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TRIPLE FIXED POINTS IN ORDERED UNIFORM SPACES

(COMMUNICATED BY M. S. MOSLEHIAN)

LE KHANH HUNG

Abstract. In this paper, we prove some tripled fixed point theorems for gen-

eralized contractive mappings in uniform spaces and apply them to study the

existences-uniqueness problem for a class of nonlinear integral equations of
with unbounded deviations. We also give some examples to show that our

results are effective.

1. Introduction

Fixed point theory plays a crucial role not only in the existence theory of differ-
ential equations, integral equations, functional equations, partial differential equa-
tions, random differential equations and but also in computer science and econom-
ics. In 2006, Bhashkar and Lakshmikantham introduced the concepts of coupled
fixed point and mixed monotone property for contractive mappings of the form
F : X × X → X, where X is a partially ordered metric space, and established
some interesting coupled fixed point theorems. Recently, Berinde and Borcut [9]
introduced the concept of the triple fixed point and investigated some tripled fixed
point theorems in partially ordered metric spaces. Later, various results on triple
fixed points have been obtained, see e.g. [4], [5], [6].

The main purpose of our work is to present some results concerning the tripled
fixed point theorems in uniform spaces as natural extensions of tripled fixed point
theorems, which have been recently exposed by many authors (see [7], [8] and the
references given therein) in metric spaces.

2. Preliminaries

Let X be a uniform space. The uniform topology on X is generated by a family
of uniform continuous pseudometrics on X (see [13]). In this paper, by (X,P)
we mean a Hausdorff uniform space whose uniformity is generated by a saturated
family of pseudometrics P = {dα(x, y) : α ∈ I}, where I is an index set. Note that,
(X,P) is Hausdorff if and only if dα(x, y) = 0 for all α ∈ I implies x = y.
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Definition 2.1. ([1]) Let (X,P) be a Hausdorff uniform space.
1) The sequence {xn} ⊂ X is Cauchy if dα(xn, xm)→ 0 as m,n→∞ for every

α ∈ I.
2) X is said to be sequentially complete if every Cauchy sequence {xn} in X

converges to x ∈ X.

Definition 2.2. ([1]) Let j : I → I be an arbitrary mapping of the index I into
itself. The iterations of j can be defined inductively

j0(α) = α, jk(α) = j
(
jk−1(α)

)
, k = 1, 2, . . .

The following concept was introduce by Vasile Berinde and Marin Borcut.

Definition 2.3. ([5]) Let (X,≤) be a partially ordered set and F : X×X×X → X.
The mapping F is said to have the mixed monotone property if for any x, y, z ∈ X

x1, x2 ∈ X,x1 ≤ x2 ⇒ F (x1, y, z) ≤ F (x2, y, z),

y1, y2 ∈ X, y1 ≤ y2 ⇒ F (x, y1, z) ≥ F (x, y2, z)

and

z1, z2 ∈ X, z1 ≤ z2 ⇒ F (x, y, z1) ≤ F (x, y, z2).

Definition 2.4. ([5]) Let F : X × X × X → X. An element (x, y, z) is called a
triple fixed point of F if

F (x, y, z) = x, F (y, x, y) = y and F (z, y, x) = z.

Definition 2.5. Let X be a uniform space. A mapping T : X → X is said to be
ICS if T is injective, continuous and has the property: for every net {xα} in X, if
net {Txα} is convergent then {xα} is also convergent.

Now, we introduce the class of functions which plays a crucial role in the fixed
point theory. Sometimes, they are called to be control functions.

Let Φ = {ϕα : α ∈ I} be a family of functions (which one call Φ-contractive)
with the properties:

i) ϕα : [0,+∞)→ [0,+∞) is monotone non-decreasing;
ii) 0 < ϕα(t) < t for all t > 0 and ϕα(0) = 0.

Remark 2.6. If (X, d) is a metric space, then the uniform topology generated by
the metric d coincides with the metric topology on X. More precisely, dα(x, y) =
d(x, y) for all x, y ∈ X and α ∈ I, where the family of pseudometrics P = {dα :
α ∈ I} generates a uniform structure of X. Therefore, as a corollary of our results,
we obtain the tripled fixed point theorems in the metric space.

3. Triple fixed points in uniform spaces

From now on, we denote X3 = X ×X ×X. We begin this section at giving a
new triple fixed point theorem in ordered uniform spaces.

Theorem 3.1. Let (X,≤) be a partially ordered set and P = {dα(x, y) : α ∈ I}
be a family of pseudometrics on X such that (X,P) is a Hausdorff sequentially
complete uniform space. Let T : X → X is an ICS mapping and F : X3 → X be a
mapping having the mixed monotone property on X. Suppose that
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1) For every α ∈ I there exists ϕα ∈ Φ such that

dα
(
TF (x, y, z), TF (u, v, w)

)
≤ ϕα

(
max

{
dj(α)(Tx, Tu), dj(α)(Ty, Tv), dj(α)(Tz, Tw)

})
,

(3.1)

for all x ≤ u, y ≥ v and z ≤ w;
2) For each α ∈ I, there exists ϕα ∈ Φ such that

sup{ϕjn(α)(t) : n = 0, 1, . . .} ≤ ϕα(t) for all t > 0,

and
ϕα(t)

t
is non-decreasing on (0,+∞);

3) There are x0, y0, z0 ∈ X such that x0 ≤ F (x0, y0, z0), y0 ≥ F (y0, x0, y0),
z0 ≤ F (z0, y0, x0) and

max
{
djn(α)

(
Tx0, TF (x0, y0, z0)

)
, djn(α)

(
Ty0, TF (y0, x0, y0)

)
,

djn(α)

(
Tz0, TF (z0, y0, x0)

)}
< p(α) <∞,

for every α ∈ I, n ∈ N.
Also, assume either a) F is continuous, or

b) X has the property:
i) If a non-decreasing sequence {xn} in X converges to x then xn ≤ x

for all n;
ii) If a non-increasing sequence {yn} in X converges to y then yn ≥ y

for all n.
Then F has a triple fixed point, that is, there exists x, y, z ∈ X such that

F (x, y, z) = x, F (y, x, y) = y, F (z, y, x) = z.

Proof. Let x0, y0, z0 ∈ X such that x0 ≤ F (x0, y0, z0), y0 ≥ F (y0, x0, y0) and z0 ≤
F (z0, y0, x0). Put

x1 = F (x0, y0, z0), y1 = F (y0, x0, y0) and z1 = F (z0, y0, x0).

Continuing this process, we can construct sequences {xn}, {yn} and {zn} in X such
that

xn+1 = F (xn, yn, zn), yn+1 = F (yn, xn, yn) and zn+1 = F (zn, yn, xn), n = 0, 1, 2, . . .
(3.2)

Since F has the mixed monotone property, then using a mathematical induction it
is easy that

xn ≤ xn+1, yn ≥ yn+1 and zn ≤ zn+1 for all n = 0, 1, 2, . . . (3.3)

Now, for each n = 0, 1, 2, . . . and α ∈ I, we put

δαn = max
{
dα(Txn, Txn+1), dα(Tyn, T yn+1), dα(Tzn, T zn+1)

}
.

By the assumption 3), we have

δ
jn(α)
0 = max

{
djn(α)

(
Tx0, TF (x0, y0, z0)

)
, djn(α)

(
Ty0, TF (y0, x0, y0)

)
,

djn(α)

(
Tz0, TF (z0, y0, x0)

)}
< p(α) <∞.

(3.4)
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Now we claim that δαn ≤ ϕα
(
δ
j(α)
n−1

)
for every α ∈ I, n ∈ N. Indeed, in view of the

condition 1) and since xn−1 ≤ xn, yn−1 ≥ yn and zn−1 ≤ zn, we obtain

dα(Txn, Txn+1) = dα
(
TF (xn−1, yn−1, zn−1), TF (xn, yn, zn)

)
≤ ϕα

(
max

{
dj(α)(Txn−1, Txn), dj(α)(Tyn−1, Tyn), dj(α)(Tzn−1, T zn)

})
= ϕα

(
δ
j(α)
n−1

)
.

(3.5)

Similarly, we have

dα(Tzn, T zn+1) ≤ ϕα
(
δ
j(α)
n−1

)
, (3.6)

and

dα(Tyn, Tyn+1) = dα
(
TF (yn−1, xn−1, yn−1), TF (yn, xn, yn)

)
≤ ϕα

(
max

{
dj(α)(Tyn−1, Tyn), dj(α)(Txn−1, Txn), dj(α)(Tyn−1, T yn)

})
≤ ϕα

(
δ
j(α)
n−1

)
.

(3.7)

Combining (3.5)-(3.6), we deduce that

δαn ≤ ϕα
(
δ
j(α)
n−1

)
for every n ∈ N, α ∈ I. (3.8)

Since ϕα is a monotone non-decreasing function, it follows from (3.4), (3.8) and the
condition 2) that

δαn ≤ ϕα
(
δ
j(α)
n−1

)
≤ ϕα

(
ϕj(α)

(
δ
j2(α)
n−2

))
≤ ϕα

(
ϕj(α)

(
. . . ϕjn−1(α)

(
δ
jn(α)
0

)
. . .
))

≤ ϕnα
(
δ
jn(α)
0

)
≤ ϕnα

(
p(α)

)
.

Put ϕnα
(
p(α)

)
= bαn, for each α ∈ I and n ∈ N. Then, we have δαn ≤ bαn for every

α ∈ I, n ∈ N. Using the triangle inequality, we get

max
{
dα(Txn, Txn+p), dα(Tyn, T yn+p), dα(Tzn, T zn+p)

}
≤max

{ p−1∑
i=0

dα(Txn+i, Txn+i+1),

p−1∑
i=0

dα(Tyn+i, T yn+i+1),

p−1∑
i=0

dα(Tzn+i, T zn+i+1)
}

≤
p−1∑
i=0

max
{
dα(Txn+i, Txn+i+1), dα(Tyn+i, T yn+i+1), dα(Tzn+i, T zn+i+1)

}
=

p−1∑
i=0

δαn+i ≤
p−1∑
i=0

bαn+i.

(3.9)
Having in mind that ϕα(t) < t for every t > 0, and p(α) > 0, we obtain

ϕnα
(
p(α)

)
= ϕα

(
ϕn−1
α (p(α))

)
< ϕn−1

α

(
p(α)

)
< · · · < ϕα

(
p(α)

)
< p(α). (3.10)

Since ϕα(t)
t is a monotone non-decreasing function, it follows from (3.10) that

bαn+1

bαn
=
ϕα
(
ϕnα(p(α))

)
ϕnα
(
p(α)

) ≤
ϕα
(
p(α)

)
p(α)

< 1.

This implies that
∑∞
m=0 b

α
m is a convergent series. Hence

∑p−1
i=0 b

α
n+i → 0 as n→∞

for all p. It follows from (3.9) that dα(Txn, Txn+p)→ 0, dα(Tyn, Tyn+p)→ 0 and
dα(Tzn, T zn+p) → 0 as n → ∞ for all p. Thus {Txn}, {Tyn} and {Tzn} are
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Cauchy sequences. By the sequential completeness of X, {Txn}, {Tyn} and {Tzn}
are convergent. Since T is an ICS mapping, there exist x, y, z ∈ X such that

lim
n→∞

xn = x, lim
n→∞

yn = y, lim
n→∞

zn = z. (3.11)

Suppose that the assumption (a) holds. By (3.2), (3.11) and the continuity of F ,
we get

x = lim
n→∞

xn+1 = lim
n→∞

F (xn, yn, zn) = F (x, y, z),

y = lim
n→∞

yn+1 = lim
n→∞

F (yn, xn, yn) = F (y, x, y),

z = lim
n→∞

zn+1 = lim
n→∞

F (zn, yn, xn) = F (z, y, x).

This shows that F has a triple fixed point.
Suppose now the assumption (b) holds. Since {xn}, {zn} are non-decreasing and

xn → x, zn → z, and as {yn} is non-increasing and yn → y, by the assumption (b),
we have

xn ≤ x, yn ≥ y and zn ≤ z,
for all n. Using the triangle inequality and the contractive condition (3.1), we have

dα
(
Tx, TF (x, y, z)

)
≤ dα(Tx, Txn+1) + dα

(
Txn+1, TF (x, y, z)

)
= dα(Tx, Txn+1) + dα

(
TF (xn, yn, zn), TF (x, y, z)

)
≤ dα(Tx, Txn+1) + ϕα

(
max

{
dj(α)(Txn, Tx), dj(α)(Tyn, T y), dj(α)(Tzn, T z)

})
≤ dα(Tx, Txn+1) + max

{
dj(α)(Txn, Tx), dj(α)(Tyn, T y), dj(α)(Tzn, T z)

}
.

Letting n → ∞ in the above inequality and by the continuity of T , we have
dα
(
Tx, TF (x, y, z)

)
= 0 for all α, this implies that Tx = TF (x, y, z). Since T is in-

jective, we get that x = F (x, y, z). Similarly, we have y = F (y, x, y), z = F (z, y, x).
The proof is completed. �

Corollary 3.2. Let (X,≤) be a partially ordered set and P = {dα(x, y) : α ∈ I}
be a family of pseudometrics on X such that (X,P) is a Hausdorff sequentially
complete uniform space. Let T : X → X is an ICS mapping and F : X3 → X be a
mapping having the mixed monotone property on X. Suppose that:

1) For every α ∈ I there exists ϕα ∈ Φ such that

dα
(
TF (x, y, z), TF (u, v, w)

)
≤ ϕα

(
dj(α)(Tx, Tu) + dj(α)(Ty, Tv) + dj(α)(Tz, Tw)

3

)
,

for all x ≤ u, y ≥ v and z ≤ w;
2) For each α ∈ I, there exists ϕα ∈ Φ such that

sup{ϕjn(α)(t) : n = 0, 1, . . .} ≤ ϕα(t) for all t > 0,

and
ϕα(t)

t
is non-decreasing on (0,+∞);

3) There are x0, y0, z0 ∈ X such that x0 ≤ F (x0, y0, z0), y0 ≥ F (y0, x0, y0),
z0 ≤ F (z0, y0, x0) and djn(α)

(
Tx0, TF (x0, y0, z0)

)
+ djn(α)

(
Ty0, TF (y0, x0, y0)

)
+

djn(α)

(
Tz0, TF (z0, y0, x0)

)
< p(α) <∞, for every α ∈ I, n ∈ N.

Also, assume either a) F is continuous, or
b) X has the property:

i) If a non-decreasing sequence {xn} in X converges to x then xn ≤ x
for all n;
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ii) If a non-increasing sequence {yn} in X converges to y then yn ≥ y
for all n.

Then F has a triple fixed point, that is, there exist x, y, z ∈ X such that

F (x, y, z) = x, F (y, x, y) = y, F (z, y, x) = z.

Proof. Since ϕα is non-decreasing for all α, it is easy to see that

ϕα

(
dj(α)(Tx, Tu) + dj(α)(Ty, Tv) + dj(α)(Tz, Tw)

3

)
≤ ϕα

(
max

{
dj(α)(Tx, Tu), dj(α)(Ty, Tv), dj(α)(Tz, Tw)

})
,

and

max
{
djn(α)

(
Tx0, TF (x0, y0, z0)

)
, djn(α)

(
Ty0, TF (y0, x0, y0)

)
,

djn(α)

(
Tz0, TF (z0, y0, x0)

)}
≤ djn(α)

(
Tx0, TF (x0, y0, z0)

)
+ djn(α)

(
Ty0, TF (y0, x0, y0)

)
+ djn(α)

(
Tz0, TF (z0, y0, x0)

)
.

Thus, we can apply Theorem 3.1. �

One can proved that the triple fixed point is in fact unique, provide that we have
to add the properties for of partial order on X3 and the mapping j : I → I.

Definition 3.3. ([1]) A uniform space (X,P) is said to be j-bounded if for every
α ∈ I and x, y ∈ X there exists q = q(x, y, α) such that

djn(α)(x, y) ≤ q(x, y, α) <∞, for all n ∈ N.

Now, we shall prove the uniqueness of a triple fixed point. Let (X,≤) be a
partially ordered set. Then, we define a partial order on X3 in the following way:
For (x, y, z), (u, v, w) ∈ X3,

(x, y, z) ≤ (u, v, w)⇔ x ≤ u, y ≥ v and z ≤ w.

We say that (x, y, z) and (u, v, w) are comparable if

(x, y, z) ≤ (u, v, w) or (u, v, w) ≤ (x, y, z).

Also, we say that (x, y, z) is equal to (u, v, w) if and only if x = u, y = v and z = w.

Theorem 3.4. Suppose that the conditions of Theorem 3.1 are fulfilled. If X is
j-bounded and for every (x, y, z), (u, v, w) ∈ X3 there exists (a, b, c) ∈ X3 which is
comparable to them, then F has a unique triple fixed point.

Proof. By Theorem 3.1, we conclude that the set of triple fixed points of F is
nonempty. Assume that (x, y, z), (u, v, w) are triple fixed points of F , that is

x = F (x, y, z), y = F (y, x, y), z = F (z, y, x),

u = F (u, v, w), v = F (v, u, v), w = F (w, v, u).

We shall show that (x, y, z) and (u, v, w) are equal. By assumption, there exists
(a, b, c) ∈ X3 such that (a, b, c) is comparable to (x, y, z) and (u, v, w). Set a0 = a,
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b0 = b, c0 = c. By induction, we construct the sequences {an}, {bn} and {cn}
defined by

an+1 = F (an, bn, cn),

bn+1 = F (bn, an, bn),

cn+1 = F (cn, bn, an),

(3.12)

for n = 0, 1, 2, . . .
Suppose that (x, y, z) ≤ (a, b, c) = (a0, b0, c0). Since F has the mixed monotone

property, we have

a1 = F (a0, b0, c0) ≥ F (x, y, z) = x,

b1 = F (b0, a0, b0) ≤ F (y, x, y) = y,

c1 = F (c0, b0, a0) ≥ F (z, y, x) = z.

Hence (a1, b1, c1) ≥ (x, y, z). Recursively, we get that

(an, bn, cn) ≥ (x, y, z) for every n = 0, 1, 2, . . . (3.13)

By (3.12), (3.13) and (3.1), we have

dα(Tx, Tan+1)

= dα
(
TF (x, y, z), TF (an, bn, cn)

)
≤ ϕα

(
max

{
dj(α)(Tx, Tan), dj(α)(Ty, T bn), dj(α)(Tz, T cn)

})
,

(3.14)

dα(Ty, T bn+1)

= dα
(
TF (y, x, y), TF (bn, an, bn)

)
≤ ϕα

(
max

{
dj(α)(Ty, T bn), dj(α)(Tx, Tan), dj(α)(Ty, T bn)

})
≤ ϕα

(
max

{
dj(α)(Tx, Tan), dj(α)(Ty, T bn), dj(α)(Tz, T cn)

})
,

(3.15)

and

dα(Tz, T cn+1)

= dα
(
TF (z, y, x), TF (cn, bn, an)

)
≤ ϕα

(
max

{
dj(α)(Tz, T cn), dj(α)(Ty, T bn), dj(α)(Tx, Tan)

})
,

(3.16)

It follows from (3.14)-(3.16) that

max
{
dα(Tx, Tan+1), dα(Ty, T bn+1), dα(Tz, T cn+1)

}
≤ ϕα

(
max

{
dj(α)(Tx, Tan), dj(α)(Ty, T bn), dj(α)(Tz, T cn)

})
,

(3.17)

for every n = 0, 1, 2, . . .
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Since X is j-bounded, it follows from (3.17) and the condition 2) (in Theorem
3.1) that

max
{
dα(Tx, Tan+1), dα(Ty, T bn+1), dα(Tz, T cn+1)

}
≤ ϕα

(
max

{
dj(α)(Tx, Tan), dj(α)(Ty, T bn), dj(α)(Tz, T cn)

})
≤ ϕα

(
ϕj(α)

(
max

{
dj2(α)(Tx, Tan−1), dj2(α)(Ty, T bn−1), dj2(α)(Tz, T cn−1)

}))
≤ ϕα

(
ϕj(α)

(
. . . ϕjn−1(α)

(
max

{
djn(α)(Tx, Ta1), djn(α)(Ty, T b1),

djn(α)(Tz, T c1)
})

. . .
))

≤ ϕnα
(

max
{
djn(α)(Tx, Ta1), djn(α)(Ty, T b1), djn(α)(Tz, T c1)

})
≤ ϕnα

(
max

{
q(Tx, Ta1, α), q(Ty, T b1, α), q(Tz, T c1, α)

})
.

(3.18)

Denote rαn = ϕnα

(
max

{
q(Tx, Ta1, α), q(Ty, T b1, α), q(Tz, T c1, α)

})
. By the same

argument as in the proof of Theorem 3.1, we can deduce that
∑∞
n=0 r

α
n is con-

vergent. This implies that rαn → 0 as n → ∞. It follows from (3.18) that
max

{
dα(Tx, Tan+1), dα(Ty, T bn+1), dα(Tz, T cn+1)

}
→ 0 as n → ∞ for all α.

Since T is ICS, this implies that there are x, y, z ∈ X such that x = limn→∞ an, y =
limn→∞ bn and z = limn→∞ cn.

Similarly, we obtain that u = limn→∞ an, v = limn→∞ bn and w = limn→∞ cn.
Hence x = u, y = v and z = w. �

Corollary 3.5. In addition to hypotheses of Theorem 3.4, suppose that x0 ≤ y0

and z0 ≤ y0 then F has a unique fixed point, that is, there exists x ∈ X such that
F (x, x, x) = x.

Proof. By Theorem 3.4, we conclude that F has a unique triple fixed point (x, y, z).
Now we shall show that x = y = z. By the mixed monotone property of F , we have

x1 = F (x0, y0, z0) ≤ F (y0, x0, y0) = y1,

z1 = F (z0, y0, x0) ≤ F (y0, x0, y0) = y1.

Recursively, we get that

xn ≤ yn and zn ≤ yn, (3.19)

where xn = F (xn−1, yn−1, zn−1), yn = F (yn−1, xn−1, yn−1), zn = F (zn−1, yn−1, xn−1),
for all n ≥ 0.

Since (x, y, z) is a unique fixed point of F , we have x = limn→∞ xn, y =
limn→∞ yn and z = limn→∞ zn. By (3.2), (3.19) and (3.1), we have

dα(Txn+1, T yn+1)

= dα
(
TF (xn, yn, zn), TF (yn, xn, yn)

)
≤ ϕα

(
max

{
dj(α)(Txn, Tyn), dj(α)(Tyn, Txn), dj(α)(Tzn, Tyn)

})
= ϕα

(
max

{
dj(α)(Txn, Tyn), dj(α)(Tzn, T yn)

})
,

(3.20)
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and

dα(Tzn+1, T yn+1)

= dα
(
TF (zn, yn, xn), TF (yn, xn, yn)

)
≤ ϕα

(
max

{
dj(α)(Tzn, T yn), dj(α)(Tyn, Txn), dj(α)(Txn, Tyn)

})
= ϕα

(
max

{
dj(α)(Txn, T yn), dj(α)(Tzn, T yn)

})
.

(3.21)

It follows from (3.20) and (3.21) that

max
{
dα(Txn+1, T yn+1), dα(Tzn+1, Tyn+1)

}
≤ ϕα

(
max

{
dj(α)(Txn, T yn), dj(α)(Tzn, T yn)

})
.

(3.22)

Since X is j-bounded, by (3.22) and the condition 2) (in Theorem 3.1) we have

max
{
dα(Txn+1, T yn+1), dα(Tzn+1, Tyn+1)

}
≤ ϕα

(
max

{
dj(α)(Txn, T yn), dj(α)(Tzn, Tyn)

})
≤ ϕα

(
ϕj(α)

(
max

{
dj2(α)(Txn−1, T yn−1), dj2(α)(Tzn−1, Tyn−1)

}))
≤ ϕα

(
ϕj(α)

(
. . . ϕjn−1(α)

(
max

{
djn(α)(Tx1, T y1), djn(α)(Tz1, T y1)

})
. . .
))

≤ ϕnα
(

max
{
djn(α)(Tx1, T y1), djn(α)(Tz1, T y1)

})
≤ ϕnα

(
max

{
q(Tx1, T y1, α), q(Tz1, T y1, α)

})
.

(3.23)
By the same argument as in the proof of Theorem 3.4, we infer that

∞∑
n=0

ϕnα

(
max

{
q(Tx1, Ty1, α), q(Tz1, T y1, α)

})
is convergent. This implies that

lim
n→∞

ϕnα

(
max

{
q(Tx1, Ty1, α), q(Tz1, T y1, α)

})
= 0. (3.24)

From (3.23), (3.24) and the continuity of T , we have

dα(Tx, Ty) = lim
n→∞

dα(Txn+1, T yn+1) = 0

and
dα(Tz, Ty) = lim

n→∞
dα(Tzn+1, Tyn+1) = 0.

Thus, dα(Tx, Ty) = dα(Tz, Ty) = 0 for all α ∈ I. This implies that Tx = Ty
and Tz = Ty. Since T is an ICS mapping we have x = y and z = y, that is,
F (x, x, x) = x. �

Now we state some examples showing that our results are effective. We denote
R+ = [0,+∞) and N∗ = {1, 2, . . .}.

Example 3.6. Let X = R∞ =
{
x = {xn} : xn ∈ R, n = 1, 2, . . .

}
and the

mapping Pn : X → R defined by Pn(x) = Pn
(
{xn}

)
= xn for each n = 1, 2, . . . Let

I = N∗ × R+ be the index set and the family of pseudometrics on X defined by

d(n,r)(x, y) = r
∣∣Pn(x)− Pn(y)

∣∣, (n, r) ∈ I
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for every x, y ∈ X. Then {d(n,r) : (n, r) ∈ I} generates the uniform structure on
X. We consider the partial ordered ” ≤ ” on X which defined by x ≤ y ⇔ xn ≤ yn
for every n = 1, 2, . . .

Let T : X → X, and F : X3 → X are maps defined by

Tx =
{x1

2
,
x2

2
, . . .

}
and

F (x, y, z) =
{

1, 1 +
(
1− 1

2

)x2 − 2y2 + z2

2
, 1 +

(
1− 1

3

)x3 − 2y3 + z3

2
, . . .

}
.

It is easy to see that T is ICS. Now we claim that F satisfies Theorem 3.1. For

this, for every (n, r) ∈ I, we put ϕ(n,r)(t) =
2(n− 1)

2n− 1
t for every t ≥ 0, and denote

by j : I → I a map defined by j(n, r) =
(
n, 2r(1 − 1

2n )
)

for every (n, r) ∈ I. It is

easy to see that ϕjk(n,r)(t) =
2(n− 1)

2n− 1
t = ϕ(n,r)(t) for every k = 0, 1, 2, . . . Now,

we fix the functions ϕ(n,r)(t) =
2(n− 1)

2n− 1
t, for every t ≥ 0 and (n, r) ∈ I. Then, we

have

sup
{
ϕjk(n,r)(t) : k = 0, 1, 2, . . .

}
≤ ϕ(n,r)(t), for all t ≥ 0

and
ϕ(n,r)(t)

t
=

2(n− 1)

2n− 1
is monotone non-decreasing. Next, we show that F has

the mixed monotone property. Indeed, if x1, x2, y, z ∈ X and x1 ≤ x2 then x1
n ≤ x2

n

for every n = 1, 2, . . . It follows that x1
n−2yn+zn ≤ x2

n−2yn+zn, for all n. Hence

(
1− 1

n

)x1
n − 2yn + zn

2
≤
(
1− 1

n

)x2
n − 2yn + zn

2

or

Pn
(
F (x1, y, z)

)
≤ Pn

(
F (x2, y, z)

)
for all n.

Thus F (x1, y, z) ≤ F (x2, y, z).
Similarly, if x, y, z1, z2 ∈ X and z1 ≤ z2 then we have F (x, y, z1) ≤ F (x, y, z2).
Now, if x, y1, y2, z ∈ X and y1 ≤ y2 then y1

n ≤ y2
n for every n = 1, 2, . . .

This implies that xn − 2y1
n + zn ≥ xn − 2y2

n + zn, for all n. It follows that(
1 − 1

n

)xn − 2y1
n + zn

2
≥
(
1 − 1

n

)xn − 2y2
n + zn

2
for all n. Hence F (x, y1, z) ≥

F (x, y2, z).
This proves that F has the mixed monotone property.
Now, we show that F satisfies the contractive condition (3.1) with ϕα and j

above mentioned. Indeed, if x ≤ u, y ≥ v, z ≤ w then

d(n,r)

(
TF (x, y, z), TF (u, v, w)

)
= r
∣∣Pn(TF (x, y, z)

)
− Pn

(
TF (u, v, w)

)∣∣
= r
∣∣∣1
2

(
1− 1

n

)xn − 2yn + zn
2

− 1

2

(
1− 1

n

)un − 2vn + wn
2

∣∣∣
= r

n− 1

4n

(
un − xn + 2(yn − vn) + wn − zn

)
,

(3.25)
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and

dj(n,r)(Tx, Tu) = d(
n,2r(1− 1

2n )
)(Tx, Tu)

= 2r
(
1− 1

2n

)∣∣∣1
2
xn −

1

2
un

∣∣∣ = r
2n− 1

2n
(un − xn),

(3.26)

dj(n,r)(Ty, Tv) = d(
n,2r(1− 1

2n )
)(Ty, Tv)

= 2r
(
1− 1

2n

)∣∣∣1
2
yn −

1

2
vn

∣∣∣ = r
2n− 1

2n
(yn − vn),

(3.27)

and

dj(n,r)(Tz, Tw) = d(
n,2r(1− 1

2n )
)(Tz, Tw)

= 2r
(
1− 1

2n

)∣∣∣1
2
zn −

1

2
wn

∣∣∣ = r
2n− 1

2n
(wn − zn).

(3.28)

Since (3.26)-(3.28), we have

ϕ(n,r)

(
max

{
dj(n,r)(Tx, Tu), dj(n,r)(Ty, Tv), dj(n,r)(Tz, Tw)

})
= ϕ(n,r)

(
r

2n− 1

2n
max{un − xn, yn − vn, wn − zn}

)
=

2(n− 1)

2n− 1
r

2n− 1

2n
max{un − xn, yn − vn, wn − zn}

=
n− 1

n
max{un − xn, yn − vn, wn − zn}.

(3.29)

It follows from (3.25) and (3.29) that

d(n,r)

(
TF (x, y, z), TF (u, v, w)

)
≤ ϕ(n,r)

(
max

{
dj(n,r)(Tx, Tu), dj(n,r)(Ty, Tv), dj(n,r)(Tz, Tw)

})
.

Now, if we fix x0 = y0 = z0 = (1, 1, . . .) then

x0 = y0 = z0 = F (x0, y0, z0) = F (y0, x0, y0) = F (z0, y0, x0)

and

max
{
djk(n,r)

(
Tx0,TF (x0, y0, z0)

)
, djk(n,r)

(
Ty0, TF (y0, x0, y0)

)
,

djk(n,r)

(
Tz0, TF (z0, y0, x0)

)}
= 0 <∞.

Finally, it is easy to see that F is continuous. Hence, the conditions of Theorem
3.1 are fulfilled for F and F has at least of the triple fixed point.

Example 3.7. Let X = R∞ =
{
x = {xn} : xn ∈ R, n = 1, 2, . . .

}
and the

mapping Pn : X → R defined by Pn(x) = Pn({xn}) = xn for each n = 1, 2, . . . Let
I = N∗ × R+ be the index set and the family of pseudometrics on X defined by

d(n,r)(x, y) = r
∣∣Pn(x)− Pn(y)

∣∣, (n, r) ∈ I
for every x, y ∈ X. Then {d(n,r) : (n, r) ∈ I} generates the uniform structure on
X. We consider the partial ordered ” ≤ ” on X which defined by x ≤ y ⇔ xn ≤ yn
for every n = 1, 2, . . .

Consider the map T = idX and F : X3 → X defined by

F (x, y, z) =
{

1, 1 +
(
1− 1

2

)x2 − 2y2 + z2

4
, 1 +

(
1− 1

3

)x3 − 2y3 + z3

4
, . . .

}
.
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Let ϕ(n,r)(t) =
2(n− 1)

2n− 1
t with t ≥ 0 and j : I → I be defined j(n, r) =

(
n, r(1− 1

2n )
)

for every (n, r) ∈ I. It is clearly that T is ICS. By the same computation as in

Example 3.6, we can show that F satisfies Theorem 3.1 with ϕ(n,r)(t) =
2(n− 1)

2n− 1
t.

Now, we check that X is j-bounded. Indeed, for each (x, y) ∈ X we have

djk(n,r)(x, y) = d(
n,r(1− 1

2n )k
)(x, y)

= r
(
1− 1

2n

)k∣∣Pn(x)− Pn(y)
∣∣

≤ r
∣∣Pn(x)− Pn(y)

∣∣ = q
(
x, y, (n, r)

)
.

This proves that X is j-bounded. It is easy to see that if (x, y, z), (u, v, w) ∈ X3

then there exists (a, b, c) ∈ X3 is comparable to them. Thus F satisfies Theorem
3.4. Hence, F has a unique triple fixed point, that is x = y = z = {1, 1, . . .}.

Example 3.8. Let X =
{
x = {xn} : xn ∈ [1, 8], n = 1, 2, . . .

}
and the mapping

Pn : X → R defined by Pn(x) = Pn
(
{xn}

)
= xn for each n = 1, 2, . . . Let I =

N∗ × R+ be the index set and the family of pseudometrics on X defined by

d(n,r)(x, y) = r
∣∣Pn(x)− Pn(y)

∣∣, (n, r) ∈ I
for every x, y ∈ X. Then {d(n,r) : (n, r) ∈ I} generates the uniform structure on
X. We consider the partial ordered ” ≤ ” on X which defined by x ≤ y ⇔ xn ≤ yn
for every n = 1, 2, . . .

Let T : X → X, and F : X3 → X are maps defined by

Tx =
{

lnx1 + 1, lnx2 + 1, . . .
}

and

F (x, y, z) =

{
2, 2

(√
x2z2

y2

) 1
3

(
1− 1

2

)
, 2

(√
x3z3

y3

) 1
3

(
1− 1

3

)
, . . .

}
.

It is easy to see that T is ICS. Now we claim that F satisfies Theorem 3.4. For

this, for every (n, r) ∈ I, we put ϕ(n,r)(t) =
2(n− 1)

2n− 1
t, for every t ≥ 0, and denote

by j : I → I a map defined by j(n, r) =
(
n, r(1 − 1

2n )
)

for every (n, r) ∈ I. It is
easy to see that

ϕjk(n,r)(t) =
2(n− 1)

2n− 1
t = ϕ(n,r)(t), for every t ≥ 0, and k = 0, 1, 2, . . .

Now, we fix the functions ϕ(n,r)(t) =
2(n− 1)

2n− 1
t, for every t ≥ 0 and (n, r) ∈ I.

Then, we have

sup
{
ϕjk(n,r)(t) : k = 0, 1, 2, . . .

}
≤ ϕ(n,r)(t), for every t ≥ 0

and
ϕ(n,r)(t)

t
=

2(n− 1)

2n− 1
is monotone non-decreasing.

Next, we show that F has the mixed monotone property. Indeed, if x1, x2, y, z ∈
X and x1 ≤ x2 then x1

n ≤ x2
n for every n = 1, 2, . . . It follows that

√
x1
nzn
yn

≤
√
x2
nzn
yn

,
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for every n. Hence

2

(√
x1
nzn
yn

) 1
3

(
1− 1

n

)
≤ 2

(√
x2
nzn
yn

) 1
3

(
1− 1

n

)

or

Pn
(
F (x1, y, z)

)
≤ Pn

(
F (x2, y, z)

)
for all n.

Thus F (x1, y, z) ≤ F (x2, y, z).
Similarly, if x, y, z1, z2 ∈ X and z1 ≤ z2 then we have F (x, y, z1) ≤ F (x, y, z2).
Now, if x, y1, y2, z ∈ X and y1 ≤ y2 then y1

n ≤ y2
n for every n = 1, 2, . . .

This implies that
√
xnzn
y1n

≥
√
xnzn
y2n

, for all n. It follows that 2

(√
xnzn
y1n

) 1
3

(
1− 1

n

)
≥

2

(√
xnzn
y2n

) 1
3

(
1− 1

n

)
for all n. Thus, F (x, y1, z) ≥ F (x, y2, z).

This proves that F has the mixed monotone property.
Now, we show that F satisfies the contractive condition (3.1) with ϕα and j

above mentioned. Indeed, if x ≤ u, y ≥ v, z ≤ w then

d(n,r)

(
TF (x, y, z), TF (u, v, w)

)
= r
∣∣Pn(TF (x, y, z)

)
− Pn

(
TF (u, v, w)

)∣∣
= r

∣∣∣∣∣ ln 2

(√
xnzn
yn

) 1
3

(
1− 1

n

)
+ 1− ln 2

(√
unwn
vn

) 1
3

(
1− 1

n

)
− 1

∣∣∣∣∣
= r

1

3

(
1− 1

n

)(1

2
(lnun − lnxn) + (ln yn − ln vn) +

1

2
(lnwn − ln zn)

)
≤ rn− 1

n

(lnun − lnxn) + (ln yn − ln vn) + (lnwn − ln zn)

3
,

(3.30)

and

dj(n,r)(Tx, Tu) = d(
n,r(1− 1

2n )
)(Tx, Tu)

= r
(
1− 1

2n

)
| lnxn − lnun| = r

2n− 1

2n
(lnun − lnxn),

(3.31)

dj(n,r)(Ty, Tv) = d(
n,r(1− 1

2n )
)(Ty, Tv)

= r
(
1− 1

2n

)
| ln yn − ln vn| = r

2n− 1

2n
(ln yn − ln vn),

(3.32)

and

dj(n,r)(Tz, Tw) = d(
n,r(1− 1

2n )
)(Tz, Tw)

= r
(
1− 1

2n

)
| ln zn − lnwn| = r

2n− 1

2n
(lnwn − ln zn).

(3.33)
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Since (3.31)-(3.33), we have

ϕ(n,r)

(
max

{
dj(n,r)(Tx, Tu), dj(n,r)(Ty, Tv), dj(n,r)(Tz, Tw)

})
= ϕ(n,r)

(
r

2n− 1

2n
max{lnun − lnxn, ln yn − ln vn, lnwn − ln zn}

)
=

2(n− 1)

2n− 1
r

2n− 1

2n
max{lnun − lnxn, ln yn − ln vn, lnwn − ln zn}

= r
n− 1

n
max{lnun − lnxn, ln yn − ln vn, lnwn − ln zn}.

(3.34)

It follows from (3.30) and (3.34) that

d(n,r)

(
TF (x, y, z), TF (u, v, w)

)
≤ ϕ(n,r)

(
max

{
dj(n,r)(Tx, Tu), dj(n,r)(Ty, Tv), dj(n,r)(Tz, Tw)

})
.

Now, if we fix x0 = y0 = z0 = (2, 2, . . .) then

x0 = y0 = z0 = F (x0, y0, z0) = F (y0, x0, y0) = F (z0, y0, x0)

and

max
{
djk(n,r)

(
Tx0, TF (x0, y0, z0)

)
, djk(n,r)

(
Ty0, TF (y0, x0, y0)

)
,

djk(n,r)

(
Tz0, TF (z0, y0, x0)

)}
= 0 <∞.

Finally, it is easy to see that F is continuous. By the same argument as in
the Example 3.7, we obtain that X is j-bounded. It implies that the conditions
of Corollary 3.5 are fulfilled for F . Thus, F has a unique fixed point, that is
x = {2, 2, . . .}.

Remark 3.9. 1) It is not difficult to see that in Example 3.6 X is not j-bounded.
Indeed, we have

j(n, r) =
(
n, 2r(1− 1

2n
)
)
,

j2(n, r) = j
(
n, 2r(1− 1

2n
)
)

=
(
n, 22r(1− 1

2n
)2
)
,

and by induction we have

jk(n, r) =
(
n, 2kr(1− 1

2n
)k
)
,

for every k = 1, 2, . . . Thus, for each x, y ∈ X, we have

djk(n,r)(x, y) = d(
n,2kr(1− 1

2n )k
)(x, y)

= 2kr
(
1− 1

2n

)k∣∣Pn(x)− Pn(y)
∣∣

= r
(2n− 1

n

)k∣∣Pn(x)− Pn(y)
∣∣.

Since limk→∞( 2n−1
n )k =∞ for each n > 1, we can conclude that there no q

(
x, y, (n, r)

)
< +∞ such that djk(n,r)(x, y) < q

(
x, y, (n, r)

)
for every k = 0, 1, 2, . . . This proves

that X is not j-bounded.
In fact, F have more than one triple fixed point. For this, we consider

x = {1, x2, 1, 1, . . .}, y = {1, y2, 1, 1, . . .}, z = {1, z2, 1, 1, . . .},
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with x2 +y2 = 2 and z2 = x2. It is easy to check that (x, y, z) are triple fixed points
of F .

2) It follows from 1) that we can not omit the j-bounded property of X in the
Theorem 3.4.

Finally, we give a example which shows that if T is not an ICS mapping, then
the conclusion of Theorem 3.1 fails.

Example 3.10. Let X = R∞ =
{
x = {xn} : xn ∈ R, n = 1, 2, . . .

}
and the

mapping Pn : X → R defined by Pn(x) = Pn
(
{xn}

)
= xn for each n = 1, 2, . . . Let

I = N∗ be the index set and the family of pseudometrics on X defined by

dn(x, y) =
∣∣Pn(x)− Pn(y)

∣∣, n ∈ I
for every x, y ∈ X. Then {dn : n ∈ I} generates the uniform structure on X. We
consider the partial ordered ” ≤ ” on X which defined by x ≤ y ⇔ xn ≤ yn for
every n = 1, 2, . . .

Let T : X → X, and F : X3 → X are maps defined by

Tx = {1, 1, . . .}
and

F (x, y, z) =
{

2x1 − y1 + 1, 2x2 − y2 + 1, . . .
}
.

Now we claim that F satisfies Theorem 3.1. For this, for every n ∈ N∗ we put

ϕn(t) =
3

4
t, for every t ≥ 0, and denote by j : I → I a map defined by j(n) = n for

every n ∈ I. It is easy to see that ϕjk(n)(t) = ϕn(t) =
3

4
t, for every k = 0, 1, 2, . . .

Now, we fix the functions ϕn(t) =
3

4
t, for every t ≥ 0 and n ∈ I. Then, we have

sup
{
ϕjk(n)(t) : k = 0, 1, 2, . . .

}
= ϕn(t) ≤ ϕn(t), for all t ≥ 0

and
ϕn(t)

t
=

3

4
is monotone non-decreasing.

Firstly, we show that F has the mixed monotone property. Indeed, if x1, x2, y, z ∈
X and x1 ≤ x2 then x1

n ≤ x2
n for every n = 1, 2, . . . It follows that x1

n − 2yn + 1 ≤
x2
n − 2yn + 1, or

Pn
(
F (x1, y, z)

)
≤ Pn

(
F (x2, y, z)

)
for all n.

Thus F (x1, y, z) ≤ F (x2, y, z).
Similarly, if x, y, z1, z2 ∈ X and z1 ≤ z2 then we have F (x, y, z1) ≤ F (x, y, z2).
Now, if x, y1, y2, z ∈ X and y1 ≤ y2 then y1

n ≤ y2
n for every n = 1, 2, . . . This

implies that xn− 2y1
n + 1 ≥ xn− 2y2

n + 1, for all n. Hence F (x, y1, z) ≥ F (x, y2, z).
This proves that F has the mixed monotone property.
Now, we show that F satisfies the contractive condition (3.1) with ϕα and j

above mentioned. Indeed, if x ≤ u, y ≥ v, z ≤ w then

dn
(
TF (x, y, z), TF (u, v, w)

)
=
∣∣Pn(TF (x, y, z)

)
− Pn

(
TF (u, v, w)

)∣∣
=
∣∣1− 1

∣∣ = 0,
(3.35)

and
dj(n)(Tx, Tu) = dn(Tx, Tu) =

∣∣Pn(Tx)− Pn(Tu)
∣∣ =

∣∣1− 1
∣∣ = 0,
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dj(n)(Ty, Tv) = dj(n)(Tz, Tw) = 0,

ϕn

(
max

{
dj(n)(Tx, Tu), dj(n)(Ty, Tv), dj(n)(Tz, Tw)

})
= 0. (3.36)

It follows from (3.35) and (3.36) that

dn
(
TF (x, y, z), TF (u, v, w)

)
≤ ϕn

(
max

{
dj(n)(Tx, Tu), dj(n)(Ty, Tv), dj(n)(Tz, Tw)

})
.

Now, if we fix x0 = z0 = (1, 1, . . .), y0 = (0, 0, . . .) then

x0 ≤ F (x0, y0, z0), y0 ≥ F (y0, x0, y0), z0 ≤ F (z0, y0, x0)

and

max
{
djk(n)

(
Tx0, TF (x0, y0, z0)

)
, djk(n)

(
Ty0, TF (y0, x0, y0)

)
,

djk(n)

(
Tz0, TF (z0, y0, x0)

)}
= 0 <∞.

It is easy to see that F is continuous. Hence, the conditions of Theorem 3.1 are
fulfilled for F . Since Tx = {1, 1, . . .} for all x ∈ X, it is easy to see that T is not
ICS mapping. However, F has no triple fixed point.

4. Applications to nonlinear integral equations

In this section, we wish to investigate the existence of a unique solution to a
class of nonlinear integral equations, as an application of the tripled fixed point
theorems proved in the previous section.

Let us consider the following integral equations

x(t) = k(t) +

∫ ∆(t)

0

[
K1(t, s) +K2(t, s) +K3(t, s)

]
×
(
f
(
s, x(s)

)
+ g
(
s, x(s)

)
+ h
(
s, x(s)

))
ds,

(4.1)

where K1,K2,K3 ∈ C
(
R+ × R+,R

)
, f, g, h ∈ C

(
R+ × R,R

)
, and an unknown

function x(t) ∈ C
(
R+,R). The deviation ∆ : R+ → R+ is a continuous function, in

general case, unbounded. Note that, since deviation ∆ : R+ → R+ is unbounded,
we can not apply the known tripled fixed point theorems in metric space (see [5],
[9]) for the above integral equations.

Adopting in [17], we assume that the functions K1,K2,K3, f, g, h fulfill the fol-
lowing conditions

Assumption 4.1. A) K1(t, s) ≥ 0, K2(t, s) ≤ 0 and K3(t, s) ≥ 0 for all t, s ≥ 0.
B) For each compact subset K ⊂ R, there exist the positive numbers λ, µ, η and

ϕK ∈ Φ such that for all x, y ∈ R, x ≥ y and for all t ∈ K,

0 ≤ f(t, x)− f(t, y) ≤ λϕK
(
x− y

)
,

−µϕK
(
x− y

)
≤ g(t, x)− g(t, y) ≤ 0,

0 ≤ h(t, x)− h(t, y) ≤ ηϕK
(
x− y

)
and

max(λ, µ, η) sup
t∈K

∫ ∆(t)

0

(
K1(t, s)−K2(t, s) +K3(t, s)

)
ds ≤ 1

6
.
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C) For each compact subset K ⊂ R, there exists a compact set K ⊂ R such that
for all n ∈ N,

∆n(K) ⊂ K,
where ∆0(t) = t, ∆n(t) = ∆

(
∆n−1(t)

)
, for all t ≥ 0 and n = 1, 2, . . .

D) For each compact subset K ⊂ R, there exists ϕK ∈ Φ such that
ϕK(t)

t
is

non-decreasing and

ϕ∆n(K)(t) ≤ ϕK(t)

for all n ∈ N and for all t ≥ 0.

Definition 4.2. An element (α, β, γ) ∈ C
(
R+,R

)
× C

(
R+,R

)
× C

(
R+,R

)
is a

tripled lower and upper solution of the integral equation (4.1) if for any t ∈ R+ we
have α(t) ≤ β(t), γ(t) ≤ β(t) and

α(t) ≤ k(t)+

∫ ∆(t)

0

K1(t, s)
(
f
(
s, α(s)

)
+ g
(
s, β(s)

)
+ h
(
s, γ(s)

))
ds

+

∫ ∆(t)

0

K2(t, s)
(
f
(
s, β(s)

)
+ g
(
s, α(s)

)
+ h
(
s, β(s)

))
ds

+

∫ ∆(t)

0

K3(t, s)
(
f
(
s, γ(s)

)
+ g
(
s, β(s)

)
+ h
(
s, α(s)

))
ds,

β(t) ≥ k(t)+

∫ ∆(t)

0

K1(t, s)
(
f
(
s, β(s)

)
+ g
(
s, α(s)

)
+ h
(
s, β(s)

))
ds

+

∫ ∆(t)

0

K2(t, s)
(
f
(
s, α(s)

)
+ g
(
s, β(s)

)
+ h
(
s, α(s)

))
ds

+

∫ ∆(t)

0

K3(t, s)
(
f
(
s, β(s)

)
+ g
(
s, α(s)

)
+ h
(
s, β(s)

))
ds

and

γ(t) ≤ k(t)+

∫ ∆(t)

0

K1(t, s)
(
f
(
s, γ(s)

)
+ g
(
s, β(s)

)
+ h
(
s, α(s)

))
ds

+

∫ ∆(t)

0

K2(t, s)
(
f
(
s, β(s)

)
+ g
(
s, γ(s)

)
+ h
(
s, β(s)

))
ds

+

∫ ∆(t)

0

K3(t, s)
(
f
(
s, α(s)

)
+ g
(
s, β(s)

)
+ h
(
s, γ(s)

))
ds.

Theorem 4.3. Consider the integral equation (4.1) with K1,K2,K3 ∈ C
(
R+ ×

R+,R
)

and f, g, h ∈ C
(
R+×R,R

)
and k ∈ C

(
R+,R

)
and suppose that Assumption

4.1 is fulfilled. Then the existence of a tripled lower and upper solution for (4.1)
provides the existence of a unique solution of (4.1) in C

(
R+,R

)
.

Proof. Let X = C(R+,R). Then, X is a partially ordered set if we defined the
following order relation in X:

x, y ∈ X, x ≤ y ⇔ x(t) ≤ y(t), for every t ∈ R+.

For each a compact subset K ⊂ R, we define

pK(f) = sup
{
|f(t)| : t ∈ K

}
, for all f ∈ C(R+,R).
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It is known that the family of seminorms {pK}, where K runs over all compact
subsets of R, defines a locally convex Hausdorff topology of the space. Hence, X is
a Hausdorff sequentially uniform space whose uniformity is generated by the family
of pseudometrics

dK(f, g) = pK(f − g) = sup
{
|f(t)− g(t)| : t ∈ K

}
.

Let us next define the map j : I → I, where the index set I consists of all compact
subsets of R+, by the following way: For an arbitrary compact set K ⊂ R+, we put
j(K) :=

[
0,maxt∈K ∆(t)

]
, and jn(K) = j

(
jn−1(K)

)
, for every n ∈ N. Then, since

∆ : R+ → R+ is continuous the sets j(K), j2(K), j3(K), . . . is also compact.
Consider the map T = idX . It is easy to see that T is ICS. Define F : X3 → X

by

F (x, y, z)(t) =

∫ ∆(t)

0

K1(t, s)
(
f
(
s, x(s)

)
+ g
(
s, y(s)

)
+ h
(
s, z(s)

))
ds

+

∫ ∆(t)

0

K2(t, s)
(
f
(
s, y(s)

)
+ g
(
s, x(s)

)
+ h
(
s, y(s)

))
ds

+

∫ ∆(t)

0

K3(t, s)
(
f
(
s, z(s)

)
+ g
(
s, y(s)

)
+ h
(
s, x(s)

))
ds+ k(t)

for all t ∈ R+.
Now, we show that F has the mixed monotone property. Indeed, for x1, x2 ∈

C(R+,R) and x1 ≤ x2, that is x1(t) ≤ x2(t) for every t ∈ R+, by Assumption 4.1
we have

F (x1, y, z)(t)− F (x2, y, z)(t)

=

∫ ∆(t)

0

K1(t, s)
(
f
(
s, x1(s)

)
+ g
(
s, y(s)

)
+ h
(
s, z(s)

))
ds

+

∫ ∆(t)

0

K2(t, s)
(
f
(
s, y(s)

)
+ g
(
s, x1(s)

)
+ h
(
s, y(s)

))
ds

+

∫ ∆(t)

0

K3(t, s)
(
f
(
s, z(s)

)
+ g
(
s, y(s)

)
+ h
(
s, x1(s)

))
ds+ k(t)

−
∫ ∆(t)

0

K1(t, s)
(
f
(
s, x2(s)

)
+ g
(
s, y(s)

)
+ h
(
s, z(s)

))
ds

−
∫ ∆(t)

0

K2(t, s)
(
f
(
s, y(s)

)
+ g
(
s, x2(s)

)
+ h
(
s, y(s)

))
ds

−
∫ ∆(t)

0

K3(t, s)
(
f
(
s, z(s)

)
+ g
(
s, y(s)

)
+ h
(
s, x2(s)

))
ds− k(t)

=

∫ ∆(t)

0

K1(t, s)
(
f
(
s, x1(s)

)
− f

(
s, x2(s)

))
ds

+

∫ ∆(t)

0

K2(t, s)
(
g
(
s, x1(s)

)
− g
(
s, x2(s)

))
ds

+

∫ ∆(t)

0

K3(t, s)
(
h
(
s, x1(s)

)
− h
(
s, x2(s)

))
ds ≤ 0
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for every t ∈ R+. This yields F (x1, y, z)(t) ≤ F (x2, y, z)(t) for every t ∈ R+, that
is F (x1, y, z) ≤ F (x2, y, z).

By the same computation, we arrive at F (x, y1, z) ≤ F (x, y2, z) if y1 ≥ y2 and
F (x, y, z1) ≤ F (x, y, z2) if z1 ≤ z2. Hence, F has the mixed monotone property.

Next, we show that F satisfies the contractive condition 3.1) of Theorem 3.1.
Indeed, for each compact subset K of R and for x ≥ u, y ≤ v and z ≥ w, that is
x(t) ≥ u(t), y(t) ≤ v(t) and z(t) ≥ w(t) for every t ∈ R+, we have

dK
(
F (x, y, z), F (u, v, w)

)
= sup
t∈K

∣∣∣F (x, y, z)(t)− F (u, v, w)(t)
∣∣∣

= sup
t∈K

∣∣∣∣ ∫ ∆(t)

0

K1(t, s)
(
f
(
s, x(s)

)
+ g
(
s, y(s)

)
+ h
(
s, z(s)

))
ds

+

∫ ∆(t)

0

K2(t, s)
(
f
(
s, y(s)

)
+ g
(
s, x(s)

)
+ h
(
s, y(s)

))
ds

+

∫ ∆(t)

0

K3(t, s)
(
f
(
s, z(s)

)
+ g
(
s, y(s)

)
+ h
(
s, x(s)

))
ds+ k(t)

−
∫ ∆(t)

0

K1(t, s)
(
f
(
s, u(s)

)
+ g
(
s, v(s)

)
+ h
(
s, w(s)

))
ds

−
∫ ∆(t)

0

K2(t, s)
(
f
(
s, v(s)

)
+ g
(
s, u(s)

)
+ h
(
s, v(s)

))
ds

−
∫ ∆(t)

0

K3(t, s)
(
f
(
s, w(s)

)
+ g
(
s, v(s)

)
+ h
(
s, u(s)

))
ds− k(t)

∣∣∣∣
= sup
t∈K

∣∣∣∣ ∫ ∆(t)

0

K1(t, s)
[(
f
(
s, x(s)

)
− f

(
s, u(s)

))
+
(
g
(
s, y(s)

)
− g
(
s, v(s)

))
+
(
h
(
s, z(s)

)
− h
(
s, w(s)

))]
ds

+

∫ ∆(t)

0

K2(t, s)
[(
f
(
s, y(s)

)
− f

(
s, v(s)

))
+
(
g
(
s, x(s)

)
− g
(
s, u(s)

))
+
(
h
(
s, y(s)

)
− h
(
s, v(s)

))]
ds

+

∫ ∆(t)

0

K3(t, s)
[(
f
(
s, z(s)

)
− f

(
s, w(s)

))
+
(
g
(
s, y(s)

)
− g
(
s, v(s)

))
+
(
h
(
s, x(s)

)
− h
(
s, u(s)

))]
ds

∣∣∣∣
= sup
t∈K

∣∣∣∣ ∫ ∆(t)

0

K1(t, s)
[(
f
(
s, x(s)

)
− f

(
s, u(s)

))
−
(
g
(
s, v(s)

)
− g
(
s, y(s)

))
+
(
h
(
s, z(s)

)
− h
(
s, w(s)

))]
ds

−
∫ ∆(t)

0

K2(t, s)
[(
f
(
s, v(s)

)
− f

(
s, y(s)

))
−
(
g
(
s, x(s)

)
− g
(
s, u(s)

))
+
(
h
(
s, v(s)

)
− h
(
s, y(s)

))]
ds
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+

∫ ∆(t)

0

K3(t, s)
[(
f
(
s, z(s)

)
− f

(
s, w(s)

))
−
(
g
(
s, v(s)

)
− g
(
s, y(s)

))
+
(
h
(
s, x(s)

)
− h
(
s, u(s)

))]
ds

∣∣∣∣
≤ sup
t∈K

∣∣∣∣ ∫ ∆(t)

0

K1(t, s)
[
λϕK

(
x(s)− u(s)

)
+ µϕK

(
v(s)− y(s)

)
+ ηϕK

(
z(s)− w(s)

)]
ds

−
∫ ∆(t)

0

K2(t, s)
[
λϕK

(
v(s)− y(s)

)
+ µϕK

(
x(s)− u(s)

)
+ ηϕK

(
v(s)− y(s)

)]
ds

+

∫ ∆(t)

0

K3(t, s)
[
λϕK

(
z(s)− w(s)

)
+ µϕK

(
v(s)− y(s)

)
+ ηϕK

(
x(s)− u(s)

)]
ds

∣∣∣∣
≤ 2 max{λ, µ, η} sup

t∈K

∫ ∆(t)

0

[
K1(t, s)−K2(t, s) +K3(t, s)

][
ϕK
(
x(s)− u(s)

)
+ ϕK

(
v(s)− y(s)

)
+ ϕK

(
z(s)− w(s)

)]
ds

≤ 2 max{λ, µ, η}
[
ϕK

(
sup

s∈[0,maxt∈K ∆(t)]

∣∣x(s)− u(s)
∣∣)

+ ϕK

(
sup

s∈[0,maxt∈K ∆(t)]

∣∣v(s)− y(s)
∣∣)+ ϕK

(
sup

s∈[0,maxt∈K ∆(t)]

∣∣z(s)− w(s)
∣∣)]

× sup
t∈K

∫ ∆(t)

0

[
K1(t, s)−K2(t, s) +K3(t, s)

]
ds

≤ 2 max{λ, µ, η}
[
ϕK

(
sup

s∈j(K)

∣∣x(s)− u(s)
∣∣)+ ϕK

(
sup

s∈j(K)

∣∣v(s)− y(s)
∣∣)

+ ϕK

(
sup

s∈j(K)

∣∣z(s)− w(s)
∣∣)] sup

t∈K

∫ ∆(t)

0

[
K1(t, s)−K2(t, s) +K3(t, s)

]
ds

≤ 2.
1

6

[
ϕK

(
dj(K)(x, u)

)
+ ϕK

(
dj(K)(y, v)

)
+ ϕK

(
dj(K)(z, w)

)]
≤ 1

3

[
3ϕK

(
max

{
dj(K)(x, u), dj(K)(y, v), dj(K)(y, v)

})]
= ϕK

(
max

{
dj(K)(x, u), dj(K)(y, v), dj(K)(y, v)

})
.

Condition 2) in Theorem 3.1 is satisfied by D) of Assumption 4.1.
Now, let us (α, β, γ) be a tripled lower and upper solution of the integral equation

of (4.1). Then, we have

α(t) ≤ F (α, β, γ)(t), β(t) ≥ F (β, α, β)(t) and γ(t) ≤ F (γ, β, α)(t)

for all t ∈ R+, that is α ≤ F (α, β, γ), β ≥ F (β, α, β) and γ ≤ F (γ, β, α). Moreover,
for each compact subset K ⊂ R, by the continuity and assumption, we have

max
{
djn(K)

(
α, F (α, β, γ)

)
, djn(K)

(
β, F (β, α, β)

)
, djn(K)

(
γ, F (γ, β, α)

)}
≤ max

{
d[0,maxs∈K ∆(s)]

(
α, F (α, β, γ)

)
, d[0,maxs∈K ∆(s)]

(
β, F (β, α, β)

)
,

d[0,maxs∈K ∆(s)]

(
γ, F (γ, β, α)

)}
<∞.

Hence, condition 3) in Theorem 3.1 is satisfied.
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Now, suppose that {un} is a monotone non-decreasing sequence in X that
converges to u ∈ X. Then for every t ∈ R+, the sequence of real numbers
u1(t) ≤ u2(t) ≤ · · · ≤ un(t) ≤ · · · converges to u(t). Therefore, for every t ∈ R+,
n ∈ N, un(t) ≤ u(t). Hence un ≤ u, for all n ∈ N.

Similarly, we can verify that limit v(t) of a monotone non-increasing sequence
vn(t) in X is a lower bound for all elements in the sequence. That is, v ≤ vn for all
n. Hence, the condition b) in Theorem 3.1 holds.

Using again assumption (C), we have

djn(K)(x, y) = sup
t∈jn(K)

∣∣x(t)− y(t)
∣∣

≤ sup
t∈[0,maxs∈K ∆(s)]

∣∣x(t)− y(t)
∣∣ = d[0,maxs∈K ∆(s)](x, y) < +∞

for all n ∈ N. This implies that X is j-bounded.
Now, we define on X3 the following partial order relation:

For (x, y, z), (u, v, w) ∈ X3,

(x, y, z) ≤ (u, v, w)⇔ x(t) ≤ u(t), y(t) ≥ v(t) and z(t) ≤ w(t)

for every t ∈ R+. Observe that for every x, y, z ∈ X, by the uniform topol-
ogy of X, we easily see that max{x(t), y(t), z(t)}, min{x(t), y(t), z(t)} for
each t ∈ R+ are in X and are the upper and lower bounds of x, y, z, respec-
tively in X. This follows that for every (x, y, z), (u, v, w) ∈ X3, there exists a(

max{x, u}, min{y, v}, max{z, w}
)
∈ X3 which is comparable to (x, y, z) and

(u, v, w).
Therefore, by applying Theorem 3.4, we can conclude that F has a unique tripled

fixed point (x, y, z). Finally, since α ≤ β, γ ≤ β by Corollary 3.5, we have x = y = z,
that is x(t) = y(t) = z(t) for every t ∈ R+. Hence F (x, x, x) = x and x is the unique
solution of the equation (4.1). �
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