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SOME NEW SUBCLASSES OF MEROMORPHICALLY
MULTIVALENT FUNCTIONS DEFINED BY MEANS OF THE
LIU-SRIVASTAVA OPERATOR

(COMMUNICATED BY H.M.SRIVASTAVA)

LI-NA MA, SHU-HAI LI

ABSTRACT. In this paper, we introduce and investigate the various properties
and characteristics of the class Mg . (p; 8; A, B) and its subclass M;fc(p; B; A, B)
of meromorphically p-valent functions of order 8(p3 > 1), which are defined by
means of the Liu-Srivastava operator. In particular, several inclusion relations,
coefficients estimates, distortion theorems ,neighborhoods partial, Hadamard
products and fractional calculus are proven here for each of these function
classes.

1. INTRODUCTION AND DEFINITIONS

Let A denote the class of functions of the form
f(2) :z—l—Zakzk, (1.1)
k=2

which are analytic in the open unit disc U= {z € C : |z| < 1}.

We denote by S the subclass of A, consisting of functions which are also univalent
in U.

A function f € S is said to be reverse starlike of order « if it satisfies

)
Hepe)

which is equivalent to
1 f(2) 1+2
(l—a)(zf’(z) —a) = 1—2’
for 0<a <1 and for all z € U.

In 1992, Yamakawa[l5] first considered it and J.S.Kang et al.[5] further studied
it in 1996.
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S.Najafzadeh and S.R.Kulkarni[I0] and M.K.Aouf et al.[I] characterized and
discussed some subclasses of this kind of function with two different operators.

Recently, more and more researchers are interested in the reverse case of the
starlike functions.

In this paper, we consider some new subclass of meromorphically p-valent func-
tions with the reverse case.

Let X, denote the class of meromorphic functions of the form

fR)=27+> az"? (peN={1,2,-}), (1.2)
k=1

which are analytic and p-valent in the punctured open unit disc
U'={z€C:0< |z| <1}
For functions f € ¥, given by (L2) and g € X, given by

g(z)=2"P+ Z bez" P (peN), (1.3)
k=1
we define the Hadamard product (or convolution) of f and g by
(f*9)(z) =27+ abiz""" = (9% f)(2). (1.4)
k=1

The Liu-Srivastava linear operator Ly,(a,c) is defined as follows(see[S])

Lp(a,c)f(2) == ¢pla, c;2) x f(2)  (f € 5p), (1.5)
and ¢p(a, ¢; z) is defined by

a,c z)i=z"P 3 %zk_p
(bp( 2 ) +; (C)k ’ (16)

(€ U5aeRceR\Zy;Zy =0,-1,-2,--+),
where (\),, is the Pochhammer symbol(or the shifted factorial) defined (in terms of
the Gamma function) by
) _T(A+n) |1, n =0,
T A+ ---(A+n—1), neN.

It is easily verified from the definitions (L5 and (L) that
2(Lp(a,0)f(2)) = aLyp(a+1,¢)f(2) = (a +p)Ly(a, ) f(2). (1.8)
The Liu-Srivastava operator Ly (a,c) was considered by Liu and Srivastava [§].A
linear operator, analogous to Ly(a, c), was introduced earlier by Saitoh [12]. In[g],

making use of the linear operator L, (a, ¢), Liu and Srivastava discussed the subclass
of ¥, such that

(1.7)

2(Lyfa,0)f(z) | 1+ Az
PLo(@of(z) | 1+ Bz
By using the Liu-Srivastava operator Ly(a,c), we introduce a new subclass

M,..(p; B; A, B) such that the following subclass of meromorphically p-valent func-
tions for f € ¥,, pf>1,-1<B<A<1and

D Lp(a,0) f(2) _1—|—Az
1—-pB <Z(Lp(a,c)f(z))/ +ﬂ) = 1+ Bz’ (1.10)

(1.9)
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According to subordination theory,([[I0) is equivalent to
ALy, f ) 148
pLp(a,c)f(2) 1+[A—pB(A - B)lz’
or equivalently, the following inequality holds true

_ PLy(a, ) (2) + ALy, (=) -
BloLy{a, 1 (2) + 2(Lp(a,e) () + (1~ pB)(A — Ba(Lyla, AT |

Remark.For a = ¢,A = 1-2p,B = —1,0 < p < 1,Ly(a,c)f(z) = f(2), if
f € Mya(p;B;1—2p,—1), then

p (f(Z) +B><_1+(1—2p)2,

1—pB \zf'(2) -2z
which is equivalent to
p f(z) )
R + > p.
A () 2o
Especially, for p =1, if f € M, 4(1;5;1 — 2p,—1), then
1 f(z) )
—R + > p.
() >

Furthermore, we say that a function f € M, .(p; 8; A, B) is in the analogous
class Mf.(p; B; A, B) whenever f(z) is of the form

fz)=2"7+> laxls* (peN). (1.12)
k=p

2. INCLUSION PROPERTIES OF THE CLASS M, .(p; 3; A, B)

We begin by recalling the following result (popularly known as Jack’s Lemma),
which we shall apply in proving our first inclusion theorem (Theorem 2] below).

Lemma 2.1. (Jack []) Let the (nonconstant) function w(z) be analytic in U with
w(0) = 0. If |w(z)| attains its mazimum value on the circle |z| = r < 1 at a point
zo € U, then

zow'(20) = Yw(20)
where v is a real number and v > 1.
Theorem 2.1. If
L pA-B)pE-1)
T 1+ [A-pB(A-B))
then

1 1+ A
—1<B<A<L<L;-<f<——p€EN),
( P p(A - B) )

Maq1,e(p; 85 A, B) € Mac(p; B A, B).
Proof. Let f € Ma11..(p; 8; A, B) and suppose that

p Ly(a,0)f(2) _ 1+ Aw(z)
1-pB <Z(Lp(a70)f(2))’ " ﬂ) " 1+ Buw(z)’ (2.1)
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where the function w(z) is either analytic or meromorphic in U with w(0) = 0.
Then, by using (L8]) and (2.1]), we have

Ly(a+ L) _at{la+pA=pBA=B)]=Bplo(s)
Ly(a,c)f(z) 1+ [A-pB(A - B)w(z) ' '
Upon differentiating both sides of ([Z2]) with respect to z logarithmically, if we
make use of (L8] once again, we obtain

z(Lpla+1,0)f(2) _ p(A— B)(1 —pp)zw'(z)
Ly(a+1,0)f(2) (a+{(a+p)[A—-pB(A— B)|] - Bp}w(z)) (1 +[A = pB(A - B)|w(z))
p(1+ Bw(z))

T A PB4 - Ba(d)’ 23)
If we suppose that
Jnax |w(z)l = lw(zo)] =1 (20 €1), (2.4)
and apply Jack’s Lemma, we find that
zow'(20) = w(20) (v = 1). (2.5)

Now, upon setting
w(zp) =€ (0 < 0 < 2n).
If we put z = 2 in (23], we get
‘_ pr(CL + 1a C)f(ZO) + ZO(LP(G‘ + 17 C)f(ZO))/
BlpLy(a+1,¢)f(20) + 20(Lp(a +1,¢)f(20))'] + (1 = pB)(A — B)zo(Lp(a + 1,¢) f(20))'
(74 ) + {(a+p)[A - pS(A = B)] — Bp}e” |°
a+{[A—pB(A - B)l(a+p—~)— Bp}e?
~ ?+2ay +{(2a+ 2p — v)M — 2Bp}M + 2v((2a + p)M — Bp) cos
B la+{M(a+p—~)— Bp}e?|? '
(M = A-pB(A-DB))

2
-1

Set
g(t) =7 + 2ay + v{(2a + 2p — v)M — 2Bp}M + 2v((2a + p)M — Bp)t. (2.6)
Then,by conditions,we have
g =1+ M){2a(1+M)+~(1—-M)—-2p(B— M)} >0
and
g(-1) =1 - M){2a(1 — M) +~(1+ M)+ 2p(B— M)} >0,
which,together, imply that
g(cosd) >0 (0<6<2m). (2.7)
In view of ([2.6) and (27, it would obviously contradict our hypothesis that
f € Mayi.c(p; B; A, B).
Thus we must have
lw(z)] <1 (2€U),
and we conclude from Z1]) that
f € Mac(p; B; A, B),
which evidently completes the proof of Theorem 2.1 O
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Next we prove an inclusion property associated with a certain integral transform.

Theorem 2.2. Let A be a complex number such that

p(A—B)(pB-1) 1 1+4
If f(2) € M,.(p; B; A, B),then the function F(z) defined by
A z
F(z) = z’\+1’/0 tAMPTLE(1)dt (2.8)
also belongs to the class Mg .(p; B; A, B)
Proof. Suppose that f € M, .(p; 8; A, B) and put
D L,(a,c)F(z) _ 14+ Aw(z)
1— B <Z(LP(Q,C)F(Z))/ * ﬁ) T 1+ Bu(z) 29)
From (2.8),we have
AL OPE) Ayl f() 210

L(@0F()  LyaoP()
where the function w(z) is either analytic or meromorphic in U with w(0) = 0.
Then by using ([2.9) and (210)), we find after some computations that
2(Lpla, ) f(2))
Ly(a,¢)f(2)
_ p(A — B)(1 — pB)zw'(2)
(A+{(A+p)[A - pB(A - B)] - Bp}w(2)) (1 + [A - pB(A - B)|w(2))
B p(1 + Bw(z))
14+ [A = pB(A - B)lw(2)

(2.11)

p(A = B)(1 - pB)zw'(2)

(A+{(A+p)[A = pB(A - B)] = Bp}w(z)) (1 + [A — pB(A — B)lw(2))
p(A = B)(1 - pBlw(z)
1+[A—pB(A—-B)lw(z)

Now we follow the lines of the proof of TheoremiZ.I] and assume that (24) and
(23) hold true. Thus, by writing w(zp) = (0 < 6 < 27) and setting z = 2o in

@I0) and 2I2), we obtain

+ (2.12)

2

'_ PLy(a: )£ (20) + 20(Ly(a, ) f (z0)) .
BlpLy(a,c)f(20) + 20(Lyp(a, ) f(20))'] + (1 = pB)(A — B)zo(Lp(a, c) f(20))’
. / 2

|- s ot I

Blp -+ 2SI 1 (1 - pp)(A - B) pegfEO)
_ ’ (£ X) + (O + )[4~ pS(A - B)] - Bp}e?|*

A+ {[A=pB(A=BI(A+p—7) - Bp)e”

6) (2.13)

T A {A-pB(A—B)](A+p— ) - Bp}e’
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where, for convenience,
Q0): = |(v+X) +{(A+p)M = Bp}e”|* — A+ {M(A+p—~) — Bp}e”|?
= 29R(\) + % +y2R(\) + 2p — ) M?
—2pByM + 27y cos (M (2R(N\) + p) — Bp)
(M:=A—-pB(A—B);-1<B<A<I1;y>10<6<2m). (2.14)
Set
g(t) = V29RO +{(2R(\)+2p—~) M —2Bp} M+2~v((2R(N\)+p) M —Bp)t (2.15)

By conditions

p(A—B)(ps—-1)
R(A) > )
W= A B)
so that
9(1) =1+ M)2RAN)(1 + M) +~(1 = M) = 2p(B - M)} > 0
and
9(=1) =~y(1 = M){2R(A)(1 = M) +~(1 + M) + 2p(B — M)} > 0,
which imply that
g(cosd) >0 (0<6<2m). (2.16)
So,we have
Q) >0 (0<6<2m). (2.17)
In view of ([2I7)), (213) would obviously contradict our hypothesis that
f € Mac(p; B; A, B).
Hence, we must have
lw(z)|<1 (2€0)
and we conclude from (29) that
F € Ma.(p; B; A, B),
where the function F(z) is given by (Z.8]).

The proof of Theorem is thus completed. O
Theorem 2.3. Set - 1< B< A<L;pB>1l;a€Rce R\Zy;Z; =0,—1,-2,---the
function f € M, .(p; B; A, B) if and only if the function F(z) given by

—— a - a+p—1
F(z):= z“+P/O t f(®)dt (2.18)

belongs to the class Mq11.0(p; 5; A, B).
Proof. By using of [2.I8]), we have
af(z) = (a+p)F(z) + 2F'(2),
which, according to (L8], implies
aLy(a,c)f(z) = (a+ p)Ly(a,c)F(2) + 2(Ly(a,c)F(2)) = aLy(a+1,¢)F(z).
Therefore, we have
Ly(a,c)f(z) = Lp(a +1,¢)F(z)
and the desired result follows at once. (|
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3. Basic PROPERTIES OF THE CLASS M;fc(p;ﬂ;A,B)
In this section, we assume further that
a>0,c>0.

We first determine a necessary and sufficient condition for a function f € ¥, of the
form (LI2) to be in the class M. (p; 3; A, B) of meromorphically p-valent functions
with positive coefficients.

Theorem 3.1. Let -1 < B < A< 1,p8 > 1,p € Nand f € £, be given by
(L12).Then f € M[ (p; B; A, B) if and only if

oo

S l(k )1~ B)+ h(A = B)p3 — D] oul < (4= B)pB - 1. (3.1
k=p P

The result is sharp for the function f(z) given by

p(A—B)(p8—-1) (Qr+p L
[(k+p)(1 = B) + k(A —B)(pB —1)] (a)k+p
(k=p,p+1,p+2,---;p€N)

Proof. Suppose that f € M .(p; 8; A, B) is given by (LI2). Then, making use of
(CII) and ([I2), we obtain
pLy(a,0)f(2) + 2(Lyp(a, 0) f(2))'
BlpLy(a,c)f(z) + z(Lp(a,c) f(2))'] + (A = B)(1 — pB)z(Lp(a, c) f(2))

fz)=2""+

(3.2)

o0

3 (k+ Pt
_ =p
PA=B)(pB—1)+ X (Blk +p) — k(A= B)(pB — 1) g lanlh+7
=p
<1l (z€U) (3.3)

Since |R(z)| < |z| for any z, choosing z to be real and letting z — 1~ through
real values, (B3] yields

;wmg—’;zmu < p(A—B)(pﬁ—1>+kz_p<B<k+p>—k(A—B)(pﬁ—l))gﬁw
(3.4)

So,we can obtain the desired inequality (BI).
In order to prove the converse, we assume that the inequality (B.I)) holds true.
Then, if we let z € OU we find from (LI2) and B.I)) that

_ pLp(a; ¢)f(2) + 2(Lp(a, ) f(2))’
BlpLy(a,¢)f(2) + 2(Lp(a, ) f(2))'] + (A = B)(1 = pB)z(Lp(a, ) f(2))'

(k+p) Wt gy

< o0
PA=B)pB — 1)+ 3 (Blk+p) — k(A = B)(pB — 1) {2
<1 (2€dU:={z€C:lz]=1}) (3.5)

Hence, by the Maximum Modulus Theorem, we have f(z) € M} .(p; 3; A, B).
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By observing that the function f(z) given by ([32) is indeed an extremal function
for the assertion ([B.I]),we complete the proof of Theorem [B.11 O

By applying Theorem Bl we obtain the following sharp coefficient estimates.

Corollary 3.1. Let -1 < B< A<1,p8>1,pe Nand f € 3, be given by (1.12).
If f(z) € M (p; B; A, B), then

p(A—B)(pS - 1) (©)k+p
S B+ kA B 1) (@)k+p o

(k=p,p+1,p+2,---;peN).
Fach of these inequalities is sharp, with the extremal function f(z) given by (3.3).

Next we prove the following growth and distortion properties of the class M, j .(p; B; A, B).
Theorem 3.2. Let f € M} (p;3;A,B),-1 < B < A<1,p8>1,pecN. If the

sequence {Cy} is nondecreasing, then

G BCZEW —Uow <5y < v 4 BAS Bgipﬁ ~1)

P, (0<|z|=r<1)
(3.7)

where

—~

a)kJr;D

Ck:Kk+pX1—B%+HA—Jﬂ@B—1H@M+

(k=p,p+1,p+2,---;peN)

(3.8)
If the sequence {Cy/k} is nondecreasing, then

P’(A-B)(ps—1)

p2(A - B)(pﬁ B 1),,,17—1
Op

Cp
O<|z|=r<1) (3.9)

P @) <prTPTh

pr_p_l _

Each of these inequalities is sharp, with the extremal function f(z) given by (33).

Proof. Let the function f(z) of the form (II2) be in the class M, .(p; 5; A, B). If
the sequence {Cj} is nondecreasing, then (by Theorem BI]) we have

- A-B)(pB—1

D lar| < l C)(pﬁ ), (3.10)

k=p P
On the other hand, if the sequence {C}/k} is nondecreasing, Theorem Bl also

implies

- (A= B)(pB -1
k=p p
Thus, assertions (B.1) and (39) follow immediately.
Finally, it is easy to see that the bounds in (B1) and B3] are attained for the
function f(z) given by B.2) with k = p. O

Next we determine the radii of meromorphically p-valent starlikeness and mero-
morphically p-valent convexity of the class M .(p; 3; A, B). We first state our
results as
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Theorem 3.3. Let -1 < B< A<1,p8>1,p€ N and f(2) be given by (L13) be
in the class M .(p; B; A, B). Then we have

(i)f is meromorphically p-valent starlike of order 6(0 < § < 1) in the disk |z| < rq,
that is,

() G |
%( pﬂ@)>5 (]2l <r;0 <6 < 1;peN) (3.12)
where
[0k =B+ KA=B)pB - 1)) (a)ksp |7
T = szp { (A—B)(ps —1)(k+ op) (©)tp } ;o (3.13)

(i1)f is meromorphically p-valent convex of order 6(0 < § < 1) in the disk |z| < rq,
that is,

NOUO)] o < o .
8‘%( T )>5 (|z] <re;0<d < 1;peN) (3.14)
where
e [PA= 0k +P) (1= B) + KA = B)pB =] (@i | ™7
= it { P B e Gz} e

FEach of these inequalities is sharp, with the extremal function f(z) given by (3.3).
Proof. (i)From the definition ([.I2)), we easily get

1+ 2@ > (k + p)lal[=[**7
pf(z) < k=p (3.16)
zf'(2) — 50 . .
e 2071 2p(1—8) = 3 [k — (1 20)p]lax||2]4+P
k=p
Thus we have the desired inequality
1+ 35
27 T 26 -1
if
= (k
S B e <1, (3.18)
= r(1=9)
that is, if
(b +00) iy - kD)= B) T HA=BYpB 1) (@sy 59
p(1—9) - p(A—B)(pf—1) (ktp

(k=pp+1lp+2--ipeN)
where we have made use of the assertion ([BI]) of Theorem BI] since
f€ME(p;B A B).

The last inequality ([B.19) leads us immediately to the disk |z| < 71, where 7 is

given by [B.13).
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(ii)In order to prove the second assertion of Theorem B3] we find from the
definition (LI2) that

|4 GIEY 2 K(k+ plal =]
(Zf/(z))/ pj (22(; 1 S _p()o . (3-20)
PG 0 2p*(1 = 6) = 3 klk+p(26 — D)]ax|2|*+7
k=p

Thus we have the desired inequality

14 Grey
+ pF(z)
S <1 (0<§<1;peN), (3.21)
LAY 4261
pf’(2)
if
> k(k + 0p) K
27|ak||z| <, (3.22)
= p*(1-9)
that is, if
bk +0p), iy o (k+P)A—B) + k(A= B ~1) (a)er (3.23)
20=0) = p(A—B)(p3—1) ()-+p

(k=p,p+1,p+2,---;peN).
The last inequality ([B.23]) readily yields the disk |z| < re with ro defined by
BI3), and the proof of Theorem is completed by merely verifying that each
assertion is sharp for the function f(z) given by ([B.2)). O

Theorem 3.4. Let -1 < B < A < 1,p8 > 1l,a > 0,c > 0,v > 0.If f €

M (p; B; A, B)then F(z) defined by

v

_ - v+p—1
F(z) = 5 /O P (bt
belongs to M .(p; B; A, B).

Proof. If f(z) of the form (LI2)) be in the class M;fc(p; B; A, B),by Theorem Bl we
have

i (bt p)A=B)+KA=B)pE=1) (Deip o

= p(A=B)(pB —1) (Q)rtp
For
PO= g [ o=y i
we obtain
i (k+p)A=B)+ k(A= B)pB—Y) (@erp v .
— p(A—B)(pB —1) Qrip vHk+p "
(k+p)1—B)+k(A-B)®pB—-1) (a)isp
<y BT ey
Sl)

which implies that F(z) € M} .(p; 5; A, B).
This evidently completes the proof of Theorem B.4] O



SOME NEW SUBCLASSES OF MEROMORPHICALLY MULTIVALENT FUNCTIONS 29

4. NEIGHBORHOODS AND PARTIAL SUMS

Following the earlier works (based upon the familiar concept of neighborhoods
of analytic functions) by Goodman[3] and Ruscheweyh[IT], and (more recently) by
J.L.Liu and H.M.Srivastava[8], and M.S.Liu and N.S.Song[7] ,we begin by intro-
ducing here the §-neighborhood of a function f(z) € ¥, of the form (['2) by means
of the definition :

Ns(f):={g €%, :9(z) =27P+ > 7o bpz""P and

$SHOEIA-pIA - B+ pA- BP0 (e,
p(A—B)(pB—1) (©)k -
(@>0;¢>0,1<B<A<1;6>0;p8>1)} (4.1)
Theorem 4.1. Let f € My (p;3;A,B)(—1 < B < A< 1;p8 > 1) be given by
(L2). If | satisfies the condition
f(2)+ e
1+4+e€

k=1

€ Mac(p; B;A,B) (e € Cile] <656 >0) (42)
then
Ns(f) C Mac(p; B; A, B). (4.3)
Proof. Tt is obvious from (LTI that g € M, .(p; 58; A, B) if and only if
PLy(a,c)g(2) + 2(Lp(a, c)g(2))’

* BlpLy(a,0)g(2) + 2(Ly(a,¢)g(2))'] + (A = B)(1 = pB)z(Ly(a, c)g(2))’ 7o
(z € U*,0 € C;lo| =1), (4.4)
which is equivalent to
W) 4 (e, "

where, for convenience,

oo
z P4 E cp2®P
k=1

r 3 ML oA = pBUA = B) 4 po(A - B)pB — 1) (@ 1y
k=1

h(z) :

po(A—B)(ps—1) (©)k
(4.6)
We find from (6] that
lex| = ’k[l +0(A—pB(A—B))| +pos(A-B)(ps—1) . (a)k
’ po(A—B)pB—1) (c)n
k(1+|A—pB(A—B)[)+p(A-B)(pB—1) (a)k
: WA B)p5 1) o 7
(k=p,p+1,p+2,---;p€eN)
Under the hypothesis of Theorem [4.1] ([4.5) yields
‘% >3§ (2 €U >0). (4.8)
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By letting

g(z) =27+ E bezP € Ns(f), (4.9)
k=1
we have

‘(f(Z) —9(2)) * h(z)

z—p

oo

Z k—bk ckz

k=
2 |Z k(1+]A—-pB(A—-B))) +p(A-B)(ps—1) (a)k
p(A—B)(ps—1) (©)x

<46 (z €U;6 > 0). (4.10)

Thus we have (LI]), and hence also ([@4)) for any o € C such that |o| = 1,which

implies that g € M, .(p; 8; A, B). This evidently proves the assertion (3] of
Theorem (.11 O

lar — by

Theorem 4.2. Let -1 < B < A< 1,p8 > 1 and f € I, be given by (L2) and
define the partial sums s1(z) and s,(z) by

s1(z) =277 and s,(z):=2"P+ Z arz"?  (n e N\ {1}). (4.11)

Suppose that

- _kQ+|A-pB(A-B)|)+p(A—B)(pB—-1) (a)k

2 dulol <1 (de = P(A—B)p6—1) ©,) 12
?i)ﬁfa >0 anil) ch> 0,then f(z) € M,..(p; B; A, B);

w)lf a > c > 0,then

ON 1L eun
R (Sn(z)) >1 T (z€U;neN) (4.13)
and
sn(2) d, .
%(f(z))>1+dn (z€U;n eN) (4.14)

FEach of the bounds in ({-13) and ({{-13)) is the best possible for each n € N.
Proof. (i) Tt is not difficult to see that
2" € Mac(p;B;A,B) (p€N)
Thus, from Theorem 4.1 and the hypothesis ([{12]), we have
f(2) € Ni(27) € Mac(p; B;A,B) (a>0;¢>0;p €N) (4.15)
as asserted by Theorem

(ii)For the coefficients dj, given by (£12), it is easy to verify that
dit1>dp>1 (a>c>0k=p,p+1,p+2,---;peN) (4.16)
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So,we have
n—1 0o 00
D lanl+dn Y Jar] <Y dplax] <1 (4.17)
k=1 k=n k=1
by using the hypothesis ([{12]) again.
By setting

o0
dn . apz®
k=n

1

() mdy | LG o L] Zq g _h=n (4.18)

$n(2) d, n-1

14+ > agzk
k=1
and applying ([£I7), we find that
g1(z) — 1 fn kz s n kz i

< = < = <1 (€U 4.19
91(2) + 1’ <t d ) (@19)

- n—1 00 - n—1
2-2 % larl —dn 30 fax] 1= 37 |ax]
k=1 k=n k=1

which readily yields the assertion (I3 of Theorem 2]

If we take 1
f(z) =277~ d—z"_p, (4.20)
then )
z z" 1
=1-— 1—-—— 1~
() a — T as z— 17,

which shows that the bound in ({I3) is the best possible for each n € N.
Similarly, if we put

(1 + dn) E akzk
k=n

(4.21)

14 > agzk
k=1

and make use of [@I7)), we can deduce that

(1+d) Y Jaxl
h=n <1 (z€l), (4.22)

- n—1 00
2-2 3 lar[+ (1 —dn) > |a]
k=1 k=n

which leads us immediately to the assertion (@I4]) of Theorem
The bound in (£I4)) is sharp for each n € N, with the extremal function f € 3,
given by ([@20). The proof of Theorem is thus completed. O

We now define the j—neighborhood of a function f € ¥, of the form (LI2) as
follows:

N (f) :={9€2pg(z) = 272 + 3.2 |bw]2*
and

<
)
—
N
—
VAN

—1
92(2)4'1‘

— (k+p)(1+[B) + k(A= B)(pS—1) (a)r4p
Z p(A—B)(pB—1) ‘ (©rtw l|ax| — |bx]| < 0

(a>0;¢>0,-1<B<A<1;0>0;p8>1)} (4.23)

k=p
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Theorem 4.3. If f € M, a+1 (0;8;A,B) and =1 < B <0, then

Ni (D) € ML BAB) (6= ) (424)

The result is sharp.

Proof. Making use of the same method as in the proof of Theorem 1] we can show
that

h(z): = z7P4 chzk

- [(k +p)(1 —0B) +0k(A=B)(pS — V] (@k+p
* Z po(B—A)(pB—1) Okt

(4.25)
we find from (23] that

[(k+p)(1 —0B)+0ok(A—B)(pS—1)] (a)rtp
po(B—A)(pB—1) (c)
[(k+p)(A+[B]) +k(A=B)pB-1)] (a@)ktp
- p(A—=B)(pB—1) (c)
(k=p,p+1,p+2,---;p€N).

el = \

Thus, under the hypothesis —1 < B < 0, if f € a+1 .(p; B8; A, B) is given by
([II2), we obtain

(f*h)(2) = |1+ S crla|ZFtP
> 1= [erlla]
k=p
N E+p) A+ [B)+EA-B)pB-1)] (at+Deyp @
SRR p(A-B)p5 1) @Oy athip™
S q__@ i [(k+p)A+|B|) +k(A—B)(ps—1)] (a+1)k+p| |
- a+2p & p(A—B)(ps—1) (©k+p
_ ,__a i[(k+p)(1—B)+k(A—B)(pﬁ—1)].(a+1)k+p|ak|
a+2p & p(A=B)(pB—1) (©k+p '
By Theorem B we obtain
a 2p

z—Pp

LELCIEE

a+2p:a+2p:

The remainder of the proof of Theorem is similar to that of Theorem HE.1]
and we skip the details involved.
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In order to show that the assertion (£24]) of Theorem is sharp, we consider
the functions f(z) and g(z) given by

p (A-B)(pB-1) (©2p L
O = B T (A-BpA=D (a1 - arterifiA )
(4.26)
and
e ASBWE-Y (@ Y@,
9 = S B T (A- BB~ 1) (w+n%+<m%) o
(6 > 0= ai’}p).
We have
o~ (k+p)A+|B) +k(A-B)pB—-1) (@krp, |
2 PA-B)p5—1) @y 1!~ 10
21 -B)+(A-B)pS-1) (@  (A-B)@E-1) 30
(A-B)(pBs-1) (¢)2p 2(1—B)+(A-B)(pB—-1) (a)p
— 4.
Therefore g(z) € N3 (f).
Thus
21-B)+(A-B)pd—1) (1)5,  (A=B)pS—1) ,<<@% PAGH
(A-B)(pB-1) (c)2p 21 =-B)+(A-=B)(pB—1) \(a+1)2 (a)y
-4y
a+2p
> 1.

By Theorem[Bdlg(z) is not in the class M;fc (p; B; A, B). So the proof of Theorem
is completed. O

Theorem 4.4. Let —1 < B <0 and X\ be a real number with

p(A-B)pB-1)

AT A A B

If the function f(z) given by (L12) is in the class M .(p; B; A, B) ,then F(z) defined
by (2.3) belongs to Nit (f). The result is sharp in the sense that the constant 1 cannot
be decreased.

Proof. Suppose f(z) = 277 + Y |ax|zF € M .(p; ; A, B),Then it follows from
k=p
[23) and Theorem B4l that

o0 o0 A
F(z)=2"P+ Z |b|2* = 277 + Z m|ak|zk €M} .(p;B; A B) (4.28)
k=p

k=p

)
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From the hypothesis of Theorem [£4] we have

i [(k+p)(L+[B)) + k(A= B)pS - D] (@)rtp lax|

= p(A—B)(pBs—-1) O B
i (k+p)(1=B)+k(A-B)pS-1)] (@rp p+k |
k=p p(A=B)(pB-1) (C)k+p v+p+k k
i (k+p)(1 —B) +k(A— B)(pﬂ—l)]'(a)k+p'|ak|

=p A B)(pﬁ - 1) (C)k-‘rp
L (f ae(p; B; A, B)),

which shows that F(2) € N;(f).
In order to verify the sharpness of the assertion Theorem 4] we consider the

function f(z) given by B2)). From B2)) and [@28)), we have

v

Fz) = — /0 L (1)t

v “ i1 (= p(A-—B)(pB—1) (Ok+p i
= +/ ! (t 0 -B) tkA-B)pB-1)] @y )‘“
I p(A— B)(pf 1) Qe v,

[(k+p)(1—B)+k(A-—B)pB—1)] (rsp v+p+Ek

(k=pp+1lp+2---;peN).
Thus, by making use of (£23), we get

oo

(k+p)A1+|B) +k(A=B)pB 1) (a)k+p
kz_;, p(A—B)(pB—-1) ' (C)k; l|ax| — [bx]|
:#;jk 1(k — o0), (4.29)

which clearly shows that the constant 1 is the best possible. This evidently com-
pletes the proof of Theorem [£.4

The proof of Theorem below is similar to that of Theorem (4.3 and so is
omitted. (]

Theorem 4.5. Let —1 < B <0,pB8 > 1 and X be a real number such

p(A-B)pB-1)

AT A A B

If feM, a+1 .(p; B; A, B), then

2p(a + A + 2p) ) (4.30)

Ny (F) € M (p; B; A, B) <5' (A +2p)(a+2p)

and F(z) defined by (2.8). The result is sharp in the sense that 6’ cannot be in-
creased.
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5. CONVOLUTION PROPERTIES

In this section, we first set a > 0,¢ > 0 and define function f;(z)(j = 1,2) by
Fi(2) =27+ Y lawglz® (j=1,2) (5.1)
k=p

and define the Hadamard product (or convolution) of the functions f1(z) and fa(z)
as

(frxfo)(2) =277+ > lakal - |as|2". (5.2)
k=p

Theorem 5.1. Let the functions f;(z)(j = 1;2) defined by (Z1) be in the class
M (p; B; A, B),if the sequence {(k —I—p)&ﬁ}(k > p;p € N) is nondecreasing and

2p(A - B)*(pB —1)* = p[2(1 — B) + (A — B)(pS — 1)]2% >0,

then (f1* f2)(2) € M .(p;n; A, B), where
1 2(A— B)(pB —1)*(1 — B)

n=-- @ O3
P A BR(pB— 12— pl2(1- B) + (A— B)(pp - PPz
The result is sharp for the functions f;(2)(j = 1;2) given by

[(1=B)+(A=B)(ps—1)] (a)p

Proof. Employing the techniques used earlier by Schild and Silverman[13], we need
to find the largest 7 such that

B+ P)( = B) + k(A= B)pn =] (@ksp,
— p(A—B)(pn —1) (0)k+p| kil lagz| < 1. (5.5)

k
For f;(z) € M .(p; B; A, B)(j = 1,2), we have

[k +p)(1 = B) + (A= BYpB =1 (@esy -
Z p(A— B)(pS—1) (Ortp lar;| <1 (1 =1,2). (56)

Therefore, by the Cauchy-Schwarz inequality, we obtain

© [(k+p)(1—B)+k(A—B)pB—-1)] (a)rsp .
2 p(A— B)(pB — 1) e, VIakallarel S 1.0 (5.7)

k=p

k=p

This implies that we only need to show that
[(k+p)(1 = B) + k(A - B)(pn—1)]

(pn—1) k142
[(k+p)1—-B)+k(A-B)pB-1)] /
< (pﬂ — 1) |ak,1ak,2|7 (5-8)

or, equivalently that

(k4 p)(1 = B) + k(A — B)(pS — (o — 1)
Viewaanal < G B R A By~ s =) PP 59)
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Hence, by inequality (57)), it is sufficient to prove that
p(A - B)(pS —1)
[(k +p)(1 — B) + k(A — B)(pf — 1)] Qe

(k+p
< [(E+p)(A = B) + k(A - B)(pS —1](pn —1)
" [(k+p)(1 = B) + k(A= B)(pn - DI(pB - 1)
It follows from (5.I0]) that

(5.10)

n< i (A—B)(pB—-1)*(k+p)(1 - B)
TP kp(A—B2(pB—1)? = [(k+p)(1 — B) + k(A — B)(pS — 1) {xe
(5.11)
Now, defining the function 7(k) by
kp(A— B)2(pf —1)2 [(k+p)(1— B) + k(A — B)(pB — 1)]* (=2
(k) = - (k = p).
k+p k+p
We see that 7(k) is an increasing function of k. Therefore, we conclude that
1 2(A -~ B)(pB —1)2(1 - B
HST(p):—— . (2 )( ) ( ) > (@) (k Zp),
P p(A=B)*(pf —1)? = p2(1 = B) + (A= B)(pS — D> 5%
which evidently completes the proof of Theorem .11 O

Using the same methods as in our proof of Theorem [5.1] we obtain the result as
follows:

Theorem 5.2. Let the function fi(z) defined by (Z.1) be in the class M (p; B; A, B),
and the function fa(z) defined by ([@.1) be in the class M .(p; p; A, B),then (f1 *
f2)(2) € My (p;&; A, B), where

e—1_ 2(A-B)(1=B)(pS-1)(pp—1)
P p(A—BPEB—1)(pp—1) - pMN (&2
where M = [2(1-=B)+(A—-B)(pB—1)] and N =[2(1-B)+(A—-B)(pu—1)].
The result is sharp for the functions f;(z)(j = 1;2) given by

(k= p), (5.12)

. A-BoE-1) (day s

W) =" T -Bes -1 (@ PV 619
and

f)=zre o ATBED Oy (5

[(1=B)+(A-B)pp—1)] (a)z
Theorem 5.3. Let the functions f;(2)(j = 1,2) defined by (2.1) be in the class
M;fc(p; B; A, B),if the sequence {(k —I—p)(c)ﬂ (k > p;p € N) is nondecreasing and

(@) k+p

2p(A - B)*(pB —1)* = p[2(1 — B) + (A — B)(p — 1)]2% >0,

then the function h(z) defined by

h(z)=2"P+ Z(aiﬂl + ain)zk (5.15)

k=p
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belongs to the class M;fc(p;C;A,B), where
1 4(1-B)(A-B)(pB —1)°

P 2p(A - B2(pf—1)? — p[2(1 - B) + (A~ B)(pS ~ D (2=

(©)2p

This result is sharp for the functions f;(z)(j = 1,2) given already by (5.4).
Proof. For fi(z) € M} (p; B; A, B)(j = 1,2), we have

(k4 p)(1— B) + k(A - B)pS - 1] (aisy,
2 DA B)(pF 1) gy M S

k=p

Therefore,

oS 2
Z[[(kﬂo)(l—B)+/€(A—B)(p6—1)] (a)k+p:| a2

= p(A—=B)(ps—1) (ktp
2
- b n)( = B) & KA = BYpS ~ 1)) (@esy,,
N et p(A—B)(pB—1) (Orap
<1 (j=1,2). (5.16)

So,

1 [[(k+p)(1 = B)+ k(A= B)(pB—1)] (a)rip]’
2.3 [ P(A—B)pA— 1) | @ZP] o gl + lan ] < 1.

In order to obtain our result, we have to find the largest ¢ such that

i [(k+p)(1 = B)+ kA= B)(p¢ D] (a)ktp
p(A—=B)(p¢ —1) (©)ktp

k=p

llak,;1* + lar; %] < 1.
k=p

It is sure if

[(k+p)(1 — B) + k(A ~ B)(p¢ ~ 1)]

(p¢—1)
L+ (=B + k(A= BB =P  (@)ksp
T2 p(A—B)(pB—1)? (©ktp’
so that
_1 (k+p)(1 = B)(A - B)(pS — 1)? |
P kp(A—B)2(pB — 1) = 5[(k+p)(1 = B) + k(A — B)(pS — 1)]28%11’;

Now, we define the function ¢ (k) by
_kp(A—B)*(pB—1)°
wl) = 2E=2
1 [(k+p)(1 = B) + k(A - B)(pB — 1)]? {42
2 kE+p (k 2 p).

We observe that (k) is an increasing function of k(k > p). Thus, we conclude
that

1 4(1 = B)(A— B)(pB —1)2
C<9(p) = P 2p(A—B)2(pS—1)2 —p[2(1 — B) + (A — B)(pB — 1)]22222 ;
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which completes the proof of Theorem O

6. APPLICATION OF FRACTIONAL CALCULUS OPERATOR

In this part, we investigate the application of fractional calculus operator which
was defined by M.K.Aouf et al.[2] in the class of M;fc(p; B; A, B). In our investiga-
tion, we will use the operators Js, defined by [6, 9, [14].

Definition 6.1(see [6]) The operators Js, defined by

(Uspf)(z) = 2P / BUWd (6> pp e ) (6.1)

20

Definition 6.2 (see [2])The fractional integral of order y is defined, for a function

f(z), by

i L[
D) = 75 | g (>0 (62)

where the function f(z) is analytic in a simply connected domain of the complex z-
plane containing the origin and the multiplicity of (z—&)*~! is removed by requiring
log(z — &) to be real when z — & — 0.

Definition 6.3 (see [2])The fractional integral of order 4 is defined, for a function

f(z)v by

b 1[I
DG = |, gt 0= 63)

where the function f(z) is constrained, the multiplicity of (z — &)™# is removed as
in Definition 6.2.

Lemma 6.1. For a function f(z) € X, of the form (I.12),by the above defini-

tions,we have

_ ~0—p
Topf(2) = 277+ 3 s —slaxl";
k=p

DIH{Uspf o)} = (e + 30 TR lanls) (> 0)
k=p

Ll-n O 5 —
DN = grrr z Z+§|ak|zk> (0<p<1);

Tl (D 1)()} = MF(S(;@;"W —uz §+§jj” J) (e 0) (67)
(6 —p)z'— - 5 G-—p-—p+1)

0<pu<l).

Theorem 6.1. Let the function f(z) defined by (LI12) be in the class M .(p; 5; A, B)(a >

¢ > 0),then

2"

L ) . (0 —p)(A—=B)(pB —1)(c)2p
D (s DN < s (17 + s

20— B) T (A B)(pb - D](a)s 'Z'p) ’
6.9)
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|Z| (5—p)(A—B)(pB— 1)(0)217 |Z|p) ’

S|P —

e (1 - R S B e BTh
(6.10)

where p > 0,6 > p,p € N,z € U*, each of the assertions is sharp for the function

f(2) given by

DM {(Jspf)(2)} =

1D {(Js.pf)(2)} =

(6 = p)(A = B)(pB —1)(c)2y ) ,

pI () (zp * (6 +p)2(1 = B) + (A= B)(pB — (a)2p
(6.11)

Proof. By Lemma 6.1,

u B O R et

Since T'(k) = 9=P ig a decreasing function of k for k > p when & > p,we have

k+96
0<T(k) <T(p) = f%
If f(z) € M (p; B; A, B)(a > ¢ > 0),by the Theorem B} we get
20-B)+ (A-B)pE-1)] (@)
A= B - 1) p,;)' .
(kP = B) + KA~ B)pB ~1)] (@hsy,
<Z MA- D)5~ 1) e
§1 (6.12)
It is that
= (A= B)pS ~ 1(c)sy
2l < G B A Bes -
then
» (o (-PA-BE- D)y
DA < o (117 + G 2 By (A B )
» A (e G-DA-BE Dy,
PN 2 o (7~ G By T i B )

O

Theorem 6.2. Let the function f(z) defined by (L12) be in the class M} .(p; B; A, B)(a >

¢ > 0),then

|Dg{(<]6,pf)(z)}| < | | s (5—p)(A—B)(pﬂ— 1)(6)220

(6.13)
(0 —p)(A—B)(pB —1)(c)2p

|21

D] (Mp T TR0 =B+ (A—B)(pB - 1)|(a)s 'ZV’) )

[DE{(Jspf)(2)} <
(6.14)

(D] (Mp TR0 -B) ~(A-B)pB-1)(a) 'ZV’) )
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0<u<1,0>ppeN,zeU* each of the assertions is sharp for the function f(z)
given by

DE{(Jsp )2} = o ( 0 pA-BIp3 Do )

e — +
(1=l —p) (0 +p)[2(1 = B) + (A= B)(ps = DI( ))2p

15
With the the same methods,we can obtain the similar results of J5 ,{(D; *f)(2)}
and Js ,{(D% f)(z)},we omit.

)
(6
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