreasing sequence {x,} in X converges to x then x, < x
for all n;
it) If a non-increasing sequence {y,} in X converges to y then y, >y
for all n.
Then F has a triple fized point, that is, there exists x,y,z € X such that

F(z,y,2) =z,F(y,z,y) =y, F(z,y,2) = .

Proof. Let xg,y0,20 € X such that zg < F(zg, Y0, 20), %0 > F (0, Zo,y0) and zg <
F(z0,y0,70). Put

x1 = F(xo,Y0, 20), Y1 = F(y0, %0, y0) and 21 = F(z0, Yo, To).

Continuing this process, we can construct sequences {z,}, {y,} and {z,} in X such
that

Tn+1 = F($n7yna Zn)7yn+1 = F(yna$n7yn) and Zn41 = F(ZTMynaxn)vn = 07 17 27 s

(3.2)
Since F' has the mixed monotone property, then using a mathematical induction it
is easy that

Tn < Tpit,Yn = Yna1 and z, < 2,41 for alln =0,1,2,... (3.3)
Now, for each n =0,1,2,... and a € I, we put
0 = max {da(Txn, Tzn41),do(TYn, Tyn+t1), do(T2n, Tzn+1)}.

By the assumption 3), we have
6én(a) = Imnax {dj"(a) (Tl'(), TF('I()v Yo, ZO)) s dj”(oc) (Ty()a TF(yOa Zo, IUO))7

(3.4)
djn(a) (TZ(), TF(Z(), Yo, xo))} < p(a) < 0.
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Now we claim that §% < ¢, (52(:)‘1)) for every a € I,n € N. Indeed, in view of the

condition 1) and since z,,—1 < Xy, Yn—1 > Yn and z,-1 < z,, we obtain
do (T, Txpy1) = do (TF(xn,l, Yn—1,2n—1)s TE (X, Yn, zn))
< Yo ( max {d;(o)(TTn-1,T%0), dj(a)(TYn-1,TYn), dj(a)(Tzn-1, Tzn)}> (3.5)
= Pa (52(—061))
Similarly, we have
do(T2n, Tzn41) < Pa (631(_0‘1)), (3.6)
and
do(Tyn, Tyns1) = da(TF (Yn—-1,n—1,Yn-1): TF (Y, Tn, Yn))
< Ya ( max {dj(a) (TYn—1,TYn), dja)(TTn-1,TTy),dj0)(TYn—1, Tyn)}> (3.7)
< a (05)).
Combining (3.5)-(3.6), we deduce that
8% < o (62)) for every n € N,a € I. (3.8)

Since ¢, is a monotone non-decreasing function, it follows from (3.4), (3.8)) and the
condition 2) that

-2

3% < 20 (82)) < 0al(i()(829)) < @a(@i@) (- @m0 (8 ) ..))
<@ (03" ) <@ (p(a).

Put 3% (p()) = b2, for each o € I and n € N. Then, we have 6% < b3 for every
«a € I,n € N. Using the triangle inequality, we get

max {doz (Tx'm Ta:n—&-p)a dq (Tyn7 Ty7z+p)7 dq (Tzru TZn+p)}

p—1 p—1 p—1
<max { Z dq (Tanria T$n+z‘+1)7 Z dq (Tyn+i7 Tyn+¢+1 ), Z dq (Tzn+i7 TZn+z‘+1)}
i=0 i=0 i=0

p—1
<Y max {da(T@nti, Tonsit1)s da(TYntis Tyntis1)s da(Tznsis Tzngisn) }
1=0

p—1 p—1
— « «
- E 6n+i < E :bn+i'
i=0 =0

(3.9)
Having in mind that @, (t) < t for every ¢ > 0, and p(«) > 0, we obtain

Pa(p(@)) = Pa(@a(p(0) <@a ' (p(@) < - <Py (pla)) <pla).  (3.10)
Since %(t) is a monotone non-decreasing function, it follows from that
b1 _ Pal(Palp(e))) _ Palp(a))
by, Za(pla))  —  ple)

This implies that Y _, b2 is a convergent series. Hence Zf:_ol by, ; —0asn — oo
for all p. It follows from (3.9)) that do(TTn, TTntp) = 0,da(TYn, Tyn+p) — 0 and
do(T2p, T2n4p) — 0 as n — oo for all p. Thus {Tz,},{Ty,} and {Tz,} are

<1.
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Cauchy sequences. By the sequential completeness of X, {Tx,}, {Ty,} and {Tz,}
are convergent. Since T is an ICS mapping, there exist x,y, z € X such that

lim z, =z, lim y, =y, lim z, = z. (3.11)
n—oo n—oo n—oo

Suppose that the assumption (a) holds. By (3.2)), (3.11) and the continuity of F,
we get

€T = nli_{goxn+1 = nh_fgoF(xnayn7Zn) = F(m,y,z),

y = lim Yn+1 = lim F(ynvxvuyn) ZF(%%ZJ)’
n—o0

n—oo

z= lim z,40 = lm F(zn,yn, 20) = F(2,9,2).

This shows that F' has a triple fixed point.

Suppose now the assumption (b) holds. Since {x,}, {2z} are non-decreasing and
ZTp = T, 2, — 2, and as {y, } is non-increasing and y,, — y, by the assumption (b),
we have

Tn <2, Yo >y and 2z, < 2,

for all n. Using the triangle inequality and the contractive condition ([3.1]), we have
de (Ta:, TF(z,y, z)) <do(Tx,Txpi1) + dao (Ta:n_H, TF(x,y, z))
=do(Tx,Txps1) + da (TF(x,L, Yny 2n ), TF(x,y, z))
<do(Tx,TTpi1) + Qo ( max {dj(a) (Tn, Tx), dj(0)(TYn, TY), dj(a)(Tzn, Tz)})
< do(Tx, Txpi1) + max {dj(a) (T2, T), dj()(Tyn, Ty), dj(a)(Tzn, T2) }.
Letting n — oo in the above inequality and by the continuity of 7', we have
de (Tx, TF(x,y, z)) = 0 for all «, this implies that Tz = TF(x,y, z). Since T is in-

jective, we get that x = F(z,y, z). Similarly, we have y = F(y,z,y), z = F(z,y, ).
The proof is completed. U

Corollary 3.2. Let (X, <) be a partially ordered set and P = {do(x,y) : « € I}
be a family of pseudometrics on X such that (X, P) is a Hausdorff sequentially
complete uniform space. Let T : X — X is an ICS mapping and F : X® — X be a
mapping having the mized monotone property on X. Suppose that:

1) For every « € I there exists p, € ® such that

dj(a) (Tx, Tu) + dj(a) (Ty, TU) + dj(a) (TZ, TU}) )
3 )

do (TF(2,y,2), TF(u,v,w)) < ¢q (

forallz <wu, y>v and z < w;
2) For each o € I, there exists B, € ® such that

sup{pjn(a)(t) : n=0,1,...} <@,(t) for all t >0,

B (t
andwa()

3) There are xo,y0,20 € X such that xog < F(zo,Y0,20), Yo = F(Yo,Zo,¥0),
20 < F(20,Y0,70) and djn (o) (Txo, TF (0,0, 20)) + djn(a)(Ty0, TF (Y0, 0, %0)) +
djn(a) (Tzo,TF(zo,yo,xo)) < pla) < o0, for every a € I,n € N.

Also, assume either a) F' is continuous, or

b) X has the property:
i) If a non-decreasing sequence {x,} in X converges to x then x, < x

is non-decreasing on (0,400);

for all n;



6 LE KHANH HUNG

it) If a non-increasing sequence {y,} in X converges to y then y, >y
for all n.
Then F' has a triple fized point, that is, there exist x,y,z € X such that

F(z,y,z) =x, F(y,z,y) =y, F(zy,2) =z
Proof. Since ¢, is non-decreasing for all «, it is easy to see that

; (dj(a)(T$7 Tu) 4 dja)(Ty, Tv) + dja) (T2, Tw)>
* 3

< Yo ( max {d](a) (T.T,‘, TU), dj(a) (Ty7 TU)7 dj(a) (TZ7 Tw) }) )

and
max {d; (o) (T, TF (20,90, 20)) &y (o) (T90, TF (30, 70, %0) ),

djn(a) (TZ(),TF(Z(), yo,xo))}
< djn(a)(Tzo, TF(20,Y0, 20)) + djn(a) (Tyo, TF (Yo, %o, Yo))
+ djn (o) (TZO7TF(ZO7y0,.’E0)).
Thus, we can apply Theorem [3.1] O

One can proved that the triple fixed point is in fact unique, provide that we have
to add the properties for of partial order on X? and the mapping j : I — I.

Definition 3.3. ([I]) A uniform space (X, P) is said to be j-bounded if for every
a € I and z,y € X there exists ¢ = ¢(z,y, @) such that

djn(a)(z,y) < q(z,y,0) < 00, for all n € N.

Now, we shall prove the uniqueness of a triple fixed point. Let (X, <) be a
partially ordered set. Then, we define a partial order on X3 in the following way:
For (z,v, 2), (u,v,w) € X3,

(z,9,2) < (u,v,w) &z <wu, y>vand z < w.
We say that (z,y, 2z) and (u,v,w) are comparable if
(z,y,2) < (u,v,w) or (u,v,w)<(x,y,2).
Also, we say that (x,y, 2) is equal to (u,v,w) if and only if z = u, y = v and z = w.

Theorem 3.4. Suppose that the conditions of Theorem [3.1] are fulfilled. If X is
j-bounded and for every (z,y, z), (u,v,w) € X there exists (a,b,c) € X3 which is
comparable to them, then F has a unique triple fixed point.
Proof. By Theorem [3.I] we conclude that the set of triple fixed points of F is
nonempty. Assume that (x,y, z), (u,v,w) are triple fixed points of F', that is

v =F(z,y,2),y=F(y,z,y),z2 = F(zy, ),

u=F(u,v,w),v =F(v,u,v),w = F(w,v,u).

We shall show that (z,y,2) and (u,v,w) are equal. By assumption, there exists
(a,b,¢) € X3 such that (a,b,c) is comparable to (z,y, z) and (u,v,w). Set ag = a,
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bp = b,co = ¢. By induction, we construct the sequences {a,},{b,} and {c,}
defined by
Gn4+1 = F(anybnvcn)>
bn+1 - F(bn; A, bn); (312)
Cn+l - F(Cn7bn7an)7
forn=0,1,2,...

Suppose that (z,y,z) < (a,b,c) = (ag, bo, o). Since F' has the mixed monotone
property, we have

Hence (a1, b1,c¢1) > (2,9, 2). Recursively, we get that

(@n,bn,cn) > (2,9, 2) for every n=0,1,2,... (3.13)
By (8.12), (3.13) and (3.1), we have
(TJZ Tan+1)
do(TF(2,y,2), TF(an, by, cn)) (3.14)

< apa(max {0 (T, Tay), dj(a) (Ty, Thy), dj(a) (T2, Ten) }),

a(TyaTbn+1)
do (TF(y,2,y), TF (bn, an, by))

Pa (max {d](a) Ty, Tby),djoy(Tz, Tay), ;) (Ty, Tbn)})
( )

max {dj(a)(Tx, Tay), dja)(Ty, Tby),d;ja)(Tz, Tcn)} ,

(3.15)

IN

IA

and

do(Tz,Tepiq)
= da(TF(Zaya$)7TF(Cnab7lva7l)) (316)
< Qo ( max {dj(a) (TZ, Tcn)a dj(a) (Ty, Tbn)7 dj(a) (Tz, Tan)})’

It follows from ((3.14] - ) that

max {da(Tx, Tant1),do(Ty, Thpt1),do(T'z, Tcn+1)}

(3.17)
< o ( max {dj(a) (T, Tan), () (Ty, Tha) dyay (T2, Ten) }),

for every n =0,1,2,...
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Since X is j-bounded, it follows from (3.17) and the condition 2) (in Theorem

that
max {do(Tx, Tan 1), do(Ty, Thpi1), da(T2, Teni1)}
< o max {d;(a) (T2, Tan), dj() (Ty, Thy), dj(a) (T2, Ten) })

< @q (goj(a)(max {d 2(0) (T2, Tan_1),dj20)(Ty, Tby—1),dj2(0) (T2, Tcy— 1)}))
<o ((pj(a)( cFin—1(a) (max {d] " () Tl‘vTa'l)adj"(a)(Ty7Tb1)7

djn(a)(TZ, Tcl)}) cee ))
< 7 (max {djn (o) (T2, Tar), dj oy (Ty, Thr), dje(a (T2, Ter) } )

S @Z (max {q(Tl', Ta’lv O[), Q(Ty7 Tbl) Oé), q(TZ7 Tcl7 O[)}) .
(3.18)
Denote 2 = @Z(max {¢(Tz,Tar,),q(Ty,Thy,a),q(Tz,Tey, )}) By the same

argument as in the proof of Theorem (3 . we can deduce that > 7 rf{ is con-
vergent. This implies that rd — 0 as n — oco. It follows from that
max{da(TamTanH),da(Ty,Tbn+1)7da(Tz7Tcn+1)} — 0asn — o for all a.
Since T is ICS, this implies that there are x,y, z € X such that z = lim,, o an,y =
lim,, o0 by, and z = lim,, s ¢y,

Similarly, we obtain that v = lim,,_, an,v = lim;,_, b, and w = lim,_, ;.-
Hence x = u,y = v and z = w. (Il

Corollary 3.5. In addition to hypotheses of Theorem suppose that xo < 1y
and zg < yo then F' has a unique fized point, that is, there exists x € X such that
F(z,z,z) = z.

Proof. By Theorem we conclude that F' has a unique triple fixed point (z,y, z).
Now we shall show that £ = y = z. By the mixed monotone property of F', we have

xr1 = F(x()vyOaZO) S F(y071‘07y0) = Y1,
z1 = F'(20,%0,0) < F(y0,%0,%0) = y1-

Recursively, we get that

Tn < yn and z, < Yy, (3.19)
where 2, = F(n-1,Yn—1,%n-1),Yn = F(Un—1,Tn—1,Yn-1), 2n = F(Zn—1,Yn—1,Tn_1),
for all n > 0.

Since (z,y,z) is a unique fixed point of F, we have & = lim, o Tp, y =

limy, o0 Y and z = lim,, o 2z,. By (3.2), (3.19) and (3.1)), we have

da (Txn—Q—la Tyn—i-l)
a(T Ty Yns Zn)s TF (Yn, T,y yn))

< @Yo < max {dj(a) Txna Tyn) dj(a) (Tyna Txn)v dj(a) (TZn, Tyn)})

= Yq ( max {d](a Txn, TYn), dja)(T2n, Tyn)}),

(3.20)
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and
a(T2n41, TYny1)
= a(TF(Znayruxn)aTF(ynyznayn))

< Qa ( max {dj(a) (Tzrm Tyn), dj(a) (Tynv Tz,), dj(a) (Tl‘n, Tyn) })
Pa ( max {dj(a) (Twn, Tyn), dja)(T2n, Tyn) }) .

It follows from ((3.20]) and (3.21]) that
max {do(TTns1, Tyn+1)s da(Tzns1, Tyns1) }

< Yo (max {dj(a)(Txn, TYn), dja)(Tzn, Tyn)})
Since X is j-bounded, by (3.22) and the condition 2) (in Theorem we have
max {da (T‘rn+17 Tyn+1)7 da (Tzn+17 TynJrl)}

< 0a (max {dj(a)(Tmn,Tyn),dj(a)(Tzn,Tyn)}>

Pa (%‘(a) (max {dj2(0) (Ton-1, Tyn-1), dj2(a) (T2n-1, Tyn—l)}))

< ga (@5 (- @in 10 (max {djuie) (o1, Tn), djo ey (20, Tin) }) - ))
<" (max {djn (o) Ty, Ty, dy oy (T21, Tyl)})

S ¢Z (max {Q(Tﬂfla Ty17 Oé), Q(T'Zlv Tyla Oé)}) .

(3.21)

(3.22)

IA

(3.23)
By the same argument as in the proof of Theorem we infer that
Z Par (max {9(Tx1, Tyr, ), q(Tz1, Ty, 04)})
n=0
is convergent. This implies that
h_>m @Z ( max {q(Tmh Tyh a)7 Q(Tzlu Ty17 O[)}) =0. (324)

From (3.23)), (3.24) and the continuity of T', we have
do(Tz,Ty) = T do(T2ns1,Tyns1) =0
and
do(Tz,Ty) = lim do(Tzp41, TYnt1) = 0.
n—oo

Thus, do(Tz,Ty) = do(Tz,Ty) = 0 for all & € I. This implies that Tz = Ty
and Tz = Ty. Since T is an ICS mapping we have x = y and z = y, that is,
F(z,z,z) = x. O

Now we state some examples showing that our results are effective. We denote
Ry =[0,+00) and N* = {1,2,...}.
Example 3.6. Let X = R® = {x ={z,} : 2, € Ron = 1,2,... } and the
mapping P, : X — R defined by P,(z) = P, ({xn}) =z, foreachn=1,2,... Let
I = N* x R} be the index set and the family of pseudometrics on X defined by

d(n,r) (x,y) = T|Pn(x) - Pn(y)‘a (TL,’I’) €l
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for every z,y € X. Then {d(,,y : (n,7) € I} generates the uniform structure on
X. We consider the partial ordered ” <” on X which defined by x <y < x, <y,
for every n =1,2,...

Let T: X — X, and F : X? = X are maps defined by

TLU:{E,E,...}
272

and

1,29 —2ys + 2z 1,23 —2y3 + 2z
2 — 2Y2 271+(177) 3 2y3 3,“'}.

F(x,y,z):{1,1+(1—§) . .

It is easy to see that T is ICS. Now we claim that F' satisfies Theorem For

this, for every (n,r) € I, we put g, ) (t) = 22(2: ?t for every t > 0, and denote
by j : I — I a map defined by j(n,r) = (n,2r(1 — 5&)) for every (n,r) € I. It is
easy to see that @i, (1) = %t = Q(n,)(t) for every k = 0,1,2,... Now,
we fix the functions 3, ,(t) = %}f, for every t > 0 and (n,r) € I. Then, we

have

sup {@ji(nm(t) 1 k=0,1,2,...} < Pln(t), forallt>0

77 t 2(n—1
and 90("_;)( ) = 2( 1> is monotone non-decreasing. Next, we show that F' has
" —
the mixed monotone property. Indeed, if z',22,y, 2 € X and 2! < 22 then x} < 22

for every n = 1,2, ... It follows that xl — 2y, + 2, < 2 — 2y, + 2y, for all n. Hence

1 x}L—2yn—|—zn 1 xi—?yn—l—zn
(1_H)f§ (1_5)f
or

P,(F(z',y,2)) < P,(F(2®,y,2)) for all n.

Thus F(z!,y,2) < F(22,y, 2).
Similarly, if x,y, 21,22 € X and 2! < 22 then we have F(z,y, z!) < F(z,y, 22).
Now, if x,9%,9% 2 € X and y' < y? then y. < y2 for every n = 1,2,...
This implies that @, — 2yl + 2, > z, — 2y2 + z,, for all n. It follows that

n72 ! n n *2 2 mn
(1 _ %)M > (1 _ l)w for all n. Hence F(:C’yl’z) >
2 " 2

F(z,y?, 2).
This proves that F' has the mixed monotone property.
Now, we show that F satisfies the contractive condition (3.1)) with ¢, and j
above mentioned. Indeed, if x < wu, y > v, z < w then
dn,r) (TF(av,y7 2), TF(u,v,w))
=r|P,(TF(2,y,2)) — Po(TF(u,v,w))]

Lt e a0 w I
n—1
=T (Un*xn+2(ynfvn)+wnfzn);
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and
djin,r)(Tx, Tu) = d(n,2r(1—i)) (Tz,Tu)
=2r(1— — ‘2 - %un = 7’2”2; ! (Un, — xn), (3:20)
djn,r)(Ty, Tv) = d(n72 (1_;)) (Ty, Tv)
1 om— 1 (3.27)
2(1_7‘2 QU =T, (Yn — Un),
and
djn,ry (T2, Tw) = d(n 27“(1—— )(Tz,Tw)
=2r(1— — ‘2 - %wn = r2n2; 1(wn Zn) (3:25)

Since (3.26)-(3.28]), we have

O(n,r) ( max {dj(n,r) (Tx,Tu),djn(Ty, Tv), dj (T2, Tw) })

n
= Q(nr) (’I‘T max{Un, — Tn, Yn — Un, Wy — zn})

An—1) 2ol \ (3.29)
= 5. 1 n — Tny,Yn — Un, Wn — Zn

o —1 r m maxyu Tn,yY Up, W

n—1

= max{t, — Tn,Yn — Vn, Wy — Zn }-

It follows from ) and - that

dn,r) (TF(x, y,2), TF(u,v,w))
< P, ( max {dj(n’r)(Tx, Tu), djn,m (Ty, Tv), djnr (T, Tw)})
Now, if we fix 2° = ¢ = 20 = (1,1,...) then
¥ =10 =20 = F(a°y°,2%) = F(y°,2%3°) = F(:°,4°,2")
and
max {djk(,w) (TzO,TF(:rO,yO z )) djk (n, r)(Ty JTF(y°, 20,y ))
djk (nr) (TZO,TF(ZO,yO,a:O))} =0 < oc.

Finally, it is easy to see that F' is continuous. Hence, the conditions of Theorem
B3] are fulfilled for F' and F has at least of the triple fixed point.

Example 3.7. Let X = R>® = {x ={z,} : 2, € Ron = 1,2,... } and the
mapping P, : X — R defined by P,(x) = P,({z,}) = z,, for each n =1,2,... Let
I = N* x R} be the index set and the family of pseudometrics on X defined by
d(n,r) (Iay) = T|Pﬂ($) - Pﬂ(y)|7 (TL, T) € I
for every 2,y € X. Then {d(,,y : (n,7) € I} generates the uniform structure on
X. We consider the partial ordered ” <” on X which defined by x <y < z, <y,
for every n =1,2,...
Consider the map T = idx and F : X3 — X defined by

F(r,y,z):{1,1+(1—5%,1“1—%)%,“}.
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2(n—1
Let pun (8 = 50—
for every (n,r) € I. Tt is clearly that T is ICS. By the same computation as in
2(n—1)

2n—1
Now, we check that X is j-bounded. Indeed, for each (z,y) € X we have

twitht > 0and j: I — I bedefined j(n,r) = (n,r(1—5))

T 2n

Example , we can show that F' satisfies Theorem [3.1) with B, ., (t) =

djk(nﬂ") (.’lﬁ,y) = d( zin)k) (x,y)

n,r(1—
= (1~ 5-)"Pae) - Paly)]
< 7"|Pn(x) - Pn(y)| = Q(xvyv (n,r)).

This proves that X is j-bounded. It is easy to see that if (z,v,2), (u,v,w) € X3
then there exists (a,b,c) € X3 is comparable to them. Thus F satisfies Theorem
3.4 Hence, F has a unique triple fixed point, that is z =y =2z = {1,1,...}.

Example 3.8. Let X = {x ={z,} 2z, € [1,8,n=1,2,.. } and the mapping
P, : X — R defined by P,(z) = Pn({xn}) =z, for each n = 1,2,... Let I =
N* x Ry be the index set and the family of pseudometrics on X defined by

d(n,r) (x,y) = T‘P’ﬂ($> - Pn(y)

for every z,y € X. Then {d(,,y : (n,7) € I} generates the uniform structure on
X. We consider the partial ordered ” <” on X which defined by x <y < z, <y,
for every n =1,2,...

Let T: X — X, and F : X? = X are maps defined by

,(n,r) el

Tx:{lna;1+1,lnx2+1,...}

and

Flops) {2,2(M>“1”,2(¢m>“19,...}.

Y2 Y3

It is easy to see that T is ICS. Now we claim that F' satisfies Theorem For

2(n—1

2(71)@ for every ¢t > 0, and denote
n —

by j : I — I a map defined by j(n,r) = (n,r(1 — 5-)) for every (n,r) € I. It is

easy to see that

this, for every (n,r) € I, we put o, (t) =

2(n—1)

= > == . o
S t = @, (t), for every t > 0,and k =0, 1,2,

Pk (n,r) (t) =

2(n—1)

Now, we fix the functions B, ,(t) = S
: o

t, for every t > 0 and (n,r) € I.

Then, we have
sup { @i (n,m(t) : k=0,1,2,...} < Pn,r)(t), forevery t >0

Pn,r 2(n—1) . .
and L ’t)( ) = 2(n 1) is monotone non-decreasing.
n —

Next, we show that F has the mixed monotone property. Indeed, if 2!, 22,y, z €
1 /2
X and ! < 22 then 2} < 22 for every n = 1,2, ... It follows that 7”2"% < %,




TRIPLE FIXED POINTS IN ORDERED UNIFORM SPACES 13

for every n. Hence

or
P, (F(z',y,2)) < P,(F(2®,y,2)) for all n.

Thus F(z!,y,2) < F(22,y, 2).

Similarly, if x,y, 2%, 2% € X and 2! < 22 then we have F(x,y,2') < F(x,y, 22).
Now, if x,9%,9% 2z € X and y* < y? then y. < y2 for every n = 1,2,..
(11
3 n
This implies that wa"z“ > VZ’;Z" for all n. It follows that 2<V2"Z"> >
1(1-2
2<nyy;z" for all n. Thus, F(x,y',2) > F(z,y?, 2).

This proves that F' has the mixed monotone property.
Now, we show that F satisfies the contractive condition (3.1)) with ¢, and j
above mentioned. Indeed, if x < u, y > v, z < w then
dn,r) (TF(x y,2), TF(u,v w))
fr|P (TF T,Y, 2 ) Pn(TF U, v w))|
1
3

a5 =, m(mf“”_l

—~

Yn Up (3.30)
1 1,/1 1
= T§(1 - E) <§(lnun —Inz,)+ (Iny, —Inwv,) + i(lnwn - lnzn))
s 1(Inuy, —Inz,) + (Iny, —Inv,) + (Inw, —Inz,)
— n 3 b
and
dj(mT)(T:z:,Tu) = d( (1,L)) (T.T,TU)
-0 1 | 1 (331
=r( f%)| nz, —Ilnu,|=r (Inu, —Inzy,),
dj(n,r) (TvaU) = d( (1_L)) (Ty7TU)
m— 1 (3.32)
:7‘(1—%)|lnyn—lnvn|:r (Iny, —Inv,),
and
dj(n,r) (TZ,TU)) = d(n,r(lff)) (TZ,TU))
on 1 (3.33)

1
:r(lf%)\lnzn—lnwﬂzr (Inw, —Inz,).
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Since (3.31))-(3.33)), we have
@) (8% {0 (T2, T, 0,09 (T, T0), (T2, T) })

2n—1
= Q(n,r) (rnT max{lnu, —Inz,,Iny, — lnv,, lnw, —In zn})
n

— M 2n—-1 {1 1 1 1 1 2} (3.34)
= o1 g, maxtlnu, —Inz,,Iny, —Inv,, Inw, —Inz,
n—

=r max{lnu, —Inz,,Iny, — Inv,,Inw, —Inz,}.

n
It follows from and that
dinr) (TF(z,y,2), TF(u,v,w))
< P, ( max {dj(n,r)(Tx, Tu), djnm (Ty, Tv), djnr (T2, Tw)})
Now, if we fix 2° = ¢ = 20 = (2,2,...) then
20 = 40 = 20 = F(2°,4°, 2°) = F(3°,2°4°) = F(z°,4°,z°)
and

max {djk:(n7r) (TJJO, TF(2°,4°, zo)), djik(n,r) (Tyo, TF(y°,2Y, yo))7
djk (nr) (TzO,TF(zo,y07x0))} =0 < 0.

Finally, it is easy to see that F' is continuous. By the same argument as in
the Example we obtain that X is j-bounded. It implies that the conditions
of Corollary are fulfilled for F'. Thus, F has a unique fixed point, that is
x={2,2,...}.

Remark 3.9. 1) It is not difficult to see that in Example X is not j-bounded.

Indeed, we have
1
j = 2r(1 — —
jln,r) (n, 7( 2n))’
1 1
) _ -~ _ 2,01 2
J (n7r) _J(n72r(1 2n)) (n72 ,r(]‘ 2n) )7
and by induction we have

1

ke k k

) = (1,251 = o)),

for every kK =1,2,... Thus, for each z,y € X, we have
djk(n,r) (Ivy) = d("72k7’(1_21n)k) (%,y)

= 2k (1 — %)’jpn(z) — Pu(y)|

= (P E () - Pay)].

n
Since limy, oo ( )¥ = oo for each n > 1, we can conclude that there no ¢(, y, (n,r))
< +oo0 such that djr, ) (z,y) < q(x,y, (n,r)) for every k = 0,1,2,... This proves
that X is not j-bounded.
In fact, F' have more than one triple fixed point. For this, we consider

fﬂ:{l,fﬂg,l,l,...}, y:{LyQalal,"'}a 22{1322,1717"'},

2n—1
n
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with o 4+y2 = 2 and 29 = x5. It is easy to check that (z,y, z) are triple fixed points
of F.

2) It follows from 1) that we can not omit the j-bounded property of X in the
Theorem [3.4

Finally, we give a example which shows that if T" is not an ICS mapping, then
the conclusion of Theorem B fails.

Example 3.10. Let X = R® = {z = {z,} : z, € Ron = 1,2,...} and the
mapping P, : X — R defined by P, (z) = P,({z,}) =z, for each n =1,2,... Let
I = N* be the index set and the family of pseudometrics on X defined by

dn(xay) = ’Pn(x) - Pn(y)|a nel

for every x,y € X. Then {d,, : n € I} generates the uniform structure on X. We
consider the partial ordered ” < ” on X which defined by z < y < z, <y, for
everyn=1,2,...

Let T: X — X, and F : X3 — X are maps defined by

Tx={1,1,...}
and
F(z,y,2z) = {Qxl —y1+ 1,229 —ys + 1,...}.
Now we claim that F satisfies Theorem For this, for every n € N* we put

3
on(t) = Zt, for every ¢t > 0, and denote by j : I — I a map defined by j(n) = n for
3
every n € I. It is easy to see that ;r,)(t) = pn(t) = t for every k = 0,1,2,...

3
Now, we fix the functions @, (t) = Zt’ for every t > 0 and n € I. Then, we have

sup {@ji(n)(t) 1 k=0,1,2,... } = on(t) <@, (t), forall ¢ >0

D, (t 3
and LP"T() =1 is monotone non-decreasing.

Firstly, we show that F' has the mixed monotone property. Indeed, if z!,22,y, 2z €
X and z! < 22 then ac}l < ac% for every n = 1,2, ... It follows that q:}l — 2y, +1<
22 — 2y, + 1, or

(F(z',y,2)) < P,(F(2®,y,2)) for all n.

TL
Thus F(a',y,2) < F(x 10:2).
Similarly, 1f;n y,zl 2?2 € X and 2! < 2% then we have F(z,y,2') < F(z,y,2?).
Now, if z,y',9% 2 € X and y' < y? then y} < y2 for every n = 1 2,.. ThlS
implies that z,, — 2yl +1 > x,, — 2y2 + 1, for all n. Hence F(z,y', z) > F(a: y? 2).
This proves that F' has the mixed monotone property.
Now, we show that F' satisfies the contractive condition with ¢, and j

above mentioned. Indeed, if x < u,y > v,z < w then
dn(TF(a:,y,z),TF(u,v,w)) = ’Pn(TF(ﬂ%yaZ)) - Pn(TF(U,,UﬂU))‘ (3 35)
=[1-1|=0, '

and
dj(n)(Tvau) =dn (T2, Tu) = |Pn(T$) - Pn(Tu)| = ‘1 - 1‘ =0,
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dj(n) (Ty, TU) = dj(n) (TZ, Tw) = 0,
Lpn(max{d- (T, ), d ) (T, T0), djioy (T2, Tw) } ) = 0. (3.36)
It follows from and (| - ) that
dy (TF((E, Y, Z)v TF(’LL, v, w))
< ¢n ( max {dj(n)(Tx, Tu), djmy(Ty, Tv), djn)(Tz, Tw)}) .
Now, if we fix 2° = 20 = (1,1,...), ¥ = (0,0,...) then
a? < F(a®y°, 2 ) 0> F(y°,a°%y%, 2° < F(z°,y°, %)
and

max {djk(n) (TCUO, TF(:EO, y°, zo))7 djk(n) (Tyo, TF(yO7 20, yo)),
djk (n) (TzO,TF(ZO,yO,xO))} =0 < o0.

It is easy to see that F' is continuous. Hence, the conditions of Theorem are
fulfilled for F. Since Tx = {1,1,...} for all € X, it is easy to see that T is not
ICS mapping. However, F' has no triple fixed point.

4. APPLICATIONS TO NONLINEAR INTEGRAL EQUATIONS

In this section, we wish to investigate the existence of a unique solution to a
class of nonlinear integral equations, as an application of the tripled fixed point
theorems proved in the previous section.

Let us consider the following integral equations

®
2(t) = k(t) + /O [K\(t,s) + Kalt, s) + Ks(t, s)]

X (f(s,x(s)) +g(s,z(s)) + h(s,x(s)))ds,

where Ky, Ky, K3 € C’(R+ X R+,R), f,9,h € C’(R+ X R,R), and an unknown
function z(t) € C(R4,R). The deviation A : R — Ry is a continuous function, in
general case, unbounded. Note that, since deviation A : Ry — R, is unbounded,
we can not apply the known tripled fixed point theorems in metric space (see [5],
[9]) for the above integral equations.

Adopting in [I7], we assume that the functions K, Ko, K3, f, g, b fulfill the fol-
lowing conditions

(4.1)

Assumption 4.1. A) K;(t,s) > 0, Ky(t,s) <0 and K3(t,s) > 0 for all t,s > 0.
B) For each compact subset K C R, there exist the positive numbers A, 1, 7 and
vk € ® such that for all z,y € R, x > y and for all t € K,

0< f(tam> _f(tay> < NPK(OU—ZJ%
—pox (x—y) < g(t,x) —g(t,y) <0,

0 < h(t,z) — h(t,y) < nex (z —y)
and

| =

At)
max(\, 1, ) sup / (Ki(t5) — Kon(t, s) + Ka(t, 8))ds <
teK Jo
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C) For each compact subset K C R, there exists a compact set K C R such that
for all n € N,

A™"(K) C K,
where A%(t) = ¢, A™(t) = A(A"71(t)), forall t >0 and n = 1,2, ...

Pr(t) .
s

D) For each compact subset K C R, there exists g € ® such that

non-decreasing and
an(x)(t) < Pr(t)
for all n € N and for all ¢ > 0.
Definition 4.2. An element («,3,7) € C(R+,R) x C R+,R) X C’(R+,R) is a
tripled lower and upper solution of the integral equation (4.1)) if for any ¢ € Ry we
have a(t) < B(t), v(t) < B(t) and
A(t)
a(t) < k(t)+ Ki(t,s (f ) +9(s,8(s)) + h(s,7(s)) )ds

and

A(t)
[ Ra(t.8) (£(559) + 9(57(9) + B, () ) s
A(t)

+ K3(t, s) (f(s, a(s)) +g(s, B(s)) + h(s,y(s)))ds.

0

Theorem 4.3. Consider the integral equation with K1, Ky, K3 € C(R+ X
R, R) and f,g,h € C(R+ X R,R) and k € C(R+,R and suppose that Assumption
is fulfilled. Then the existence of a tripled lower and upper solution for
provides the existence of a unique solution of in C(R+,R).

Proof. Let X = C(R4,R). Then, X is a partially ordered set if we defined the
following order relation in X:

z,ye€X, x<y< x(t) <y(t), for every t € R,.
For each a compact subset K C R, we define

pr(f) =sup{|f(t)| : t € K}, for all f € C(Ry,R).
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It is known that the family of seminorms {px}, where K runs over all compact
subsets of R, defines a locally convex Hausdorff topology of the space. Hence, X is
a Hausdorff sequentially uniform space whose uniformity is generated by the family
of pseudometrics

dic(f,9) = pr(f —g) =sup {|f(t) —g(t)| : t € K}

Let us next define the map j : I — I, where the index set I consists of all compact
subsets of R, by the following way: For an arbitrary compact set K C R, we put
J(K) := [0,max;ex A(t)], and j"(K) = j(j" "' (K)), for every n € N. Then, since
AR, — Ry is continuous the sets j(K),j?(K), j3(K), ... is also compact.

Consider the map T = idx. It is easy to see that T is ICS. Define F : X3 — X
by

A(t)
F(x,y,2)(t) :/0 K (t,s) (f(s,x(s)) +g(s,y(s)) + h(s,z(s)))ds
A)
+/0 Ks(t,s) (f(s,y(s)) +g(s,x(s)) + h(s,y(s)))ds
A)
+ /0 K;(t, s) (f(s, 2(s)) + g(s,y(s)) + h(s, x(s)))ds + E(t)

for all t e Ry.

Now, we show that F' has the mixed monotone property. Indeed, for z1,29 €
C(R4,R) and 21 < x9, that is x1(t) < z5(t) for every t € Ry, by Assumption
we have

F(z1,y,2)(t) — F(z2,y,2)(t)
At)
= Ki(t, s)(f(s,:z:l(s)) Jrg(s,y(s)) +h(s,z(5)))d5

/ ths(fs )+ g(s,2z1(s)) + h(s,y(s)) )ds
+/ L) (£ (s

—/ Klts( s,
_/ (f
/ K3ts(fs

A(t)

= Kiq(t, s)(f(s,xl(s)) —f(s,xg(s)))ds

f(s:2(5)) + g(s,y(s)) + h(s,21(s)) )ds + k(t)
f(
—|—g s, xa(s )) +h(s,y(s)) ds

s )
)
22(5)) + (5, 5(5)) + h (s, 2(5)) ) ds
)
: )

)+ 9(s,y(s)) + h(s,za(s)) )ds — k(t)

0
At
—|—/O Ks(t, s) (g(s,xl(s)) —g(s,xz(s))>ds
At
+ Ks(t, s) (h(s,xl(s)) — h(s,xg(s)))ds <0

0
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for every t € Ry. This yields F(x1,y,2)(t) < F(x2,y, 2)(t) for every t € Ry, that
is F(xlayaz) < F(zg,y,z).
By the same computation, we arrive at F(x,y1,2) < F(z,y2,2) if y1 > y2 and
F(z,y,21) < F(x,y,29) if 21 < z9. Hence, F has the mixed monotone property.
Next, we show that F' satisfies the contractive condition of Theorem
Indeed, for each compact subset K of R and for x > u, y < v and z > w, that is
z(t) > u(t), y(t) < wv(t) and z(t) > w(t) for every t € Ry, we have

dK (F(.’E, Y, Z)? F(’LL, v, w))
= sup P, 2)(t) = Fu,v,w)(1)

At)
/ Ki(t,s) (f(s z(s)) + g(s,y(s)) + h(s,z(s)))ds

+gsx +hsy ds

)
f —I—gsy +hsx )d5+k
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20
A()
L Es8)[(£(5:29) = T (s w(6) ) = (90 005) — 9 (s9(6) )
+ (h(s,x(s)) - h(s,u(s)))}ds
At)
< sup / Ki(t,s) [/\@K (JL‘(S) — u(s)) + ek (v(s) — y(s)) + npK (z(s) - w(s))}ds
tek | Jo
At)
Ka(t,5) [ Mo (v(s) = y(5)) + e (2(s) = u(s)) + nerc (v(s) = y(s)) | ds

A(t)
[ Kt M (2(6) = w9) + e (010) = 5) + e (a(e) = () s

<2 A Y Ki(t Ko(t Ks(t
< 2max(hpnsup [ [K1(03) = Kot + K1) [ore(o(5) = u(s)

+ox (v05) = y(5)) + exc (2(5) = w(s)) | ds

< 2max{\, u, n} [SDK( sup |2(s) — U(S)D

s€[0,max¢ex A(t)]

|v(s) —y(s)\) +<,0K( sup |2(5) —w(é’)!)]

s€[0,maxic xk A(t)]

+ 90K< Sup
s€[0,max;e k A(t)]

A(t)
X sup/ [K1(t,s) — Ka(t,s) + Ks(t,s)]ds
teK JO

< 2max(h o foxe( sup [a(s) —u(o)]) + ok sup [vl) ~ v(o)])

s€J(K
At)

+ cpK( sup |2(s) — w(s)|>} sup/ [K1(t,s) — Ka(t,s) + Ks(t,s)|ds

s€j(K) teK Jo

< 2% {‘PK (dj(K)(JS, u)) + ¢K (dj(K) (v, U)) + K (dj(K)(Zv w))}

< [3(pK<maX {dj(K)(JL‘,U), dj(K)(?Ja”): dj(K)(y’v)})}

= @K(max {dj) (@, ), djx)(y,v), dj(K)(yaU)})'

Condition 2) in Theorem [3.1]is satisfied by D) of Assumption
Now, let us (o, 8,7) be a tripled lower and upper solution of the integral equation

of . Then, we have
a(t) < F(a, 8,7)(t), B(t) = F(B,a,8)(t) and ~(t) < F(v,8,a)(t)

forallt € Ry, thatis a < F(a, 8,7), 8 > F(B,«, ) and v < F(~, 8, «a). Moreover,
for each compact subset K C R, by the continuity and assumption, we have

max {dJ"(K) (aaF(a7B77))adj"(K) (67F(ﬁ7a76))7dj"(1() (77F(’Yaﬁ7a))}
< max {d[o’maxsg?A(S)] (a7F(a7ﬁa'7))ad[O,maxsefA(s)] (57F(B7a>ﬁ))a
d[O,maxsE?A(s)] (VaF(’%ﬂaO‘))} < 0.

Hence, condition 3) in Theorem is satisfied.
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Now, suppose that {u,} is a monotone non-decreasing sequence in X that
converges to u € X. Then for every ¢t € Ry, the sequence of real numbers
ur(t) <wg(t) < - <wuy(t) < --- converges to u(t). Therefore, for every t € Ry,
n € N, uy,(t) < u(t). Hence u,, < u, for all n € N.

Similarly, we can verify that limit v(¢) of a monotone non-increasing sequence
vp(t) in X is a lower bound for all elements in the sequence. That is, v < v,, for all
n. Hence, the condition b) in Theorem holds.

Using again assumption (C), we have

din(rey(z,y) = sup |z(t) — y(t)|
tej™(K)

< sup |Jf(t) - y(t)| = d[07maxs€? A(s)] (1‘7 y) < +00
te[0,max 7 A(s)]
for all n € N. This implies that X is j-bounded.
Now, we define on X3 the following partial order relation:
For (z,y,2), (u,v,w) € X3,

(x,y,2) < (u,v,w) & z(t) <u(t), yit) > v(t) and z(t) < w(t)

for every t € Ry. Observe that for every z, y, z € X, by the uniform topol-
ogy of X, we easily see that max{z(t), y(t), z(t)}, min{x(¢), y(¢), z(¢)} for
each t € Ry are in X and are the upper and lower bounds of z, y, z, respec-
tively in X. This follows that for every (z,vy,2), (u,v,w) € X3, there exists a
(max{z,u}, min{y,v}, max{z,w}) € X* which is comparable to (z,y,z) and
(u,v,w).

Therefore, by applying Theorem[3.4] we can conclude that F has a unique tripled
fixed point (z,y, z). Finally, since « < 3, < S by Corollary we havex =y = z,
that is x(t) = y(t) = z(t) for every t € R,.. Hence F(x,z,2) = 2 and x is the unique
solution of the equation (4.1). O
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