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A NEW APPROACH TO GENERALIZED FRACTIONAL

DERIVATIVES

(COMMUNICATED BY CLAUDIO R. HENRÍQUEZ)

UDITA N. KATUGAMPOLA

Abstract. The author (Appl. Math. Comput. 218(3):860-865, 2011) intro-
duced a new fractional integral operator given by,(

ρIαa+f
)
(x) =

ρ1−α

Γ(α)

∫ x

a

τρ−1f(τ)

(xρ − τρ)1−α
dτ,

which generalizes the well-known Riemann-Liouville and the Hadamard frac-

tional integrals. In this paper we present a new fractional derivative which gen-
eralizes the familiar Riemann-Liouville and the Hadamard fractional deriva-

tives to a single form. We also obtain two representations of the generalized

derivative in question. An example is given to illustrate the results.

1. Introduction

In recent years, the Fractional Calculus (FC) draws increasing attention due to
its applications in many fields. The history of the theory goes back to seventeenth
century, when in 1695 the derivative of order α = 1

2 was described by Leibnitz
in his letter to L’Hospital [34–36]. Since then, the new theory turned out to be
very attractive to mathematicians as well as physicists, biologists, engineers and
economists. The first application of fractional calculus was due to Abel in his
solution to the Tautocrone problem [1]. It also has applications in biophysics,
quantum mechanics, wave theory, polymers, continuum mechanics, Lie theory, field
theory, spectroscopy and in group theory, among other applications [22, 24, 25, 41].
In [66], Samko et al. provide an encyclopedic treatment of the subject. Various
type of fractional derivatives were studied: Riemann-Liouville, Caputo, Hadamard,
Erdélyi-Kober, Grünwald-Letnikov, Marchaud and Riesz are just a few to name
[30,43,52,55,66].

In fractional calculus, the fractional derivatives are defined via fractional inte-
grals [30, 66]. According to the literature, the Riemann-Liouville fractional deriv-
ative (RLFD), hence the Riemann-Liouville fractional integral plays a major role
in FC [66]. The Caputo fractional derivative has also been defined via a modified
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Riemann-Liouville fractional integral [30]. Butzer et al. investigate properties of
the Hadamard fractional integral and the derivative in [6–8, 29–31, 55, 66]. In [8],
they also obtained the Mellin transforms of the Hadamard fractional integral and
diffferential operators and in [56], Pooseh et al. obtained expansion formulas of the
Hadamard operators in terms of integer order derivatives. Many other interesting
properties of those operators and others are summarized in [66] and [30] and the
references therein.

In [28], the author introduced a new fractional integral, which generalizes the
Riemann-Liouville and the Hadamard integrals into a single form. For further
properties such as expansion formulas, variational calculus applications, control
theoretical applications, convexity and integral inequalities and Hermite-Hadamard
type inequalities of this new operator and similar operators, for example, see [5,20,
22,46–51,56,60]. In the present work, we shall introduce a new fractional derivative,
which generalizes the two derivatives in question.

The paper is organized as follows. In the next section, we give definitions and
some properties of the fractional integrals and fractional derivatives of various types.
More detailed explanation can be found in the book by Samko et al. [66] and the
references therein.

2. Definitions

We shall start this section with some historical remarks and definitions to refresh
our memories about some of the remarkable milestones in the theory of fractional
calculus. As is well known nowadays, the first documented note about a fractional
derivative was found in 1695 in the letters of Leibnitz to L’Hospital [34–36, 63].
In 1819, Lacroix obtained the well-known 1

2 derivative of x [33], using inductive

arguments, to be d
1
2 /dx

1
2 = 2

√
x/π, long before the Riemann-Liouville fractional

derivative surfaced into the realm of fractional calculus. The idea of a derivative
that is not of an order of a positive integer was introduced by Liouville in 1832
[37, 40, 54], in a manner that would generalize the relation Dneαx = αneαx to any
complex number n. Liouville then used Fourier theory to extend his α-derivative to
any function f(z) expanded in a Fourier series [54]. In 1888, Nekrassov [45,53,54],
generalizing the Cauchy’s integral formula,

dnf(z)

dzn
=

n!

2πi

∮
C

f(ζ)

(ζ − z)n+1
dζ,

where C is a closed contour surrounding the point z and enclosing a region of
analyticity of f , came up with a fractional derivative which can be showed to be
equal to Riemann-Liouville derivative under certain conditions [52, p.54-55].

The Riemann-Liouville fractional integrals Iαa+f and Iαb−f of order α ∈ C,
(Re(α) > 0) are defined by [30,37,58,59,66],

(Iαa+f)(x) =
1

Γ(α)

∫ x

a

(x− τ)α−1f(τ)dτ ;x > a, (2.1)

and

(Iαb−f)(x) =
1

Γ(α)

∫ b

x

(τ − x)α−1f(τ)dτ ;x < b, (2.2)

respectively. Here Γ(·) is the Gamma function. These integrals are called the
left-sided and right-sided fractional integrals, respectively. When α = n ∈ N,
the integrals (2.1) and (2.2) coincide with the n-fold integrals [30, chap.2]. The
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corresponding Riemann-Liouville fractional derivatives Dα
a+f and Dα

b−f of order
α ∈ C, Re(α) ≥ 0 are defined by [66],

(Dα
a+f)(x) =

(
d

dx

)n (
In−αa+ f

)
(x), x > a, (2.3)

and

(Dα
b−f)(x) =

(
− d

dx

)n (
In−αb− f

)
(x), x < b, (2.4)

respectively, where n = [Re(α)] + 1. A word about notations is necessary here.
We sometimes use the ceiling function, d·e to denote the same quantity [·] + 1,
when there is no room for confusion. For simplicity, from this point onwards, we
consider only the left-sided integrals and derivatives, except in a few occasions. The
interested reader may find more detailed information about right-sided integrals and
derivatives in the references, for example in [30,66].

One of the disadvantages of RLFD is that it is not consistant with the physical
initial and boundary conditions when it comes to initial or boundary value prob-
lems. To overcome this difficulty, M. Caputo coined a variation of RLFD, now
known in the litureture as Caputo or Dzherbashyan-Caputo fractional derivative
given by [10,15,30],

(cDα
a+f)(x) =

1

Γ(n− α)

∫ x

a

(x− τ)n−α−1f (n)(τ)dτ, n− 1 < α ≤ n.

Some historical notes about the derivative in question can be found in [42, p. 18-
21]. The interested reader may also find an extended reference lists about Caputo
derivative, for example, in the book by Mainardi [42]. An application oriented
treatment of the Caputo derivative is given in the book by Diethelm [14]. As pointed
out by Hilfer [25], the Caputo derivative was originally introduced by Liouville [38,
p.10] though it did not take much attention until Caputo brought the idea back
to life in his celebrated paper “Linear models of dissipation whose Q is almost
frequency independent, Part II” [9].

An interpolation between the two derivatives mentioned above are defined by
the Hilfer fractional derivative of order α and type β given by [24, p.113] [42, p.11],

0D
α,β
t := I

β(1−α)
0+ ◦D1 ◦ I(1−β)(1−α)0+ , 0 < α, β ≤ 1.

The Riemann-Liouville derivative of order α corresponds to the type β = 0, while
the Caputo derivative to the type β = 1.

The Weyl-Riesz fractional integration operator of a periodic function f takes
the form [44],

Wα =
1

2π

∫ 2π

0

Ψα(τ)f(x− τ) dτ,

where

Ψα(τ) = 2

∞∑
n=1

cosnτ

nα
, and 0 ≤ τ ≤ 2π.

Further properties of this operator can be found in [65,66] and the references therein.
Jumarie proposed a simple modification to the Riemann-Liouville derivative given
by [3, 26,27],

Dα
xf(x) =

1

Γ(n− α)

dn

dxn

∫ x

0

(x− τ)n−α−1
[
f(τ)− f(0)

]
dτ, n− 1 < α ≤ n.
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with the property that the derivative of a constant function being equal to zero, a
property important in Applied Mathematics and Engineering applications.

Another fractional integral that is important in potential theory is the Riesz
fractional integral given by [2],

RIαt f(t) =
1

2Γ(α)

∫ b

a

|t− τ |α−1f(τ) dτ, α > 0. (2.5)

Two other variations of this integral, one with a factor of 1/ cos(πα/2) and another
with a factor of 2 can be found in [66] and [55], respectively. The corresponding
Riesz fractional derivative and Riesz-Caputo derivative of (2.5) are defined by [2],

RDα
t f(t) =

1

Γ(n− α)

( d
dt

)n ∫ b

a

|t− τ |n−α−1f(τ) dτ, α > 0,

and

CDα
t f(t) =

1

Γ(n− α)

∫ b

a

|t− τ |n−α−1
( d
dτ

)n
f(τ) dτ, α > 0,

respectively. Further properties of these and similar operators can be found, for
example, in [18,23,25,30,55,66].

This list is by no means complete and the interested reader may find detailed
information about Davison and Essex [13], Coimbra [12], Marchaud [4,57,66], Weyl-
Marchaud [69], Chen-Marchaud [57], Marchaud-Hadamard [25], Miller-Ross [43]
and sequential fractional derivatives [11,19,39] in the references given.

Further details including comparison results of most of these derivatives can be
found, for example, in the expository articles by Hilfer [25], and Atangana and
Secer [3]. The historical notes about the developement of the theory can be found
in the works of Ross [43,61–64].

The other derivative that we elaborate in this paper, is the Hadamard fractional
integral introduced by J. Hadamard [21,30,66], and is given by,

Iαa+f(x) =
1

Γ(α)

∫ x

a

(
log

x

τ

)α−1
f(τ)

dτ

τ
, (2.6)

for Re(α) > 0, x > a ≥ 0 while the Hadamard fractional derivative of order α ∈
C, Re(α) > 0 is given by,

Dα
a+f(x) =

1

Γ(n− α)

(
x
d

dx

)n ∫ x

a

(
log

x

τ

)n−α−1
f(τ)

dτ

τ
, (2.7)

for x > a ≥ 0 where n = [Re(α)]+1. The readers may have noticed that the version
given in [30, p. 111] has misprints in its definitions of the Hadamard Derivatives.

In 1940, generalizations of Riemann-Liouville fractional operators were intro-
duced by Erdélyi and Kober [16]. Erdélyi-Kober -type fractional integral and deriv-
ative operators are defined by [16,17,23,30,32,66,68],

(Iαa+; ρ, ηf)(x) =
ρ x−ρ(α+η)

Γ(α)

∫ x

a

τρη+ρ−1 f(τ)

(xρ − τρ)1−α
dτ, (2.8)

for x > a ≥ 0, Re(α) > 0 and

(Dα
a+; ρ, ηf)(x) = x−ρη

(
1

ρ xρ−1
d

dx

)n
xρ(n+η)

(
In−αa+; ρ, η+αf

)
(x), (2.9)
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for x > a,Re(α) ≥ 0, ρ > 0. When ρ = 2, a = 0, the operators are called Erdélyi-
Kober operators. When ρ = 1, a = 0, they are called Kober-Erdélyi or Kober
operators [30, p.105]. The geometric interpretation of this operator is discussed
in [23].

In [53], Osler further generalizes Erdélyi’s work by defining fractional integrals
and derivatives of a function f(x) with respect to another function g(x) defined
by [30,66],

(Iαa+;gf)(x) =
1

Γ(α)

∫ x

a

g′(τ) f(τ)

[(g(x)− g(τ)]1−α
dτ, (2.10)

for x > a ≥ 0, Re(α) > 0 and

(Dα
a+;gf)(x) =

1

Γ(n− α)

(
1

g′(x)

d

dx

)n ∫ x

a

g′(τ) f(τ)

[(g(x)− g(τ)]α−n+1
dτ, (2.11)

for x > a,Re(α) ≥ 0, ρ > 0, respectively. Where g(x) is an increasing and positive
function on (a,∞], having a continuos derivative g(x) on (a,∞).

In [28], the author introduces a generalization to the Riemann-Liouville and
Hadamard fractional integral and also provided existence results and semigroup
properties. In the same reference, author introduces a generalised fractional deriv-
ative, which does not possess the inverse property. In this paper, we describe a new
fractional derivative, which generalizes the Riemann-Liouville and the Hadamard
fractional derivatives. Notice here that this new derivative possesses the inverse
property [Theorem 4.2].

3. Generalization of the fractional integration and differentiation

As in [29], consider the space Xp
c(a, b) (c ∈ R, 1 ≤ p ≤ ∞) of those complex-

valued Lebesgue measurable functions f on [a, b] for which ‖f‖Xpc <∞, where the
norm is defined by,

‖f‖Xpc =

(∫ b

a

|tcf(t)|p dt
t

)1/p

<∞, (3.1)

for 1 ≤ p <∞, c ∈ R and for the case p =∞,

‖f‖X∞c = ess supa≤t≤b
[
tc|f(t)|

]
(c ∈ R). (3.2)

We start with the definitions introduced in [28] with a slight modification in
the notation. Let Ω = [a, b], (−∞ < a < b < ∞) be a finite interval on the real
axis, R. The generalized fractional integral ρIαa+f of order α ∈ C (Re(α) > 0) of
f ∈ Xp

c(a, b) is defined by,(
ρIαa+f

)
(x) =

ρ1−α

Γ(α)

∫ x

a

τρ−1f(τ)

(xρ − τρ)1−α
dτ, (3.3)

for x > a, Re(α) > 0, and ρ > 0. This integral is called the left-sided fractional
integral. Similarly, we can define the right-sided fractional integral ρIαb−f by,(

ρIαb−f
)
(x) =

ρ1−α

Γ(α)

∫ b

x

τρ−1f(τ)

(τρ − xρ)1−α
dτ, (3.4)

for x < b and Re(α) > 0. These are the fractional generalizations of the n−fold left-

and right- integrals of the form
∫ x
a
tρ−11 dt1

∫ t1
a
tρ−12 dt2 · · ·

∫ tn−1

a
tρ−1n f(tn)dtn and∫ b

x
tρ−11 dt1

∫ b
t1
tρ−12 dt2 · · ·

∫ b
tn−1

tρ−1n f(tn)dtn for n ∈ N, respectively. When b = ∞,
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the generalized fractional integral is called a Liouville-type integral and the case
a =∞ is referred to as the Weyl-derivative [67].

Remark 1. It can be seen that these operators are not equivalent to Erdélyi-Kober
operators or equation (2.10) when g(x) = xρ, but is different from a factor of ρ−α,
which is essential in the case of the Hadamard operators.

It is worthy to mention here that we interchangeably use the notations ρaIαx and
ρIαa+ for the geneneralized integral (3.3). We obtained conditions for the integration
operator ρaIαx to be bounded in Xp

c(a, b), and also established semigroup property for
the generalized fractional integration operator. Those two results are summarized
bellow [28].

Theorem 3.1. Let α > 0, 1 ≤ p ≤ ∞, 0 < a < b <∞ and let ρ ∈ R and c ∈ R be
such that ρ− 1 ≥ c. Then the operator ρ

aI
α
t is bounded in Xp

c(a, b) and

‖ρaIαt f‖Xpc ≤ K‖f‖Xpc ,
where

K =
bαρ−1

Γ(α)

∫ b
a

1

uc−αρ−1

(
uρ − 1

ρ

)α−1
du, ρ 6= 0.

Kilbas proved a version of Theorem 3.1 in [29], for the special case when ρ→ 0+.
In [28], we proved the boundedness of the operator ρ

aIαt in the space Lp(a, b), and
the Semigroup property, i.e., for α > 0, β > 0, 1 ≤ p ≤ ∞, 0 < a <∞, ρ ∈ R, c ∈ R
and ρ ≥ c, ρaIαt ρ

aI
β
t f = ρ

aI
α+β
t f for f ∈ Xp

c(a, b), was also obtained. The interested
reader is refered to [28] for further results related to the generalized fractional
integral in question.

Next we give the main result of this paper. First consider the generalized frac-
tional derivatives defined below.

Definition 3.2. (Generalized Fractional Derivatives)
Let α ∈ C, Re(α) ≥ 0, n = [Re(α)] + 1 and ρ > 0. The generalized fractional
derivatives, corresponding to the generalized fractional integrals (3.3) and (3.4),
are defined, for 0 ≤ a < x < b ≤ ∞, by(

ρDαa+f
)
(x) =

(
x1−ρ

d

dx

)n (
ρIn−αa+ f

)
(x)

=
ρα−n+1

Γ(n− α)

(
x1−ρ

d

dx

)n ∫ x

a

τρ−1f(τ)

(xρ − τρ)α−n+1
dτ, (3.5)

and (
ρDαb−f

)
(x) =

(
− x1−ρ d

dx

)n (
ρIn−αb− f

)
(x)

=
ρα−n+1

Γ(n− α)

(
− x1−ρ d

dx

)n ∫ b

x

τρ−1f(τ)

(τρ − xρ)α−n+1
dτ, (3.6)

if the integrals exist.

In the next section we give several properties pertaining to the generalized frac-
tional derivative we have just defined. In Theorem 4.1, we show that the Riemann-
Liouville and the Hadamard fractional derivatives are special cases of the general-
ized derivative in question.
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4. Properties of the generalized operators

In this section we introduce several identites pertaining to the generalized frac-
tional operators. Mainly, we give the inverse property, composition theorem, index
theorem and linearity followed by Taylor-like expansion, which extends the classical
Taylor series to include fractional derivatives.

The theorem below gives the relations of generalized fractional derivatives to
that of Riemann-Liouville and Hadamard. For simplicity we give only the left-sided
versions here.

Theorem 4.1. Let α ∈ C, Re(α) ≥ 0, n = dRe(α)e and ρ > 0. Then, for x > a,

1. lim
ρ→1

(
ρIαa+f

)
(x) =

1

Γ(α)

∫ x

a

(x− τ)α−1f(τ)dτ, (4.1)

2. lim
ρ→0+

(
ρIαa+f

)
(x) =

1

Γ(α)

∫ x

a

(
log

x

τ

)α−1
f(τ)

dτ

τ
, (4.2)

3. lim
ρ→1

(
ρDαa+f

)
(x) =

(
d

dx

)n
1

Γ(n− α)

∫ x

a

f(τ)

(x− τ)α−n+1
dτ, (4.3)

4. lim
ρ→0+

(
ρDαa+f

)
(x) =

1

Γ(n− α)

(
x
d

dx

)n ∫ x

a

(
log

x

τ

)n−α−1
f(τ)

dτ

τ
. (4.4)

Proof. The equations (4.1) and (4.3) follow from taking limits when ρ → 1, while
(4.2) follows from the L’Hospital rule by noticing that [28]

lim
ρ→0+

ρ1−α

Γ(α)

∫ x

a

f(τ)τρ−1

(xρ − τρ)1−α
dτ

=
1

Γ(α)

∫ x

a

lim
ρ→0+

f(τ)τρ−1

(
xρ − τρ

ρ

)α−1
dτ,

=
1

Γ(α)

∫ x

a

(
log

x

τ

)α−1
f(τ)

dτ

τ
.

The proof of (4.4) is similar. �

Similar results for right-sided integrals and derivatives also exist and can be
proved similarly. Note that the equations (4.1) and (4.3) are related to the Riemann-
Liouvile operators, while equaitons (4.2) and (4.4) are related to the Hadamard
operators. The results similar to equations (4.1) and (4.3) can also be derived from
the Erdélyi-Kober operators, though it is not possible to obtain equivalent results
for (4.2) and (4.4). This is due to the absence of the factor ρα, which is needed in
the limit to obtain the Hadamard-type operators.

We are now ready to state and prove the following properties. The first is the
inverse property.

Theorem 4.2 (Inverse property). Let 0 < α < 1, and f ∈ Xp
c(a, b), ρ > 0. Then,

for a > 0, ρ > 0, (
ρDαa+ ρIαa+

)
f(x) = f(x). (4.5)
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Proof. We prove this using Fubini’s theorem and Dirichlet technique [55, p. 59].
From direct integration, we have(

ρDαa+ ρIαa+
)
f(x)

=
ρα

Γ(1− α)

(
x1−ρ

d

dx

)∫ x

a

τρ−1

(xρ − τρ)α
· ρ

1−α

Γ(α)

∫ τ

a

sρ−1f(τ)

(τρ − sρ)1−α
ds dτ,

=
ρ

Γ(1− α)Γ(α)

(
x1−ρ

d

dx

)∫ x

a

f(s) sρ−1
∫ x

s

(τρ − sρ)α−1

(xρ − τρ)α
τρ−1 dτds,

=
ρ

Γ(1− α)Γ(α)

(
x1−ρ

d

dx

)∫ x

a

f(s) sρ−1ds · Γ(1− α)Γ(α)

ρ
,

= f(x).

Notice here that the inner integral is evaluated by the change of variable, t = (τρ−
sρ)/(xρ−sρ), and using the Beta function defined by, B(α, β) =

∫ 1

0
tα−1(1−t)β−1dt

and the fact that B(α, β) = Γ(α)Γ(β)/Γ(α+ β). This completes the proof. �

Next is the index theorem.

Theorem 4.3 (Index theorem). Let α, β ∈ C be such that 0 < Re(α) < 1 and
0 < Re(β) < 1. If 0 < a < b <∞ and 1 ≤ p ≤ ∞, then, for f ∈ Xp

c(a, b), ρ > 0,

ρIαa+ ρIβa+ f = ρIα+βa+ f and ρDαa+ ρDβa+ f = ρDα+βa+ f.

Proof. The interested reader may find the proof of the first result in [28]. The proof
of the second result follows from direct integration. �

Now we turn our attention to the following. The compositions between the
generalized fractional differentiation and the generalized fractional integration are
given by the following result.

Theorem 4.4 (Composition). Let α, β ∈ C be such that 0 < Re(α) < Re(β) < 1.
If 0 < a < b <∞ and 1 ≤ p ≤ ∞, then, for f ∈ Lp(a, b), ρ > 0,

ρDαa+ ρIβa+ f = ρIβ−αa+ f and ρDαb− ρI
β
b− f = ρIβ−αb− f.

Proof. The proof is similar to that of Theorem 4.2. Notice that we use the property
Γ(x+ 1) = xΓ(x) of the Gamma function here. �

Remark 2. The author suggests the interested readers refer Property 2.27 in [30]
for similar properties of the Hadamard fractional operator.

As in the case of classical derivatives, the generalized operators also satisfy the
linearity property.

Theorem 4.5 (Linearity property). Let α ∈ C be such that 0 < Re(α) < 1. If
0 < a < b <∞ and 1 ≤ p ≤ ∞, then for f, g ∈ Xp

c(a, b) and ρ > 0,

ρIαa+
(
f + g

)
= ρIαa+ f + ρIαa+ g (4.6)

and,
ρDαa+

(
f + g

)
= ρDαa+ f + ρDαa+ g. (4.7)

Proof. The results follow from direct integration. �
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5. Taylor-like expansions

The identities (4.6) and (4.7) can be used to express the generalized fractional
derivative of an analytic function, which possesses a Taylor series expansion.

Theorem 5.1. Let R be a simply connected region containing the origin. Also, let
f(z) be analytic in R and ρ > 0. Then,

ρDα
0+f(z) =

ρα−1

zαρ

∞∑
i=0

Γ
(

1 + i
ρ

)
i! Γ
(

1 + i
ρ − α

)f (i)(0) zi, for z 6= 0. (5.1)

Proof. The proof immediately follows from (5.7) using the Taylor expansion of f(z)
near 0. �

Remark 3. One of the advantages of this result is that it enables us to find the
generalized fractional derivative of any function, which is analytic in a neighborhood
of 0. The direct calculation of the derivative may be too much involved, for example
consider the case of f(x) = sin−1 x.

In [20], Gaboury et al. obtained two representations of ρIα0+ given by the fol-
lowing result.

Theorem 5.2. Let R be a simply connected region containing the origin. Also, let
f(z) be analytic in R. Then, for α ∈ C and ρ ∈ C with Re(α) > 0 and Re(ρ) > 0,
the following relations hold true

ρIα0+f(z) =
ρ1−α

Γ(α)
zρ(α−1)

∞∑
n=0

(1− α)n
n!

z−nρ

× Γ
(
ρ(n+ 1)

)
D−ρ(n+1)
z f(w − z)

∣∣∣
w=z

,

and

ρIα0+f(z) =
ρ1−α

Γ(α)
zρ(α−1)

∞∑
n=0

(1− α)n
n!

z−nρD−1z zρ(n+1)−1f(z),

where (λ)n is the Pochhammer’s symbol given by (λ)n = Γ(λ+ n)/Γ(λ), (λ)0 = 1.

In this paper we obtain similar results for the fractional derivative operator ρDα0+
given by the next result.

Theorem 5.3. Let R be a simply connected region containing the origin. Also,
let f(z) be analytic in R. Then, for α ∈ C with 0 < Re(α) < 1 and ρ ∈ C with
Re(ρ) > 0, the following relations hold true.

ρDα0+f(z) =
ρα

Γ(1− α)

(
z1−ρ

d

dz

) ∞∑
k=0

(α)k
k!

z−(α+k)ρ

× Γ
(
ρ(k + 1)

)
I
ρ(k+1)
0+ f(w − z)

∣∣∣
w=z

, (5.2)
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and

ρDα0+f(z) =
ρα

Γ(1− α)

∞∑
k=0

(α)k
k!

Γ(ρ(k + 1))

zρ(α+k+1)

×

{
zD

1−ρ(k+1)
0+ f(w − z)

∣∣∣
w=z
− ρ(k + α)I

ρ(k+1)
0+ f(w − z)

∣∣∣
w=z

}
, (5.3)

where (λ)n is the Pochhammer’s symbol given by (λ)n = Γ(λ + n)/Γ(λ), (λ)0 = 1
and Iα0+ and Dα

0+ are the Riemann-Liouville fractional integral and derivative of
variable z, respectively.

Proof. For the proof, we follow a similar approach as appeared in [20, page 4].
Consider the generalized operator ρDα0+ in the complex plane with 0 < Re(α) < 1.
Then n = dRe(α)e = 1 and by (3.5),

(
ρDαa+f

)
(z) =

ρα

Γ(1− α)

(
z1−ρ

d

dz

)∫ z

0

τρ−1f(τ)

(zρ − τρ)α
dτ

Making the change of variable τ = z − ξ, (dτ = −dξ), we have

(
ρDαa+f

)
(z) =

ρα

Γ(1− α)

(
z1−ρ

d

dz

)∫ z

0

f(z − ξ)(z − ξ)ρ−1(
zρ − (z − ξ)ρ

)α dξ,

=
ρα

Γ(1− α)

(
z1−ρ

d

dz

)
z−ρα

∫ z

0

f(z − ξ)(z − ξ)ρ−1(
1−

(
z−ξ
z

)ρ)α dξ,

=
ρα

Γ(1− α)

(
z1−ρ

d

dz

)
z−ρα

∫ z

0

∞∑
k=0

(α)k
k!

(
z − ξ
z

)ρk
f(z − ξ)

(z − ξ)1−ρ
dξ,

(5.4)

=
ρα

Γ(1− α)

(
z1−ρ

d

dz

) ∞∑
k=0

(α)k
k!

z−ρ(α+k)
∫ z

0

f(z − ξ)(z − ξ)ρ(k+1)−1 dξ.

(5.5)

Rewriting the integral in (5.5) in terms of the Riemann-Liouville fractional integral
operator yields (5.2). Notice that in (5.4), we have used the power series expansion

of
(
1−

(
z−ξ
z

)ρ)α
for the values of ξ near z. Equation (5.3) follows from (5.4) after

applying the product rule and rewriting the resulted sum in terms of the Riemann-
Liouville integral and derivative. �

Let us consider an example to illustrate the results. We shall find the generalized
fractional derivative (3.5) of the power function and investigate the behavior for
different values of ρ, α and ν. For simplicity assume α ∈ R+, 0 < α < 1 and a = 0.

Example 5.4. We consider the function f(x) = xν , where ν ∈ R. The formula
(3.5) yields

ρDα
0+x

ν =
ρα

Γ(1− α)

(
x1−ρ

d

dx

)∫ x

0

tρ−1

(xρ − tρ)α
tν dt. (5.6)
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The Generalized Derivatives of the Power Function f(x) = xν

(a) ν= 1.0 (b) ν= 2.0

(c) ν= 0.5 (d) ν= 1.5

Figure 1. Generalized fractional derivative of the power function
f(x) = xν for ρ = 0.4, 1.0, 1.4 and ν = 0.5, 1.0, 1.5, 2.0.

To evaluate the inner integral, use the substitution u = tρ/xρ to obtain,∫ x

0

tρ−1

(xρ − tρ)α
tν dt =

xν+ρ(1−α)

ρ

∫ 1

0

u
ν
ρ

(1− u)α
du,

=
xν+ρ(1−α)

ρ
B
(

1− α, 1 +
ν

ρ

)
,

where B(. , .) is the Beta function. Thus, we obtain,

ρDα
0+x

ν =
Γ
(

1 + ν
ρ

)
ρα−1

Γ
(

1 + ν
ρ − α

) xν−αρ, (5.7)
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for ρ > 0, after using the properties of the Beta function [30] and the relation
Γ(z+1) = z Γ(z). When ρ = 1 we obtain the Riemann-Liouville fractional derivative
of the power function given by [30,55,66],

1Dα
0+x

ν =
Γ
(

1 + ν
)

Γ
(

1 + ν − α
) xν−α. (5.8)

Equation (5.8) agrees well with the standard results obtained for Riemann-
Liouville fractional derivative (2.3). Interestingly enough, for α = 1, ρ = 1, we
obtain 1D1

0+x
ν = ν xν−1, as one would expect.

To compare the results, we plot (5.7) for several values of ρ ∈ R. We also consider
different values of ν to see the effect on the degree of the power function. Figure
1 summaries the comparision results for ρ and ν, while Figure 2 summaries the
comparision results for different values of α and ν. We notice that the characteristics
of the fractional derivative are mainly depend on the values of ρ, thus it provides a
new direction for applications. In Figure 1(c) and 1(d), we further notice that for
ν = 0.5 and ν = 1.5, the concavity of the function changes when ρ changes near 1,
at which the fractional derivative takes a constant value for different values of x or
becomes linear.

(a) ν= 2.0 (b) α= 0.5

Figure 2. Generalized fractional derivative of the power function
f(x) = xν for α = 0.1, 0.5, 0.9 and ν = 0.5, 1.0, 1.5

Remark 4. It is easy to see that the generalized fractional integrals and deriva-
tives in (3.3), (3.4), (3.5) and (3.6) can be expressed in terms of Erdélyi-Kober
operator given in (2.8) and (2.9). According to Theorem 4.1, it is evident that the
Riemann-Liouville and the Hadamard fractional derivatives are special cases of this
new derivative. It is not possible to obtain the Hadamard operators in the case of
the Erdélyi-Kober operators due to a reason explained earlier.
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6. Conclusion

The paper presents an extended fractional differentiation, which generalizes the
Riemann-Liouville and the Hadamard fractional derivatives into a single form,
which when a parameter is fixed at different values or by taking limits produces
the above derivatives as special cases. It is also pointed out that this new deriva-
tive is not equivalent to Erdélyi-Kober derivative, which is the genealization of the
Riemann-Liouville derivative.
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